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Collapse of Magnetized Hypermassive Neutron Stars in General Relativity
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Hypermassive neutron stars (HMNSs)—equilibrium configurations supported against collapse by rapid
differential rotation—are possible transient remnants of binary neutron-star mergers. Using newly
developed codes for magnetohydrodynamic simulations in dynamical spacetimes, we are able to track
the evolution of a magnetized HMNS in full general relativity for the first time. We find that secular
angular momentum transport due to magnetic braking and the magnetorotational instability results in the
collapse of an HMNS to a rotating black hole, accompanied by a gravitational wave burst. The nascent
black hole is surrounded by a hot, massive torus undergoing quasistationary accretion and a collimated
magnetic field. This scenario suggests that HMNS collapse is a possible candidate for the central engine of
short gamma-ray bursts.
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Hypermassive neutron stars (HMNSs) figure promi-
nently in several relativistic astrophysical systems of
current interest. Mass limits for nonrotating stars [the
Oppenheimer-Volkoff (OV) limit] and for rigidly rotating
stars (the supramassive limit, which is only about 20%
larger) can be significantly exceeded by the presence of
differential rotation [1]. Stars with masses greater than the
supramassive limit are called hypermassive stars. Mergers
of binary neutron stars (BNSs) can lead to the formation
of HMNS remnants. This possibility was explored in
Newtonian and post-Newtonian simulations [2,3], and in
full general relativity [4]. The latest relativistic BNS
merger simulations with realistic equations of state
(EOS) [5] confirm that HMNS formation is indeed a pos-
sible outcome. HMNSs can also result from core collapse
of rotating massive stars, since rapid differential rotation
can develop during the collapse.

Differentially rotating stars approach rigid rotation via
transport of angular momentum on secular time scales.
HMNSs, however, cannot settle down to rigidly rotating
equilibria since their masses exceed the maximum allowed
by uniform rotation. Thus, ‘‘delayed’’ collapse to a black
hole, and possibly mass loss, will follow transport of
angular momentum from the inner to the outer regions.
Previous calculations of HMNS collapse have focused on
viscous angular momentum transport [6] and angular mo-
mentum loss due to gravitational radiation [5]. In this
Letter, we demonstrate black hole formation induced by
seed magnetic fields in HMNSs.

In any highly conducting astrophysical plasma, a frozen-
in magnetic field can be amplified appreciably by gas
compression or shear (e.g., differential rotation). Even
when an initial seed magnetic field is weak, the field
can grow to influence significantly the system dynamics.
There are at least two distinct effects which amplify the
magnetic field in a HMNS: magnetic winding and the
magnetorotational instability (MRI) [7,8]. Numerical
simulations using a general relativistic magnetohydrody-
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namics (GRMHD) code are required to follow this growth
and determine the consequences. The key subtlety is that
the wavelength of the fastest-growing MRI mode must be
well resolved on the computational grid. Since this wave-
length is proportional to the magnetic field strength, it
becomes very difficult to resolve for small seed fields.
However, the simulations reported here succeed in resolv-
ing MRI.

New computational tools now make long-term numeri-
cal evolutions of relativistic magnetized HMNSs possible
for the first time. Two groups have independently devel-
oped codes for evolving MHD fluids in strong-field, dy-
namical spacetimes [9,10] (see also [11]). These codes
solve the Einstein-Maxwell-MHD system of coupled equa-
tions, both in axisymmetry and in 3� 1 dimensions, es-
sentially without approximation. Both codes evolve the
spacetime metric using the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formulation [12] and employ conserva-
tive shock-capturing schemes to integrate the GRMHD
equations. Multiple tests have been performed with these
codes, including MHD shocks, MHD wave propagation,
magnetized Bondi accretion, MHD waves induced by
gravitational waves, and magnetized accretion onto a neu-
tron star.

To study the effects of magnetic fields on HMNSs, we
first construct initial data assuming a � � 2 polytropic
EOS, P � K��, where P, K, and � are the pressure,
polytropic constant, and rest-mass density. Henceforth,
we adopt units such that K � c � G � 1, where c is the
speed of light and G is the gravitational constant. In these
units, the maximum allowed baryon masses M0 of non-
rotating and of rigidly rotating stars are 0.180 and 0.207,
respectively [13].

Following previous papers (e.g., [1,6,14]), we choose the
rotation law utu’ � A2��c ���, where u� is the four-
velocity, � � u’=ut is the angular velocity, and �c is the
angular velocity at the rotation axis. The constant A has
units of length and determines the degree of differential
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FIG. 1 (color online). Evolution of the central density, central
lapse, and maximum values of jBxj and jByj (the behavior of
jBzjmax is similar to the behavior of jBxjmax and is therefore not
shown). jBxjmax and jByjmax are plotted in units of �������������

�max;0
p ,

where �max;0 is the maximum rest-mass density at t � 0. The
solid (red), long-dashed (green), dashed (blue), and dotted
(black) curves denote the results with N � 250, 300, 400, and
500, respectively. The dot-dashed (cyan) line in the last panel
represents the predicted linear growth of By at early times.
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rotation. In this Letter, A is set equal to the coordinate
equatorial radius R, giving a value of �1=3 for the ratio of
equatorial to central �.

We model a HMNS withM0 � 0:303, maximum density
�max � 0:0668, and angular momentum parameter
J=M2 � 1:00 [15]. The Arnowitt-Deser-Misner mass is
given by M � 0:279, which is about 70% larger than the
OV limit. Because of rapid differential rotation, the shape
of this star is highly flattened (see the first panel of Fig. 2).

During the evolution, we adopt a �-law (adiabatic) EOS
P � ��� 1��" with � � 2. Here, " denotes the specific
internal energy. Before evolving, we add a weak poloidal
magnetic field to the equilibrium model by introducing a
vector potential of the form A’ � $2 max�Ab�P�
Pcut�; 0	, where Pcut is 4% of the maximum pressure, Ab
is a constant that determines the initial strength of the
magnetic field, and $ is the cylindrical radius. (A similar
form for the vector potential has been used in other MHD
simulations [16].) We characterize the strength of the
initial magnetic field by C � max�b2=P�, the maximum
value on the grid of the ratio of the magnetic energy density
b2 to the pressure. Several values of Ab are chosen to yield
the following values of C: 1:26
 10�3, 2:47
 10�3,
4:88
 10�3, and 9:80
 10�3. We have verified that these
small initial magnetic fields introduce negligible violations
of the Hamiltonian and momentum constraints. Note that
C / v2

A, where vA is the Alfvén speed. Thus, C�1=2 / v�1
A

is proportional to the Alfvén time tA � R=vA. If the evo-
lution time scale is determined by the Alfvén time, a
scaling relation in the evolution should hold. This relation
may not hold for all C due to MRI, which grows exponen-
tially at a rate independent of tA. Comparing simulations
with the values of C quoted above, we indeed find that, if
the time is rescaled as C�1=2t, the results for different
values of C are approximately the same. (Detailed results
will be shown in [17].) We therefore focus on the case with
C � 2:47
 10�3. The typical value of P for our model is
�1034 erg=cm3�2:8M�=M�2; the initial maximum mag-
netic field strength is then �1016�2:8M�=M� gauss at t �
0. (These scalings with M assume our adopted initial
polytropic model, for which M=R � 0:22). This magnetic
field is too strong to model a typical HMNS (but is similar
in strength to ‘‘magnetar’’ fields [18]). However, the quali-
tative behavior obtained here still applies as long as the
approximate scaling relation holds.

Simulations in axisymmetry were performed indepen-
dently using two GRMHD codes [9,10], and the numerical
results are qualitatively similar. As in many hydrodynamic
simulations, we add a tenuous ‘‘atmosphere’’ to cover the
computational grid outside the star. The atmospheric rest-
mass density is set to 10�7�max;0 for the simulations shown
here, where �max;0 is the maximum value of � at t � 0,
which is 0.0668 in the adopted units.

We perform simulations on a uniform grid with size
�N;N� in cylindrical coordinates �$; z�, which covers the
region �0; 4:5R	 for each direction. For the HMNS adopted
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here, R � 4:5M � 18:6km�M=2:8M��. To check the con-
vergence of our numerical results, we perform simulations
with four different grid resolutions: N � 250, 300, 400,
and 500. We also checked that moving the outer boundary
between 4R and 5R does not significantly affect the results.

Figure 1 shows the evolution of the central density �c,
central lapse �c, and the maximum values of jBxj�� jB$j�
and jByj�� $jB’j� as functions of t=Pc. Here Pc �
39M � 0:54�M=2:8M�� ms denotes the central rotation
period at t � 0. The central density monotonically in-
creases with time up to the formation of a black hole.
Evolutions with various grid resolutions demonstrate that
the results begin to converge when N * 400. On the other
hand, results are far from convergent for N & 300. For
example, the maximum values of jBxj are much smaller
than those with higher resolutions, and the growth rate of
jBxj is underestimated. Hence, the effect of MRI, which is
responsible for the growth of jBxj, is not computed accu-
rately for low resolutions. This is because the wavelength
of the fastest-growing MRI mode is not well resolved for
low resolutions (see below).

Simulations with different treatments of the atmosphere
are qualitatively the same when the atmospheric density is
sufficiently small. However, the exact collapse time is
somewhat sensitive to the details of numerical and atmos-
pheric schemes. This is not surprising because, at late
times, the star becomes marginally unstable, and the pre-
cise onset of collapse over the secular lifetime is sensitive
to small differences in different schemes.

For the chosen initial strength of the seed magnetic field,
the early evolution is dominated by magnetic winding.
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FIG. 2 (color online). The upper 4 panels show snapshots of the rest-mass density contours and velocity vectors on the meridional
plane. The lower panels show the field lines (lines of constant A�) for the poloidal magnetic field at the same times as the upper panels.
The density contours are drawn for �=�max;0 � 10�0:3i�0:09�i � 0–12�. The field lines are drawn for A� � A�;min � �A�;max �

A�;min�i=20�i � 1–19�, where A�;max and A�;min are the maximum and minimum value of A� respectively at the given time. The thick
solid (red) curves denote the apparent horizon.
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When the seed field is weak, the induction equation shows
that By grows approximately linearly: By�t;$; z� �
t$Bi�0;$; z�@i��0;$; z�. Indeed, the early growth rate
agrees with the predicted one [cf. dot-dashed (cyan) line
in the last panel of Fig. 1]. When the energy stored in the
toroidal field becomes significant compared to the rota-
tional energy, jByj grows more slowly and the degree of
differential rotation is reduced. Eventually jByj reaches a
maximum and starts to decrease. This is expected to hap-
pen on the Alfvén time scale tA [19], which is �16Pc for
the model considered here. We see that the maximum value
of jByj starts decreasing when t * 20Pc, consistent with
the Alfvén time scale.

MRI is evident at times t & 6Pc as shown in Fig. 1,
where the maximum value of jBxj suddenly increases
rapidly. MRI occurs wherever @$�< 0 [8]. The wave-
length for the fastest-growing mode is �MRI � 2�vA=�
and the e-folding time of the growth is �MRI �
2�@�=@ ln$��1 [8]. With our choice of the initial magnetic
field strength, �MRI � R=10 and �MRI � 1Pc. In Fig. 1, we
see that MRI shows up prominently when N * 400.
Hence, we need to use a resolution � & �MRI=10 to study
the effect of MRI accurately. We find that MRI first occurs
in the outer layers of the star near the equatorial plane. This
can also be seen in Fig. 2, where we see that the magnetic
field lines are distorted by t � 15Pc. In Fig. 1, we see that
the central density begins to grow more slowly once jBxj
saturates. This may be caused by MRI-induced turbulence
redistributing some of the angular momentum to slow
down the contraction of the core.
03110
The combined effects of magnetic braking and MRI
eventually trigger gravitational collapse to a black hole at
t � 66Pc � 36�M=2:8M�� ms when an apparent horizon
forms. The latest simulations [5] of BNS mergers show that
for a sufficiently stiff EOS and typical observed BNS
masses, HMNS formation is possible. HMNS remnants
are triaxial and strong emitters of gravitational waves in
these simulations. The dissipation time scale of angular
momentum due to gravitational radiation is �100 ms [5].
Therefore, HMNSs with an initially large magnetic field
(B * 1016 G) will be subject to delayed collapse due to
MHD effects (magnetic braking�MRI) rather than by the
emission of gravitational waves. For seed magnetic fields
which are much weaker than the cases studied here, gravi-
tational radiation may be the trigger of collapse. However,
it is possible that MRI may dominate the evolution even in
this case, since the e-folding time of MRI is independent of
the initial field strength. A more careful study of this
scenario has to be carried out in full three dimensions
[20]. However, since any dissipative agent (viscosity, mag-
netic fields, gravitational radiation) serves to redistribute
and/or carry off angular momentum, the final fate of an
HMNS—collapse to a black hole, accompanied by a
gravitational wave burst—is assured.

Soon after the formation of the apparent horizon, the
simulations become inaccurate because of grid stretching.
To follow the subsequent evolution, a simple excision
technique for black hole spacetimes is employed [21,22].
The evolution of the irreducible mass of the black hole
computed from the area of the apparent horizon AAH as
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FIG. 3. Evolution of the irreducible mass and the total rest
mass outside the apparent horizon.

PRL 96, 031101 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
27 JANUARY 2006
Mirr �
��������������������
AAH=16�

p
, and the total rest mass outside the

apparent horizon are shown in Fig. 3. Soon after formation,
the black hole grows rapidly, swallowing the surrounding
matter. However, the accretion rate _M0 gradually decreases
and the black hole settles down to a quasiequilibrium state,
i.e., the growth time scale becomes much longer than the
dynamical time scale. At the end of the simulation, _M0

decreases to � 0:01M0=Pc. The estimated value of the
black hole spin parameter is Jhole=M2

hole � 0:8. The black
hole angular momentum is computed from Jhole �
J� Jmatter�r > rH�, where the angular momentum of the
matter outside the horizon Jmatter�r > rH� is computed
by a volume integral [see, e.g., Eq. (51) of [6]]. The mass
of the black hole Mhole is crudely estimated from Mhole �������������������������������������������
M2

irr � �Jhole=2Mirr�
2

q
. The density contour curves and

magnetic field lines at the end of the simulation are shown
in the last column of panels of Fig. 2.

The value of _M0 indicates that the accretion time scale is
�10–20Pc � 5–10 ms�M=2:8M��. Also, we find that the
specific internal thermal energy in the torus near the sur-
face is substantial because of shock heating, indicating that
the torus can be a strong emitter of neutrinos. These facts
suggest that the system formed after the delayed collapse
of a magnetized HMNS (black hole� hot torus�
collimated magnetic field) is a candidate for the central
engine of short gamma-ray bursts [23,24]. This possibility
is explored in more detail in [25].
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