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Abstract

The electromagnetic emission and the afterglow observations of the binary neutron star merger event GW170817A
confirmed the association of the merger with a short gamma-ray burst (GRB) harboring a narrow (5°–10°) and
powerful (1049–1050 erg) jet. Using the 1 s long neutrino-radiation general relativistic MHD simulation of
coalescing neutron stars of K. Kiuchi et al., and following the semi-analytical estimates of M. Pais et al., we inject a
narrow, powerful, unmagnetized jet into the post-merger phase. We explore different opening angles, luminosities,
central engine durations, and times after the merger. We explore early (0.1 s following the merger) and late (1 s) jet
launches; the latter is consistent with the time delay of ≈1.74 s observed between GW170817 and GRB 170817A.
We demonstrate that the semi-analytical estimates correctly predict the jets’ breakout and collimation conditions.
When comparing our synthetic afterglow light curves to the observed radio data of GW170807, we find a good
agreement for a 3× 1049 erg jet launched late with an opening angle in the range ;5°–7°.

Unified Astronomy Thesaurus concepts: Gamma-ray bursts (629); Neutron stars (1108); Relativistic jets (1390);
Hydrodynamical simulations (767)

1. Introduction

The merger of a neutron star binary (BNS) or a neutron star
and a black hole (BH) is the most promising candidate for the
detection of gravitational waves and their electromagnetic
counterparts: a short gamma-ray burst (sGRB; D. Eichler et al.
1989), a kilonova (L.-X. Li & B. Paczynski 1998; S. R. Kulk-
arni 2005; B. D. Metzger et al. 2010), and their afterglows. The
tentative observations of kilonovae following sGRB 130603B
(E. Berger et al. 2013; N. R. Tanvir et al. 2013) and other
sGRBs (e.g., Z.-P. Jin et al. 2015, 2016; B. Yang et al. 2015;
B. P. Gompertz et al. 2018; S. Ascenzi et al. 2019; G. P. Lamb
et al. 2019b; Z.-P. Jin et al. 2020; A. Rossi et al. 2020; W. Fong
et al. 2021) suggested such association, but these did not
comprise sufficient affirmation. The BNS merger GW170817
provided the first evidence of the detection of a gravitational
wave from a BNS merger (B. Abbott et al. 2017). It was
followed by a multiwavelength electromagnetic signal
(B. P. Abbott et al. 2017).

Numerous numerical simulations of mergers have been
carried out over the years (e.g., M. B. Davies et al. 1994;
M. Ruffert et al. 1996; S. Rosswog et al. 1999, 2000, 2013;
M. Shibata 1999; M. Shibata & K. Uryu 2000; R. Oechslin
et al. 2002; M. Shibata et al. 2005; M. Shibata & K. Tanigu-
chi 2006; M. Anderson et al. 2008; Y. T. Liu et al. 2008;
B. Giacomazzo et al. 2009, 2011, 2015; A. Bauswein et al.
2013; B. Giacomazzo & R. Perna 2013; K. Hotokezaka et al.
2013; T. Piran et al. 2013; K. Kiuchi et al. 2014, 2018, 2024;
K. Dionysopoulou et al. 2015; Y. Sekiguchi et al. 2015, 2016;
F. Foucart et al. 2016; T. Kawamura et al. 2016; D. Radice
et al. 2016; M. Ruiz et al. 2016, 2018, 2019, 2020, 2021;

R. Ciolfi et al. 2017, 2019; T. Dietrich et al. 2017; M. Ruiz &
S. L. Shapiro 2017; R. Ciolfi 2020; R. Aguilera-Miret et al.
2020, 2022, 2023; P. Mösta et al. 2020; K. Hayashi et al. 2022;
C. Palenzuela et al. 2022; L. Sun et al. 2022; L. Combi &
D. M. Siegel 2023a, 2023b; E. R. Most & E. Quataert 2023).
State-of-the-art simulations rely on fully general relativistic
(GR) numerical schemes, approximated neutrino transport, and
a realistic equation of state (EOS) for the neutron stars. Before
coalescence, the system starts to eject mass because of the tidal
forces. Typically, the resulting ejecta expands at 0.1c (K. Hot-
okezaka et al. 2013), with a small fraction that moves faster,
around 0.6c or even faster (K. Kiuchi et al. 2017; S. Fujibaya-
shi et al. 2023). A second source of ejecta is the bound material
torn from the neutron star after the merger with enough angular
momentum to form a thick torus around the newly created
compact object from the fusion. Magnetorotational instability
(MRI) generates viscosity, leading to accretion (Y. Zenati et al.
2023, 2024). A viscous-driven wind emerges from the disk and
carries a fraction of the disk material at low (<0.1c) velocities
(e.g., R. Fernandez & B. D. Metzger 2013; O. Just et al. 2015;
S. Fujibayashi et al. 2020).
The afterglow observations of GW170807 revealed that it

involved a relativistic jet launched at an angle of about 18°
away from us, which means that while we did not see the direct
emission from this jet, as observed in a typical GRB, a
powerful relativistic jet was present in this system (e.g.,
G. Hallinan et al. 2017; E. Troja et al. 2017; K. P. Mooley et al.
2018b, 2018a; G. Ghirlanda et al. 2019). Close examination of
the gamma-ray observations and the afterglow shows that
GRB 170817A was not a regular sGRB. Its total isotropic
equivalent energy (∼1046 erg) is smaller by 3 orders of
magnitude than the weakest sGRB measured so far (O. Gottlieb
et al. 2018) and by 4 orders of magnitude than typical sGRBs
(E. Nakar 2007). Both the radio (G. Hallinan et al. 2017) and
X-ray (E. Troja et al. 2017) afterglows were delayed by several
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days compared to a regular sGRB. The compactness argument
(M. M. Kasliwal et al. 2017; T. Matsumoto et al. 2019) reveals
that the observed gamma rays must have been produced in a
mildly or fully relativistic outflow with a Lorenz factor
of Γ; 2–3.

As the jet propagates through the expanding ejecta, it forms a
high-pressure bubble (the cocoon) that engulfs the jet (e.g.,
O. Bromberg et al. 2011). A natural mechanism that could have
produced the observed gamma rays in GRB 170817A is a
shock breakout of the cocoon from the engulfing ejecta
(M. M. Kasliwal et al. 2017; E. Nakar & T. Piran 2017;
O. Gottlieb et al. 2018; A. M. Beloborodov et al. 2020), while
the interaction of the jet and cocoon with the circumburst
medium produced the afterglow.

The propagation of the jet in a surrounding medium has been
studied by numerous authors both analytically (e.g., R. D. Blandf-
ord & M. J. Rees 1974; M. C. Begelman & D. F. Cioffi 1989;
P. Meszaros & E. Waxman 2001; C. D. Matzner 2003; D. Lazzati
& M. C. Begelman 2005; O. Bromberg et al. 2011; H. Hamidani
et al. 2020; H. Hamidani & K. Ioka 2021, 2022, 2023; L. Garci-
a-Garcia et al. 2024) and numerically (e.g., J. M. Martí et al.
1995, 1997; M. A. Aloy et al. 2000; A. I. MacFadyen et al. 2001;
W. Zhang et al. 2004; A. Mizuta et al. 2006; B. J. Morsony et al.
2007, 2010; P. Wang et al. 2008; A. Mizuta & M. A. Aloy 2009;
D. Lazzati et al. 2009; H. Nagakura et al. 2011; D. Lopez-Camara
et al. 2013, 2016; H. Ito et al. 2015; O. Gottlieb et al. 2018;
R. Harrison et al. 2018; A. Pavan et al. 2021, 2023; O. Gottlieb &
E. Nakar 2022; L. Garcia-Garcia et al. 2023). Most of those
studies were conducted for jets expanding in a uniform or
spherically symmetric surrounding medium (but see H. Nagakura
et al. 2014). Only recently have inhomogeneous post-merger
environments directly imported from the outcome of GR MHD
BNS merger simulations been considered (L. Nativi et al.
2023, 2022; A. Pavan et al. 2021, 2023). These studies describe
how a jet dissipates energy as it propagates, enabling us to
determine whether it breaks out of the surrounding matter or is
choked inside. They also show whether the surrounding pressure
is sufficient to collimate the jet (S. S. Komissarov et al. 2009;
Y. Lyubarsky 2009).

While uniform or spherically symmetric external matter is a
good approximation for stellar envelopes (relevant for long
GRBs), the ejecta of the BNS merger are far from that. M. Pais
et al. (2023) explored semi-analytically the conditions for a jet
to break out from the ejecta structure that arose in a BNS post-
merger environment based on the latest simulation described in
K. Kiuchi et al. (2023). A key ingredient here is the interplay
between the external pressure that acts to collimate the jet and
the existence of an empty funnel along the system’s rotation
axis, along which the jet propagates almost freely. M. Pais et al.
(2023) found that a jet with energy between 1048 and 1050 erg
and an opening angle of 3°–7° can break out from this ejecta.
At the same time, they found that the breakout conditions are
almost independent of the time at which they are calculated. In
this work, we numerically test the validity of these results by
injecting an unmagnetized relativistic jet in the same BNS
merger environment, following its evolution numerically.

The paper is structured as follows. We begin, in Section 2,
with a brief description of the environment setup resulting from
the neutrino-radiation GR MHD simulation of a BNS merger,
referring the reader to K. Kiuchi et al. (2023) for details. The
following paragraphs briefly describe the data import procedure
and the jet injection into the BNS post-merger environment.

More details on the data structures are reported in Appendix A.
In Section 3, we describe the results of several realizations of
the jet with different total energy, exploring cases of jet
breakout and jet choking. We calculate the afterglow light
curves using the energy distribution from our simulations. We
discuss the implications of our findings for GW170817 and
other sGRBs and summarize our results in Section 4.
Throughout this paper, c denotes the speed of light.

2. Setup

2.1. The BNS Environment Data

We import our initial conditions describing the ejecta
surrounding the remnant BH into PLUTO from the fully 3D
GR neutrino-radiation MHD simulation of a BNS merger
described in greater detail in K. Kiuchi et al. (2022) and
K. Kiuchi et al. (2023). In these simulations, the neutron star is
modeled with the SFHo EOS (A. W. Steiner et al. 2013), and
the binary is composed of a 1.2Me and a 1.5Me neutron star,
with a chirp mass consistent with the one observed in
GW170817. We employ the LORENE library (E. Gourgoulhon
et al. 2016) to construct a quasi-equilibrium configuration of
the irrotational BNS with an initial orbital frequency of
GM0Ω0/c

3= 0.025, where M0= 2.7Me is the total mass,
and with an orbital eccentricity of ( ) 10 3- . The entire run lasts
for 1 s and is the longest simulation of a BNS merger in the
literature. The merger and the subsequent BH formation occur
at ≈0.015 s and ≈0.032 s, respectively, where t= 0 is the start
time of the simulation.
A fraction of neutron star matter is dynamically ejected by

the tidal interaction and shock heating in the merge phase and
shows a fast tail with a terminal velocity up to ;0.96c
(S. Fujibayashi et al. 2023). A high-mass neutron star (HMNS)
is formed and survives for ∼20 ms after the merger, before
collapsing to a BH. It has a nonaxisymmetric density structure
and exerts a gravitational torque on the plasma, transporting
angular momentum outward. The torque leads to the formation
of a torus of mass ;0.05Me, which surrounds a newly formed
spinning BH of mass ;2.55Me and a dimensionless spin
of ;0.65.
The poloidal magnetic field is initialized with a magnetar-

like strength of 1015 G, and the Kelvin–Helmholtz instability at
the onset of the merger amplifies it further (D. J. Price &
S. Rosswog 2006; K. Kiuchi et al. 2014, 2015, 2018, 2024;
R. Aguilera-Miret et al. 2020, 2022, 2023, 2024; C. Palenzuela
et al. 2022). Nonaxisymmetric dynamo-driven MRI contributes
to the enhancement of the magnetic field. Still, even at this
level, the magnetic field is irrelevant to the overall dynamical
evolution. The magnetic winding and radial motion of the fluid
enhance the magnetic field in the torus until the electro-
magnetic energy saturates at ∼1% of the internal energy of the
torus. At t≈ 0.04 s after the merger, the magnetic field energy
is maximal and then decreases. At all stages, the magnetic field
energy is subdominant to the total energy budget (∼1049 erg
versus ∼1051 erg; see K. Kiuchi et al. 2023). The subdominant
magnetic field energy allows us to neglect the magnetic fields
in our work, which focuses on jet propagation.
At t= 0.1 s, a thick torus of roughly 300 km in radius

surrounds the compact object, and a funnel structure has
already formed with its distinctive features of low density and
low pressure. The torus expands outward due to MRI-driven
turbulent viscosity transporting angular momentum, and as it
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expands, it cools adiabatically. A part of the torus matter is also
ejected due to this MRI-driven turbulence as the post-merger
ejecta, after the neutrino cooling in the torus becomes
inefficient. This occurs at t≈ 0.3 s after the merger. At around
t≈ 1 s, the post-merger ejecta has a typical velocity of around
0.15c, slower than the average value of 0.2c reported in the
literature (see Y. Sekiguchi et al. 2016). This is largely due to
the post-merger ejecta that is launched at the outskirts of the
massive torus formed around the BH. This turbulent viscosity-
driven post-merger ejection still lasts ;1 s.

At t= 1 s, the thick torus surrounding the BH has a size of a
;750 km radius and a comparable thickness, with an average
density of ρtorus> 106 g cm−3. A funnel with a half-opening
angle of roughly 10° and an average density below
3× 103 g cm−3 exists along the polar axis. As the simulation
progresses in time, the entire system expands in size. The total
mass of the ejecta at t= 1 s is approximately 1.5× 10−2 Me.
Figure 1 shows the initial conditions of the simulation at
t= 1.06 s after the merger, in which the presence of two polar
funnels with low density and low pressure is noticeable.

The post-merger secular ejecta expand in a “numerical
vacuum” of circumbinary medium with a uniform pressure of
1.35× 1012 erg cm−3 (in order to avoid spurious random
motion) and a density of ρ; 0.17 g cm−3. This results in a
mass surrounding the merger of approximately 1.2× 10−3Me

enclosed in a radius of R 1.5 10 kmmax
5= ´ , which is an

order of magnitude less than the mass of the ejecta. The fast tail
of the dynamical ejecta stretching to 0.96c gradually slows
down due to interaction with the external density that occupies
the “numerical vacuum” (see K. Kiuchi et al. 2023 and
S. Fujibayashi et al. 2023 for more details), leaving behind only
slower, mildly relativistic material. Apart from influencing the
low-mass, very-high-velocity tail of the unbound material, this
artificial vacuum does not significantly impact the ejecta’s
expansion within this simulation box. Hence, it does not
influence our results.

2.2. Computational Setup

We construct our 2.5D initial conditions from the BNS
simulation by cylindrically averaging the original 3D data
(details of importing the BNS simulation data into our
calculations, using PLUTO, are provided in Appendix A). The
original cylindrical average of the output is imported and re-
gridded into PLUTO (details of the computational grid can be
found in Appendix A.2). After the data import, we evolve the
matter distribution within the code and, with a user-defined
boundary prescription, we insert a jet into the environment
through a nozzle of radius rj at the excision height z0, imposing
a reflective boundary elsewhere along z= z0 (and an axisym-
metric boundary along r= 0). Our choice of the boundary
condition at z0 does not influence the outcome of our
simulations, since the velocity of our injected outflow is much
larger than the velocity of the ejecta. In addition, due to the
strong power of the jet, the newly formed cocoon quickly
dominates the ejecta structure in the innermost part of the
ejecta.
We perform our simulations using the massively parallel

multidimensional relativistic MHD code PLUTO (v4.4.2;
A. Mignone et al. 2007).5 The code uses a finite-volume,
shock-capturing scheme that integrates a system of conserva-
tion laws. The flow quantities are discretized on a rectangular
computational grid enclosed by a boundary. We use the special
relativistic hydrodynamics module in 2.5D cylindrical coordi-
nates (i.e., a 2D grid in cylindrical geometry, in which vf is also
integrated and evolved with periodic boundary conditions). We
perform our simulations using a linear reconstruction scheme
combined with second-order Runge–Kutta time stepping. We
also force the code to reconstruct the four-velocity vectors at
each time step. We chose a Taub–Matthews EOS (A. Mignone
& J. C. McKinney 2007), which accounts for both relativistic
and nonrelativistic material, i.e., γ= 5/3 for nonrelativistic
material and γ= 4/3 for relativistically moving matter.

Figure 1. Two-dimensional slice across the x–z plane passing through the center of the simulation box of the initial conditions taken at t = 1.06 s after the merger.
Left: density slice in logarithmic units superposed on the streamlines of the velocity field. Right: pressure slice in logarithmic units. In both plots, we can notice the
presence of the low-pressure/low-density polar funnel.

5 This is the latest version available during the making of this paper.
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The choice of a 2.5D simulation over 3D has implications for
both the jet propagation and the development of hydrodynamic
turbulence in the flow. A direct effect of the dimensionality is
the direction of the turbulent cascade. In 3D, the cascade goes
from large to small scales, but in 2D, the opposite is true, as
shown by R. H. Kraichnan (1967), resulting in a flow
organizing itself in large eddies and generating different
turbulent structures that affect the mixing of the jet material
with the ejecta. Since a 2.5D simulation lacks a degree of
freedom, the jet is forced to propagate, staying on-axis. This
results in a numerical effect called “plug,” which consists of
matter stalling over the jet and affecting its expansion.
Conversely, in 3D simulations, this feature is absent, and the
jet, while carving its way out, wobbles due to flow instabilities
and interaction with the surrounding ejecta. When 2D and 3D
runs are compared, the difference is not too stark (R. Harrison
et al. 2018).

2.3. Jet Injection

We inject a jet with constant luminosity Lj, operating for an
engine time te with an initial bulk Lorentz factor Γ0,j, a density
ρj, and a dimensionless specific enthalpy hj. The hot jet is
injected through a nozzle parallel to the z-axis with a radius of
rj and an initial opening angle θj, which also determines the
initial Lorentz factor via Γ0,j; 1/(1.4θj) (see the details of this
injection method in A. Mizuta & K. Ioka 2013 and R. Harrison
et al. 2018). We place the nozzle at an initial excision height of
z0= rj/θj. In all our simulations, we choose rj= 10 km, a size
comparable to the Schwarzschild radius of the central BH,
allowing sufficient mesh coverage. The head cross section is
given by rj j

2pS = . This determines ρj as

( )
( )

L

h h c
, 1j

j

j j 0,j
2

eff 0,j
3

r
b

=
S G -

with 1 10,j 0,j
2b = - G and ( )h h h5 9 16 8eff j j

2= - + ,
which is derived from the Taub–Matthews EOS. We choose
hj= 100, which gives heff; 25. This choice of the specific
dimensionless enthalpy determines the terminal Lorentz factor
of the system, i.e., Γ∞; hjΓ0,j. The jet’s pressure is given by
Pj= heffρjc

2. For details regarding the computational grid used
in PLUTO, we refer to Appendix A.2. At the same time, a more
detailed description of the jet injection is found in
Appendix B.1.

3. Results

3.1. Collimation Criterion

In M. Pais et al. (2023), we showed how the ambient
pressure counterbalances the Poynting flux of a heavily
magnetized jet, assuming transverse equilibrium for the
magnetic field. In our case, the jet is not magnetized, and an
EOS with γ= 4/3 describes the relativistic pressure injected.
So, we cannot strictly apply the same criteria for collimation as
described in our previous work. In particular, if
Pj; (hj− 1)ρjc

2/4 for hot jets and if ρj is given by
Equation (1), then the equilibrium condition with ambient
pressure reads

( )P
L

r4 c
, 2ej

j

2 2


p G

where Pej(R, z) is the local ejecta pressure and Γ= Γ(R) is the
Lorentz factor of the flow.
For a relativistic jet confined by a nonstatic medium along

the cross-sectional radius R of the jet, the scaling Γ∝ R holds
(O. Bromberg & A. Levinson 2007), which is the same scaling
found when transverse equilibrium for the magnetic field is
reached for magnetically dominated jets. In M. Pais et al.
(2023), we derived the collimation curves for the simulation
data of K. Kiuchi et al. (2023), varying the luminosity of the jet
smoothly, determining the corresponding equilibrium contours
between the jet pressure and the ambient pressure, and
calculating the opening angle of these contours with the
assumption of a quasi-conical shape for the jet. For the increase
in the luminosity, the increase in the jet opening angle was
obtained, giving a functional relation between these two
quantities. Since we use the same background data from the
BNS merger as the initial condition for our jet injection, we can
fit the collimation curve Lj,coll as a function of the angle θj with
a power law L0 j

4 q´ . Thus, under the assumption that the
luminosity is constant over time and given an angle θj, the
corresponding collimation energy is

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

( )

E L dt

t

3.6 10

0.1 rad 1 s
erg. 3

t
coll j 0 j,coll j

49

j
4

e

e

òq q

q

= » ´

We remark that this formula is an approximation, and its
prefactor is tailored to the specific energy distribution of the
BNS simulation we are using. Since the luminosity is assumed
to be a constant, the collimation energy as a function of the jet
angle scales linearly with the engine time. Analyzing the
simulations, we report our fit in Figure 2 as a black dashed line
over the colored collimation curve lines.

3.2. Breakout Criterion

O. Gottlieb & E. Nakar (2022) estimate the breakout
criterion for a jet surrounded by anisotropic, fast-moving
ejecta. Their condition for a jet of luminosity Lj reads

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥ ( ) ( )E L t

t

t
E150 2 , 4j j e

d

e

2

ej j j
2q qº ´ > + < ´

where td is the delay time between the merger and the jet
launch, te is the engine time of the jet, θj is the jet opening
angle, and Eej(<θj) is the energy of the ejecta within θj. We see
immediately that if td? te, it becomes energetically difficult for
a jet to break out from the ejecta. If we now express Eej(<θ) as
a function of θ, then we fit the data from the BNS simulation as

( )E E k
ej j 0 jq q< ´ (where k≈ 2), and if we express Ej as

Lj× te, we get a third-order polynomial in te, which gives us an
approximate estimate of the minimal engine time for a jet to
break out as a function of Lj, θj, and td. This estimate, for
typical jet parameters, reads

( ) ( )t L L t0.1 s , 5e j,50
1

j,5
4

j,50
1 3

j,5
4 3

d,0
2 3 q q+- -

where Lj,50= Lj/(10
50 erg s−1), θj,5= θj/5°, and td,0= td/(1 s).

Since te 1 s for sGRB jets and the jet is likely to be narrowly
collimated, the first term of Equation (5) can be neglected. This
second term agrees with the estimates given by Equation (31)
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of E. Nakar (2020), even though it was derived under some
restrictive conditions that do not hold here.

We report in Figure 3 the estimate of the engine time
required for the jet to escape from the ejecta using Equation (5).
It is also worthwhile noticing how the prefactor in Equation (4)
quickly increases when te= td, so we will mainly focus on
engine times that have a duration between 0.05 and 0.3 s. We
take Equation (5) as the minimal estimate for the engine time
required by the jets to escape.

Figure 2 depicts the escape and collimation conditions for
the jet, based on the simulation analysis of M. Pais et al.

(2023). The points in the plots show simulated jets: the
triangles represent jets that emerged from the ejecta, while the
stars represent jets that choked inside the ejecta. We stress that
these curves (from M. Pais et al. 2023) represent only estimates
of the energy required for the jet to escape and that the actual
energy might differ by a factor of a few. Moreover, O. Gottlieb
& E. Nakar (2022) develop their analytic theory for a spherical
configuration, and here we used an adaptation (M. Pais et al.
2023) of this estimate to anisotropic ejecta, given by
Equation (4). Still, as we show later, the numerical results are
consistent with the analytic estimates.

Figure 2. Jet breakout conditions for injected jets with td = 0.1 s and td = 1 s after the merger. Top: Lj = 1050 erg s−1; bottom: Lj = 1051 erg s−1. The colored lines
represent the energy required to collimate the jet to a certain opening angle according to Equation (3). In contrast, the black solid lines represent the energy required for
a jet to escape as a function of the opening angle θj derived from Equation (4). The dots represent the tested cases for θj = 5° and 10°, with triangles (stars)
representing successful (choked) jets. The black dashed lines in each panel, superposed on the colored lines, represent the fit for the collimation curve expressed by
Equation (3).

Figure 3.Minimal engine time, te, required for a jet to escape as a function of the injection angle, θj, the luminosity, Lj, and the time delay, td, between the merger and
jet launch. The lines represent the estimate from Equation (5). We can see that in the case of td = 0.1 s, we get te  0.05 s, while for td = 1 s, this value increases to
te ; 0.1–0.3 s for jets with θj = 5°–10°. All these values for te are compatible with an sGRB.
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3.3. Simulation

Since the computations are at high resolution and compu-
tationally expensive (around 150,000 CPU hours), we run the
following simulations, changing one parameter each time, as
reported in Table 1, giving a total of eight simulations, four for
each td. To test the collimation effect of the ambient pressure on
the jet, we performed two further simulations with a wide
opening angle—the first with θj= 35°, the second with
θj= 20°—and Lj= 1051 erg s−1 and td= 1 s for both cases.
Except for the case study of Lj= 1050 erg s−1, θj= 5°, and
td= 1 s (where we let the injection run for te= 550 ms), we run
our jets for a maximum time of te= 300 ms (100 ms) in the
case of td= 1 s (0.1 s). Although the BH formation happens
quite early after the merger in our imported initial conditions,
we explore the case of a late launch at 1 s to maximize the
effect of the ejecta collimation over the jet propagation. We
also run shorter-duration jets for td= 0.1 s, since the ejecta do
not expand too far from the center, and the jet is likely to break
out earlier. With a continuous and constant energy injection in
our system, we can stop the injection at any time and follow the
evolution of the jet-cocoon system. This way, we can
determine whether the jet engine time has been sufficient for
the jet to break out of the ejecta.

Furthermore, we are also interested in the jets’ evolution
until their breakout from the outermost ejecta of the BNS. For
this reason, we run several simulations where we stop the
injection of the jet at different moments, i.e., te= [0.01, 0.03,
0.05, 0.1, 0.12, 0.3] s. We perform a lower-resolution re-grid of
the simulations (see Appendix A.2) to speed up the jet’s
evolution after the engine is shut down.

3.3.1. Jet Evolution for td = 1 s

In Figure 4, we show jet simulations with td= 1 s and
te= 300 ms. Note that td= 1 s is approximately the time delay
that took place in 170817A (M. M. Kasliwal et al. 2017;
O. Gottlieb et al. 2018). The image shows three cases: one with
a luminosity of Lj= 1050 erg s−1 and θj= 5°∼ 0.1 rad (first
row), one with the same opening angle but a luminosity of
Lj= 1051 erg s−1 (second row), and one with Lj= 1051 erg s−1

and θj= 10°∼ 0.2 rad (third row). The flow is injected at
z0= 100 km and z0= 50 km for θj= 5° and 10°, respectively.
From those, the combination of Lj= 1050 erg and
θj= 5°∼ 0.1 rad is very similar to the jet properties inferred
in GRB 170817A from the afterglow observations (see, e.g.,
E. Nakar & T. Piran 2021 for a summary of the afterglow
analysis). Other simulations, not shown here, are qualitatively
similar in their behavior. Here and in the subsequent figures,
we show the proper velocity Γβ, the density ρ, the pressure P,
and the jet tracer Qj, which is a scalar marker that flags the jet
material fraction and is passively advected with the fluid—
explicitly: ∂t(ρQj)+∇ · (ρQjv)= 0, where ∂t denotes the
partial derivative with respect to time.

The jet starts to carve out of the ejecta, filling in 30 ms the
low-density, low-pressure polar cavities above the compact
object. As stated in M. Pais et al. (2023), this is a crucial step

for letting the jet escape: the anisotropic distribution of the
ejecta, dense at the equator and dilute at the poles, allows the
jetted material to quickly escape the central densest ejecta near
the BH (;104 km ), entering in a less dense external region,
where it is easier for the jet to drill its way out up to the ejecta
outer radius Rej. As it propagates, the jet forms a cocoon,
resulting from its interaction with the merger ejecta. The
cocoon grows in size as the jet follows its vertical evolution. A
large proper velocity characterizes the unshocked jet region. It
resides in the low-density, low-pressure axial cavity and spans
an angle roughly the size of the original opening angle. The
white oblique lines represent the initial opening angle of the
expanding jets. These lines roughly coincide with the opening
angle covered by the highest proper-velocity material close to
the jet axis. Inspection of the early phases of the jet propagation
(see Figure 5) reveals a collimation shock. The ambient
pressure quickly collimates the jet (in a few tens of
milliseconds). The collimated jet maintains roughly its original
opening angle.
In the top panel of Figure 6, we show the time evolution of

the differential energy proper-velocity distribution of the jet for
the case Lj= 1050 erg s−1 and θj= 5°. The hot injected jet
accelerates quickly, and a high-velocity energetic tail forms
within a few tens of milliseconds. The energy distribution
changes very little after a few hundred milliseconds. In the case
shown, the terminal Lorentz factor equals Γ∞= Γj,0hj; 800.
We compare the high-velocity tail to the original ejecta energy
distribution (the black dashed line in the figure), which has a
cutoff around Γβ= 0.2. Analyzing the jet energy velocity
distribution as a function of the jet scalar Qj, we can associate
each region of the curve with a different structure in the jet-
cocoon system (bottom panel of Figure 6). We identify three
main peaks in this distribution: a first peak at low velocities,
associated with the original ejecta (purple line); a second peak
at around Γβ; 40, associated with the jet head and shocked jet
material (red line, i.e., compare with the Γβ maps in Figure 4);
and a third peak at Γβ; 400, associated with unshocked jet
material (blue line). Between the first (low-velocity) and
second peaks, the energy distribution shows a long plateau
associated mostly with the turbulent region of the high-pressure
cocoon surrounding the jet (yellow and green lines).
After an injection time of te= 0.3 s, the jet and the cocoon

enshrining it are still inside the ejecta in all four cases with
θ= 5°–10° and Lj= 1050–1051 erg s−1; however, it has already
reached the outermost and shallowest region of the ejecta,
which is expanding at ∼0.1c. If we extend the simulation
farther, continuing our injection, at around te= 0.5 s, the jet
breaks out of the ejecta. However, the jet engine can be
switched off earlier, and the jet can still break out. As we
switch off the engine, the last jet material (the jet tail) is
launched and moves close to the speed of light in the low-
density, low-pressure interior of the jet, trying to catch up with
the head, which is causally disconnected and continues to
propagate as if the engine were still active. When the tail
reaches the head, the jet is choked. A good marker of jet
choking is the disappearance of the central region with the high
proper velocity (i.e., Γβ; Γ∞) and the sideways spreading of
the material associated with the jet, which starts to dilate in
vortexes. If the jet head continues to be causally disconnected
from the tail while reaching the end of the ejecta (located, for
td= 1 s, at around z= 120,000 km), the jet is unchoked, and it
escapes at a high proper velocity along the axis.

Table 1
Parameters Used in the Suite of Simulations Presented in Section 3.3

td (s) 0.1 1
Lj (erg s

−1) 1050 1051

θj (deg) 5 10
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Figure 7 shows the evolution of two of the simulations
shown in the first and second rows after 100 ms and 120 ms of
injection, respectively. In both cases, we see a jet breakout
from the outer ejecta. This was largely expected from the
results of Equation (5). To carry out a more detailed
investigation, we also stopped the jets of the other simulations
initialized with td= 1 s earlier than an injection time of 300 ms
to see whether the results of Equation (5) are consistent.

We stopped the jets earlier, according to the selected set of
parameters (Lj, θj) shown in Table 1, and report our results in
the third and fourth columns of Figure 2. Each panel shows a
case with the same configuration parameters (Lj, te) and two
different values of θj (5°, 10°). In the third column, we select
the minimal engine time such that the jet with the narrower
angle escapes; in the adjacent fourth column, we select the
minimal engine time such that the wider jet escapes. The

Figure 4. An example of evolved jets in the BNS post-merger environment for the model td = 1 s after 300 ms of continuous injection for three different cases: top—
L = 1050 erg s−1 and θ = 5°; middle—L = 1051 erg s−1 and θ = 5°; and bottom—L = 1051 erg s−1 and θj = 10°. We started the simulation at t = 1.06 s, which is
roughly at td = 1 s after the collapse of the HMNS. The time tj = 0.3 s indicates the time since the jet injection has started. The white line represents the opening angle
of the jet. From left to right, the panels represent the Γβ factor, the density ρ, the pressure P, and the jet tracer (flagged cells with jet material advected with the fluid).
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triangles indicate jets that could break out from the ejecta,
while the stars indicate jets choked inside the ejecta. We can
see that all points match the expected results for the jet
breakout pretty well.

3.3.2. Jet Evolution for td = 0.1 s

We now explore the case where the jet is injected at
td= 0.1 s after the merger. This allows us to study the jet
breakout much earlier (which requires less injection time to
burst out), but, conversely, from a more dense environment,
which already shows the presence of the polar funnels from the
compact object. We again run four cases, with the same
luminosities and opening angles as those with td= 1 s (as
described in Table 1). Figure 8 shows the status of the jets
injected at td= 0.1 s after 100 ms of injection. In these cases,
we also see that the jets drilled their way out of the ejecta,
maintaining their opening angle. As predicted by Equation (5),
a much shorter engine time is required for the jet to escape,
since the outer shock of the ejecta Rej is located much closer to
the center at ;21,000 km. Echoing the td= 1 simulations, we
decide to test if the engine time required te to break out from
the ejecta is consistent with Equation (5). A very short burst

Figure 5. Proper-velocity (Γβ) and jet scalar tracer maps of a jet initialized
with a delay of td = 1 s, a luminosity of Lj = 1051 erg s−1, and an opening
angle θj = 5° at an early stage of its injection (taken after injecting for 0.025 s).
At this stage, the jet is still in the innermost (and densest) part of the ejecta and
has drilled through the polar funnel. We can see the shape of the collimation
shock, which divides the unshocked jet material from the shocked material.

Figure 6. Top: differential energy distribution with respect to the proper
velocity Γβ of a relativistic jet with Lj = 1050 erg s−1 and θj = 5° injected into
the ejecta. The different colors show the jet time evolution during the injection
(cold colors for early times and hot colors for late times). The dotted colored
lines represent the material associated with the jet. The black dashed line is the
energy of the ejecta of the initial conditions. Note that we prolonged the
simulation in this case to see the evolution of the distribution until the breakout
time tbo ; 500 ms after the start of the injection. Bottom: different regions of
the energy vs. velocity distribution after 550 ms of injection with respect to
different thresholds of the jet scalar tracer Qj.

Figure 7. Relativistic jets after we switched off the jet engine running for
te = 100 ms (top) and te = 120 ms (bottom) and let the jet evolve until it
reached Rej (post-injection phase) for Lj = 1050 erg s−1 and θj = 5° (top row)
and L = 1051 erg s−1 and θj = 10° (bottom row). The jet’s high-velocity
material reaches the ejecta’s outer boundary after the jet engine shuts down,
leaving jetted material that mixes with the BNS ejecta matter (rightmost
panels). In both cases, the breakout happens at tj ; 0.5 s.

8

The Astrophysical Journal, 976:35 (20pp), 2024 November 20 Pais et al.



(te< 0.1 s) is sufficient in these cases. We stopped the injection
time in all four cases at te= [0.01, 0.03, 0.05, 0.1] s. The results
are reported in the first and second columns of Figure 2. Again,
we express the choked jets as starred dots and the escaping
ones as triangles on the plot. Also, in these cases, we verify that
the predicted engine times are sufficient to break out from the
ejecta.

3.4. Initially Wide Jets

As a last step in our analysis, we address the collimation
effect of the ambient medium on a jet initialized with a very
wide angle, i.e., θj= 35°, and a luminosity of Lj= 1051 erg s−1.
The results are reported in Figure 9. We plot two different
moments of the simulation: 25 ms after injection and 150 ms
after injection. The collimating effect of the surrounding matter
is clearly seen now. The ambient pressure of the ejecta can
redirect the material’s flux going sideways and collimate the jet
to a much smaller opening angle in a few tens of milliseconds.
A characteristic cusp-shaped collimation shock is seen at
t= 25 ms. As expected, this leads to an initially cylindrical jet
in the region past the collimation shock (see also at t= 25 ms).
These results are consistent with Equation (2) and the
subsequent Figure 2, from which we see that the luminosity
of the jet is not sufficient to maintain a wide opening angle;
thus, the resulting jet will be collimated to a smaller angle.

The jet later expands sideways to ∼10°, filling the post-
merger environment’s low-density, low-pressure polar cavity.
This cavity has an opening angle of ;10°, resulting in the jet
quickly filling it and propagating with a reduced opening angle,
presenting a quasi-cylindrical structure in its evolution
(second row).
In Figure 10, we show two simulations with an initial jet

opening angle of θj= 20° with two different luminosities:
1051 erg s−1 and 5.4× 1051 erg s−1. The latter value is chosen
according to Equation (3) for the collimation energy for the
selected opening angle. The first case again presents a wide jet
collimated to a smaller angle by the ejecta pressure; the second
is a more energetic jet that expands almost conically at later
times.
This has a nontrivial implication: the only way to have very

wide jets in this BNS post-merger environment is to inject a
large amount of energy in a very short amount of time, i.e., the
jet would require a high luminosity (>1052 erg s−1) to achieve
a wide opening angle and counteract the presence of the strong
ambient pressure. Thus, it is reasonable to suppose that the jet
coming out from the BNS post-merger is relatively narrow
(θj� 10°) and in line with the observations of the afterglow of
GW170817 (E. Nakar & T. Piran 2021).

Figure 8. Jet injection for the model td = 0.1 s at te = 100 ms after the injection
(end of the injection) for two cases: top—L = 1050 erg s−1 and θ = 5°; and
bottom—L = 1051 erg s−1 and θj = 10°. The white lines and plotted physical
quantities are the same as in the previous multipanel figures depicting
simulation snapshots. For space reasons, we omit plotting the density map. The
top panels correspond to the top row, second column, of Figure 2.

Figure 9. Jet injection with initial conditions td = 1 s for a jet with a wide
initial opening angle of θj = 35° and Lj = 1051 erg s−1. The jet is shown at two
different moments: top row—at tj = 25 ms; and bottom row—at tj = 150 ms.
The solid white line is the initial opening angle at which the jet is injected, and
the dashed line in the bottom row shows the actual—approximate—opening
angle of the jet ;10°. The external pressure could collimate the flow to a
narrower angle in a few tens of milliseconds. Again, the four panels, from left
to right, represent the Γβ factor, the density ρ, the pressure P, and the jet tracer
(flagged cells with jet material advected with the fluid).
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3.5. The Angular Distribution

The angular distribution of the total energy of the outflow
(the jet, the cocoon, and the ejecta) has significant implications
for the electromagnetic signals: the prompt gamma rays that
arose from the cocoon in the case of GRB 170817A, the
observed afterglow that arose first from the cocoon and then
from the jet, and a possible late radio afterglow arising from the
rest of the ejecta.

Figure 11 depicts the differential isotropic equivalent energy
distributions for four different runs with θj= [3, 5, 6.8, 10, 20]°
and two luminosities Lj= 1050 erg s−1 and 1051 erg s−1, taken
at te= 300 ms. For each luminosity, the runs have all the same
total energy Ej(te)= 3× 1049 erg and 3× 1050 erg, respec-
tively. As expected, the narrower the opening angle, the more
collimated the energy distribution is. For the 1050 erg s−1 runs,
the effect of the collimation by the ejecta is evident, since the fit
shows a smaller opening angle than the initial one, and the
curve looks closer to a standard Gaussian. Overall, we find a
core with rather sharp edges surrounded by a lower-energy
cocoon material (from the jet up to ∼50°–60° and ejecta
material from ∼50° to 60° to the equatorial plane).

We fit these curves with a generalized Gaussian function:
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where θc is the angular spread of the core of the jet, E0(t) is
proportional to the total energy of the jet at the time t, and s is a
shape parameter that depends on time. This fit is suitable for the

core region that is dominated by the jet and has a rather steep
profile. We notice that the more the jet evolves, the more θc
saturates to θj, the shape parameter s stabilizes to a constant
value, and E0 increases following the same time evolution of
Ej= Lj× t. The jet’s core angle θc is in excellent agreement
with the jet’s initial opening angle within the error, and the
wider the opening angle, the higher the jet’s shape parameter is
(indicating a flatter distribution within θ� θc; θj). A more in-
depth overview of the parameters regulating the jet shape and
their correlations can be found in Appendix D.3.

3.6. Afterglow Light Curves

We use the simulation results shown in the previous sections
to calculate the light curves of the afterglow emission. We
implement a model similar to the one described in K. Takaha-
shi & K. Ioka (2020; see also H. van Eerten et al. 2010 and
references therein). We then compare the result to the actual
data points of the afterglow curves of GW170817. For a more
detailed description of the methodology implemented to

Figure 10. Jet injection with initial conditions td = 1 s for a jet with a wide
initial opening angle of θj = 20° and Lj = 1051 erg s−1 (top row) and
Lj = 5.4 × 1051 erg s−1 (bottom row), at tj = 150 ms.

Figure 11. Jet energy per solid angle for jets with constant luminosities of
Lj = 1050 erg s−1 (top panel) and 1051 erg s−1 (bottom panel). In each figure,
we report the distributions for θj = 3° (orange line), θj = 5° (blue line), 6.8°
(green line), 10° (red line), and 20° (purple), with an injection time of
te = 300 ms, and their respective generalized Gaussian fits (solid, dashed,
dotted, dashed-dotted, and solid black lines). The dashed colored lines for each
run indicate the energy per solid angle of the sole jet material. The fit
parameters refer to Equation (6). The gray line represents the initial ejecta’s
energy per solid angle. The minima in the calculated distribution are most
likely due to the artificial axial symmetry that produces a “plug” ahead of the
jet. The total energy for each jet model is 3 × 1050 erg.
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calculate the afterglow emission, including formulas, we
redirect the reader to Appendix D.

For the afterglow curve, the viewing angle is set at
θobs= 18°, as this is approximately the angle found by
G. Ghirlanda et al. (2019) and K. Hotokezaka et al. (2019),
who also take into account the very-long-baseline interfero-
metry observations of the centroid motion (see also E. Nakar &
T. Piran 2021 for a comparison of different estimates of the
opening and viewing angles). We fix the spectral index at
p= 2.17, consistent with models of diffusive-shock-accelerated
suprathermal electrons. The interstellar medium (ISM) density
n0, εe (the fraction of accelerated electrons' energy density over
the kinetic energy density at the shock), and εB (the fraction of
the magnetic energy density over the kinetic energy density at
the shock) are linked by a degeneracy relation, which gives the
dependency of one of the three parameters of our choice
concerning the other two, for a fixed jet model and a fixed θobs.

Figure 12 depicts the afterglow curves at 5.5 GHz for two
values of the luminosity Lj= [1050, 1051] erg s−1 and four
lower-resolution jet models with θj= [3, 5, 6.8, 10]° and
Lj= 1051 erg s−1 for a viewing angle of θobs= 18°. The

afterglow curves are obtained using the EΩ distribution at
te= 300 ms for all models when the jet engine is still active.
Thus, the energy deposited by the jet with Lj= 1050 erg s−1

(1051 erg s−1) is Ej= 3× 1049 erg (3× 1050 erg). Switching off
the injection for the jets at this time will not change their EΩ

profile too much, as long as the jet has already crossed most of
the ejecta and breaks out. The curves are compared to the fits
obtained by K. P. Mooley et al. (2018b; black dashed curve)
and K. Takahashi & K. Ioka (2020), which use the average
afterglow parameters of E. Troja et al. (2019).
Figure 12 depicts both the afterglow light curves obtained

considering the full EΩ distribution (solid curves) and the
generalized Gaussian fit (dashed curves) that considers only the
jet material. In the latter case, we have excluded the slow
material associated with the ejecta, selecting only the fast
matter with a jet tracer value Qj> 10−5 and Γβ� 1.
The first thing we notice is that while there was no attempt to

guide the calculations to fit a given observed afterglow (apart
from setting n0 and εB to fit the time of the peak and its
magnitude), the model with θj= 6.8° for the 1050 erg s−1 jet
gives a good fit to the observed light curve. The effective
opening angle of the jet after collimation is θc= 3.8°. Thus, the
ratio of the jet opening angle to the viewing angle, θj/θobs, is
consistent with the one obtained for synthetic jet estimates (see
E. Nakar & T. Piran 2021). The 1051 erg s−1 jet is less
collimated, and as it is too wide, θc= 6.8°, the resulting
afterglow is somewhat inconsistent on the declining part of the
afterglow.
The rising portions of the light curves for the jets with

θj= 3° and 5° are below the observed data. Additionally, these
jets have a narrow peak. This is due to the sharp edges of the
energy distribution, which decline faster than a Gaussian. For
θj= 10° and L= 1051 erg s−1, the peak becomes much too
wide and overestimates both the rising and the declining phase
of the curve at early and later times. The parameters of these
curves are found in Table 2, in which, for simplicity, we keep
εe= 0.1 constant for each model and we vary n0 and εB to
adjust the position of the peak time Tpeak and the height of the
peak flux  ,peakn .

4. Summary and Conclusions

We have presented a set of 2.5D special relativistic
simulations of unmagnetized relativistic jets launched into a
realistic BNS post-merger environment based on the neutrino-
radiation GR MHD simulation by K. Kiuchi et al. (2023) that
was evolved for more than 1 s after the merger. We have

Figure 12. Afterglow light curves at 5.5 GHz for θobs = 18° for several jet
models with different opening angles, Lj = 1050 erg s−1 (top) and
Lj = 1051 erg s−1 (bottom), which use the EΩ modeled after the fitting curves
shown in Figure 11 (the same color scheme). In the upper panel, we report only
three synthetic light curves out of four, since the model for θj = 10° with
Lj = 1050 erg s−1 has unrealistic values for n0 and εB. The radio points and
relative fit (black dashed line) are taken from E. Troja et al. (2019). The dashed
lines are the afterglow from the generalized Gaussian fits only, while the solid
lines are the light curves of the jet, including the energy distribution outside the
Gaussian fits. For comparison, alongside the value of the jet opening angle, we
report θc from the fit.

Table 2
Afterglow Parameters Used in Figure 12 to Calculate the Light Curves at

5.5 GHz

Llog10 j θj Elog10 j nlog10 0 log10 ee log10 Be
(deg)

50 3 49.48 −3.78 −1 −2.20
50 5 49.48 −4.48 −1 −1.41
50 6.8 49.48 −4.87 −1 −1.04
51 3 50.48 −3.05 −1 −4.25
51 5 50.48 −3.77 −1 −3.50
51 6.8 50.48 −4.57 −1 −2.75
51 10 50.48 −6.69 −1 −0.90

Note. For brevity, we have omitted the units for Lj (in erg s−1), Ej (in erg), and
n0 (in cm−3).
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explored a variety of configurations for relativistic jets
launched in proximity to a compact object and expanded in a
post-merger environment. We have verified the semi-analytical
prediction presented in M. Pais et al. (2023) about the jet
escape and collimation and validated our results for a jet
launched at 0.1 s and 1 s after the merger. We summarize our
findings as follows:

1. The low-pressure, low-density polar funnel that arises in
the BNS simulations makes it easier for the jet to emerge
from the ejecta.

2. For wide jets, the ambient pressure of the ejecta
counterbalances the pressure of the jet while it propagates
and collimates it.

3. We confirm the predictions derived by O. Gottlieb &
E. Nakar (2022) for a minimum engine operative time for
the jet to escape. The numerical simulations verify that
the predicted engine time te allows the jet to escape from
the system after the shutdown of the central engine
driving it.

4. We explore the conditions of a late jet launch at td= 1 s
and an early jet launch at td= 0.1 s, finding a significantly
shorter engine time is required to escape in the case of an
early launch at td= 0.1 s, i.e., 0.01–0.05 s versus
0.1–0.3 s for a launch with a delay of td= 1 s.

5. We verify that the choice of the enthalpy (and thus of the
terminal Lorentz factor) does not influence our results as
long as the jet is hot.

6. We test the effect of the ejecta thermal pressure in
collimating the jet, injecting two very wide jets
(θj= 20°; 0.35 rad and 35°; 0.6 rad) and following
their evolution in the ejecta. We show how the dense
inner ejecta can collimate the jet to an opening angle of
about 10° in a few tens of milliseconds while the jet is
still located close to the compact object where it is
surrounded by dense ejecta matter.

7. We compare our synthetic light curves generated from the
energy profile of our simulations with the observed
afterglow data of GW170817 at 5.5 GHz. Our isotropic
equivalent energy distributions are characterized by sharp
edges around the jet’s opening angle and decline faster
than a Gaussian. Nevertheless, the resulting synthetic
light curves can match radio data for collimated jets with
Ej= 3× 1049 erg s−1, θj= 6.8° (corresponding to
θc= (3.8± 0.3)°), and a viewing angle of θobs= 18°. In
contrast, for smaller (larger) jets’ opening angles, the light
curve’s peak becomes too narrow (wide). These values
are roughly in agreement with those obtained by fitting jet
models to the light curve (G. Ghirlanda et al. 2019;
K. Hotokezaka et al. 2019; G. P. Lamb et al. 2019b;
K. Takahashi & K. Ioka 2020). The more powerful
Ej= 3× 1050 erg s−1 jets are uncollimated (i.e., they
roughly maintain their original opening angles). These
jets decline or rise too steeply and do not match the radio
data well.

8. These calculations that follow the jet propagation in the
ejecta enable us to break the degeneracy between the total
energy of the jet, Ej, and the external density, n0, that
exists in ad hoc fittings of jet profiles to the light curve
(e.g., E. Nakar & T. Piran 2021).

The novelty of this work is that we can study the jet launch
much later than previous works, due to the 1 s long evolved

initial conditions, which track the ejecta’s expansion into the
circumbinary environment. As we have seen, it is more difficult
for the jet to break out from the ejecta in the case of a late
launch, thus putting stronger constraints on the jet engine. This
is important, at least in the context of modeling GW170817A,
as it has been suggested that there was about a 1 s delay
between the merger and the jet launch (M. M. Kasliwal et al.
2017; O. Gottlieb et al. 2018; E. Nakar et al. 2018) in that
event.
Because of this long duration, there is an external

decelerating shock wave propagating outward at a velocity of
0.1c in the artificially imposed “numerical vacuum” that has a
floor value for the density of ≈0.17 g cm−3. This does not
influence our main concerns here: jet collimation and breakout.
However, it influences the fine details of the shock breakout
from the ejecta that are needed in case one wishes to calculate
the signature of the cocoon breakout—which was, most likely,
the cause of the observed gamma rays in GRB 170817A
(M. M. Kasliwal et al. 2017; O. Gottlieb et al. 2018; E. Nakar
et al. 2018).
Modeling the observed sGRB detected in GRB 170817A

would require following up the shocked cocoon until it catches
up with the low-mass, very-high-velocity component of the
ejecta, so that the optical depth of the shock is of order τ; 1.
This would require a longer run of our simulations, which
would take at least 2 s. However, for a realistic simulation, the
external “numerical vacuum” in such a case should be much
lower, so that it does not slow down the fast component of the
ejecta. Namely, the circumbinary atmosphere surrounding the
post-merger ejecta has to have a mass smaller than the fast-
moving ejecta (i.e., M M10atmosphere

4
< - ) within the simula-

tion box of about 1011–1012 cm. We leave this analysis to
future work. Additional future work would involve exploring
the propagation of a Poynting-flux-dominated jet in this ejecta.
In this work, we have demonstrated that for jet luminosities

of 1050–1051 erg s−1, an engine time te of 0.1–0.3 s is required
for a late launch (td= 1 s) and te∼ 0.01–0.05 s in the case of an
early launch with a time delay of td= 0.1 s. Recalling that the
jet in GW170817 was less powerful compared to typical
sGRBs, we note that a longer duration would be required for
less powerful jets to break out. The jet coming out from the
system is narrowly collimated. The collimation is supported by
the narrow funnel in the initial outflow configuration and does
not exceed an opening of θj 10°. A wide jet injected into the
ejecta is quickly collimated to a smaller opening angle.
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Appendix A
Data Structure

A.1. Environment Data

The simulation domain of the initial conditions based on
K. Kiuchi et al. (2023) comprises 13 levels of a fixed mesh
refinement (FMR) embedded in a Cartesian geometry. The
finest FMR domain has a size of Lä [−37.875, 37.875] km
with grid spacing of Δx= 0.15 km, while the coarsest has a
grid size of L ä [−1.55136, 1.55136]× 105 km with grid
spacing of Δx= 614.4 km.

To import the initial conditions' data into PLUTO and run the
simulation, we proceeded as follows:

1. for each refinement level, we created a cylindrical
average around the z-axis for each cell, obtaining a 2D
cylindrically symmetric Cartesian grid. To run the code in
2.5D, we retained the vf components (which are also
averaged);

2. we merged the 13 refinement levels into one, interpolat-
ing linearly between the regions where the grid resolution
doubles in the original simulation grid; and

3. we imported the data into PLUTO, creating a mock grid
file that reflects the actual center of each cell.

After the merger, we imported the initial conditions at
td= 0.1 s and td= 1 s. The first snapshot at 0.1 s represents a
case where the ejecta did not expand too far into the dense
circumbinary environment (ρfloor= 0.167 g cm−3) of the simu-
lation box. The ejecta outer radius is about 2× 104 km from
the center of the simulation box; the second snapshot represents
the system at the end of the original simulation, with the outer
radius at 1.2× 105 km from the center.

A.2. Computational Grid

For the simulation in PLUTO, we use a grid of size
3549× 5541 cells, with the radial cylindrical coordinate6

extending within the range r= [0, 1.5× 105] km and the
vertical coordinate extending within the range z= [z0,
1.5× 105] km.7 Our choice of a very low initial height to
inject the jet is dictated by the fact that we want to explore the
effect of the collimation in the innermost region of the ejecta,
which retains most of the cavity. We start our jet at a distance
comparable to the light cylinder radius of the compact
object (;40 km).

We use a combination of a uniform and a nonuniform mesh
grid in r− z coordinates, with a decreasing resolution from the
inner region of the simulation box to the outer boundaries. The
grid mesh is uniform in the inner part, to maintain a high
resolution of the jet injection and the formation of the resulting
high-pressure cocoon. The uniform mesh has 1000× 4000 grid
points extending in the ranges r= [0, 100] km and z=

[z0, 5000] km, with a resolution along both coordinates of Δ(r,
z)unif.= [0.1, 1.2375] km, allowing enough mesh coverage for
the nozzle region. Next to the uniform mesh, we placed a
stretched mesh with 2549× 1541 grid points extending along
both coordinates within the range (r, z)= [100, 1.5×
105]×[5000, 1.5× 105] km, with a stretching ratio of
;1.0033. The number of grid points for this mesh is chosen
such that its initial grid spacing is the same as the adjacent
uniform mesh Δ(r, z)s,init=Δ(r, z)unif.= 0.1km and its final
grid spacing is Δ(r, z)s,final= 500 km. This ensures a smooth
resolution increase without jumps for the entire simulation grid.
After switching off the jet injection, we lower the

resolution of our computational domain using an r× z grid
with a combination of uniform and geometrically stretched
patches. The uniform grid 1000× 900 grid extends in the range
(r, z)= [0, 5000] km× [z0, 5000] km, with a resolution
Δx=5 km, while the geometrically stretched grid with 13522

cells extends in the range (r, z)= [5000, 1.5× 105] km in both
directions.

Appendix B
Detailed Jet Setup and Energy Calculation

B.1. Jet Injection

The jet is characterized by four parameters: luminosity Lj,
opening angle θj, enthalpy hj, and the jet engine duration te. In
our setup, we inject the jet cylindrically through a nozzle such
that the initial Lorentz factor Γ0,j is related to the initial choice
of the jet opening angle via Γ0,j; 1/(1.4θj) (A. Mizuta &
K. Ioka 2013). The following stress–energy tensor gives the
energy density of a relativistic, unmagnetized fluid:

( )T hc u u Pg , B12r= +mn m n mn

where uμ is the four-velocity and gμ ν is the metric tensor
(which coincides with the Minkowski spacetime in our case).
In the laboratory frame, where uμ= Γ(1, β), the energy density
of the fluid assumes the form8

( )T hc P. B200 2 2r= G -

The jet is injected through a nozzle with radius rj and area
rj j

2pS = . At the nozzle, we inject a flux of energy per unit
time such that

( ) ( )L T d h c P , B3
r

j
0

j
00

j j j j
2

0,j
2

j 0,j j
j

ò b r b= S = G - S

where we impose a top-hat profile of the jet (i.e., the properties
of the jet do not vary with the position within the nozzle
radius). From Equation (B3), we can derive the value for ρj.
The expression of the enthalpy links pressure and density:
h= 1+ ε+ P/ρ, where ε(P, ρ) is the internal specific energy
density of the fluid. The explicit expression for ε(P, ρ) depends
on the choice of the EOS. In the case of a perfect fluid, we have
ρε= P/(γ− 1), where the adiabatic factor γ= 4/3 for a
relativistic fluid, such that ρhc2= ρc2+ 4P. In the case of a
Taub–Matthews EOS for a Synge gas, we use the approx-
imation shown in A. Mignone & J. C. McKinney (2007), where

6 Throughout the paper, r is used for the 2D cylindrical radius, while R stands
for the 3D radius.
7 For the injection with θj = 10°, we use z0 = 50 km, since r z const.j 0 jq= ´ =

8 Some authors, like N. Tominaga (2009), subtract the rest energy density of
the fluid measured in the lab frame from this quantity.
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the product ρc2h is expressed by

( )hc P c P
5

2

9

4
. B42 2 4 2r r= + +

Inverting Equation (B4), and since we fix the enthalpy when
we inject the jet, we find the following expression for the
pressure:

( ) ( )P h h c h c
1

8
5 9 16 , B52 2

eff
2r r= - + =

which reduces to ρhc2/4 for a relativistic gas. Since we inject
our jet vertically through the nozzle, the only nonzero
component of uμ is βz. Since we fix the value of the luminosity
Lj and the enthalpy hj, the quantities injected at the excision
height z0 and for r� rj are as follows:

( )0, B6r,j ,jb b= =f

( )1 1 , B7z,j 0,j 0,j
2b bº = - G

( )
( )

L

h h c
, B8

j

z
j

j j 0,j
2

eff ,j
3

r
b

=
S G -

( )P h c . B9j eff j
2r=

Equations (B6)–(B9) describe the jet injection at the nozzle and
are constant in time for the entire duration of the engine activity
as long as L const.j = , otherwise ρj and Pj will vary according
to the time dependency of Lj.

Additionally, we enforce that after q time steps, the increase
in the total energy over time follows the temporal law we
specified for the jet luminosity. To do so, we measure the total
energy added to the system up to that point on top of the ejecta
energy of the initial conditions (i.e., Eadded= Emeasued− Eej),
and we compare it to the total energy we expect up to that
moment integrating the luminosity function of our choice, i.e.,

( ) ( )E t L t td
t

0 jò= . For a constant luminosity, the energy added
to the system is trivial, E(t)= Lj× t. If the energy in the system
does not match the expected energy, we readjust iteratively the
value of the jet pressure (and thus the jet density) at the
injection point, according to the following scheme:

⎧

⎨
⎩

( ) ( )
( )

( ) ( )
( )P

x P E E

P E E

P x E E

1 if t

if t

1 if t
, B10n q

n

n

n

j,

j, added

j, added

j, added

=
+ <

=
+ >

+

where Pj,n is the jet pressure at the nozzle at the current time
step n, while n+ q indicates the qth time step after n. The
quantity x= 10−3 is a small correction we give to the pressure
at each time step to match the desired total energy of the system
up to that point. In our simulations, we found that q= 500 was
sufficient to control the pressure value over time.

B.2. Energy Calculation

Equation (B1) expresses the fluid’s total energy density. If
we plug in the definition of specific dimensionless enthalpy
h= 1+ ε/c2+ P/ρc2, we can rewrite it as

( ) ( )
( ) ( )

T c P P Dc

Dc P P

1

, B11

00 2 2 2 2

2 2

r re
re

= G + + G - = G -
+ + + G -

where we introduce the laboratory density D= ρΓ. Writing the
total energy density in this way allows us to distinguish
different contributions:

( ) ( )e Dc 1 , B12kin
2= G -

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( )

( )

e P P h c P

P

1

1
1 , B13

int
2 2 2

2

re r

g
g

= + G - = - G -

=
-

G -

which are the kinetic and internal energy of the fluid in the lab
frame, respectively. In the case of a Taub–Matthews EOS, we
can still find an effective adiabatic factor γ that allows writing
Equation (B13) in the form shown and, generalizing, we can
write γ/(γ− 1)= (h− 1)ρc2/P (A. Mignone & J. C. McKin-
ney 2007). Integrating Equations (B12) and (B13) over the
entire volume gives the total energy of the relativistic fluid in
the simulation measured in the laboratory frame.

Appendix C
Jets with Same Terminal Velocity

The previous runs we presented for different opening angles
were initialized so that the initial opening angle θj determines the
initial Lorentz factor via Γ0,j; 1/(1.4θj); [8, 4] (for θ0,j= [5°,
10°], respectively) and keeping the enthalpy of the jet fixed at
hj= 100. Since Γ∞;Γ0,jhj, the terminal Lorentz factor of the
system depends on the initial Lorentz factor and the specific
enthalpy used to initialize the jet. We show here runs where we
keep the terminal Lorentz factor constant, varying the specific
enthalpy according to the choice of the initial Lorentz factor, i.e.,
using hj=Γ∞/Γ0,j, where Γ∞= 500, which is value high enough
to avoid cold jets. We run three cases with the same luminosity,
fixed at Lj= 1051 erg s−1, and different initial opening angles
θj= [3, 5, 6.8, 10]°. The choice of the angles is such that they
correspond to initial Lorentz factors of Γj,0= [12, 8, 6, 4],
respectively. In Figure 13, we show the differential distribution of
the energy with respect to the proper velocity, where we compare
the cases with hj= 100 (solid lines) with the cases with
hj=Γ∞/Γ0,j, where Γ∞= 500 (dashed lines). We notice that
the energy distribution is essentially the same between the two
types of runs, except for the ending portion of the tail, where
energy accumulates.
In Figure 14, we show two jets with the same luminosity and

opening angle θj= 3°, but different terminal velocity (i.e.,
different enthalpy). We choose a small opening angle to
emphasize the difference in u∞= 1200 versus 500, which
translates into hj= 100 versus;42. Both jets are hot enough, so

Figure 13. Differential energy distribution with respect to the proper velocity
Γβ of relativistic jets with Lj = 1051 erg s−1 and θj = [3, 5, 6.8, 10]° after
300 ms of injection. The solid lines represent runs with hj = 100 and
Γj,0 = [12, 8, 6, 4], respectively, such that the final Lorentz factor
Γ∞ = Γj,0hj is not fixed. The dashed lines represent runs with the same
opening angles but fixed Γ∞ = 500.
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most of the initial energy is injected into the thermal channel. The
jet expansion, head velocity, and drilling through the ejecta are
very similar in both cases. We conclude that choosing a fixed Γ∞,
as long as the jet is hot, does not affect our results and runs.

Appendix D
Afterglow Modeling

D.1. Framework

The synchrotron emission of the GRB afterglow is modeled
after R. Sari et al. (1998) and J. Granot et al. (1999).

The received flux is given by the volume integral

( )

( )

( )

( )( )
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where we assume that the observed radiation is produced by a
thin shell of width ΔR; R/[12Γ2(1− βshμ)]= Rsh, smaller
than the size of the shock radius. In the formula, D is the
distance from the source, e¢n ¢ is the comoving frame emissivity,
and μ(θ, f) is the angle between the observer direction and
local velocity, defined as

( )cos cos sin sin cos . D2obs obsm q q q q f= +

Furthermore, the integral is calculated over different emission
times, which depend on the position (θ, f). The implicit
formula

( ) ( )t T
c

R t D3
m

= +

relates the laboratory time t at each position (θ, f) to a given
observer time T. Solving it, we obtain t= t(T, θ, f) for fixed
θobs. The functional form of R(t) is found by taking some
approximations: we assume that the jet expands in a cold and
homogeneous ISM, the jet is assumed to be axisymmetric, the
energy of the blast wave is angle dependent, and each segment
expands spherically with a portion of the total energy given by
the local isotropic equivalent energy EΩ≡ dE(θ)/dΩ= E0f (θ).
Each shock segment is described by an ultrarelativistic blast

wave, which gradually decelerates. We distinguish three
regimes: (i) R—relativistic (Γβ> 1), in which the evolution
of the (proper) velocity of the shock is described by the self-
similar solution of R. D. Blandford & C. F. McKee (1976); (ii)
TR—transrelativistic (0.1 Γβ� 1), which marks the gradual
passage from a relativistic blast wave to a Newtonian one; and
(iii) NR—nonrelativistic (Γβ 0.1), in which the shock
dynamics is described by the Sedov–Taylor solution
(G. Taylor 1950; L. I. Sedov 1959).
Unlike H. van Eerten et al. (2010), we do not combine the

two self-similar solutions by summing their squares under the
square root. Instead, we use a broken power law for the proper
velocity to describe the three phases of the shock radius
evolution. The self-similar solution for Γβ reads

⎧
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are the coefficients of the Blandford–McKee and the Sedov–
Taylor self-similar solutions, respectively.
The transrelativistic regime is obtained by modifying the

Blandford–McKee solution raised to the power of 3/5, which
imposes a different slope to make the transition to a
nonrelativistic regime smoother. The transition times between
the different regimes are found by imposing ( ) ( )R TRb bG = G
and ( ) ( )TR NRb bG = G . We find

( )t C t C C, . D6R TR BM
2 3

TR NR BM
2

ST
10 3= = 

-

Figure 14. Comparison, after tj = 300 ms, between the velocity maps of two
jets with the same opening angle θj = 3° and Lj = 1051 erg s−1, but different
Γ∞. We have modified the color map and scale with respect to the other
velocity maps to enhance the difference between the two runs. Notice the
similarity in the overall structure.
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We can rewrite the formulas more concisely, introducing a
characteristic timescale for the blast wave segment such that

( )* *t t R cR, , D7a a= =

where

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

( )

E

n m c

E f n
337 d

10 erg 1 cm
,

D8
0 p

5

1 3
0
51

1 3
0

3

1 3

a q
q

= =W
-

-

which depends on θ via the local isotropic energy. We can
rewrite the coefficients in Equation (D5) as *C 17 8BM, p=
and CST,* = 0.46, and the transition times as

⎛
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Substituting, these values in Equation (D4) correspond to the
values of the proper velocity:

( )u u C C1, 0.123. D10R TR TR NR ST
3

BM
6 5 = = 

-

A comparison between the proper-velocity formula used by
H. van Eerten et al. (2010) and our approximation is shown in
Figure 15.

The Lorentz factor of the fluid is related to the Lorentz factor
of the shock via the jump conditions, giving u u 2sh= in the
relativistic and transrelativistic regimes and u= 3ush/4 in the
nonrelativistic regime. The shock radius is given by
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where 2F1(...) is Gauss’ hypergeometric function. The integral
in Equation (D11) can be broken into the individual
contributions of the terms expressed by Equation (D12) for
the different regimes:
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where ( )∣ ( ) ( )x t x b x aa
b = - . Substituting the constants, we

find
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This method helps to quickly find the numerical root for t in
Equation (D3), which can be easily rewritten as
t* = T* + μR*(t*), with T* = T/α. When the scale α(θ)
becomes very small (i.e., for θ? θj and f (θ)= 1), then, at
later times, T* becomes larger than R*(t*) and we can impose
t; T to speed up the calculations.
The shocked medium is characterized by its comoving

number density n¢, internal energy density ei ¢, and magnetic
field strength B¢. Those are given as follows (R. Sari et al.
1998):

( )n n4 , D140¢ = G

( ) ( ) ( )e n m c n m c1 4 1 , D15i p
2

0 p
2¢ = G - ¢ = G G -

( )B e8 , D16iBpe¢ = ¢

where εB is a parameter that expresses the energy fraction of
the shocked matter going into the magnetic field.
The nonthermal electrons generating the synchrotron emis-

sion are described by an energy spectrum with a single power
law p, and a constant fraction εe of the shock energy is assumed
to go into these accelerated electrons. The synchrotron
spectrum is approximated by a broken power law, with a
characteristic frequency mn¢ and a cooling frequency cn¢ . These
are given by
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where qe is the electron charge and ( )q m c8 3T e
4

e
2 4s p= is the

Thomson cross section. The emissivity e¢n ¢, in case of slow

Figure 15. Comparison between the formula used in H. van Eerten et al. (2010)
for the shock proper velocity and our broken power law expressed by
Equation (D4). The curves are plotted in dimensionless time t* and are scale-
free. The dashed vertical lines indicate the two transition times t1 and t2
between the relativistic, transrelativistic, and the transrelativistic and New-
tonian regimes, respectively. The horizontal dotted lines represent the values of
ush at the transition times. Our formula interpolates the two asymptotic regimes
for t*→ 0 and t*→ ∞ with a softer power law between the two
with u ∝ t−0.9.
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cooling ( m cn n¢ < ¢ ), is given by
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where ,peake¢n ¢ is the peak emissivity (J. Granot et al. 1999):
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Finally, the rest-frame frequency n¢ is connected to the observer
frequency ν by

( ) ( )1 . D21n bm n¢ = G -

D.2. Degeneracy Relations

The afterglow light curves are subject to degeneracy
relations for the peak position and the peak height, derived
from the following scaling laws (E. Nakar et al. 2002; E. Nakar
& T. Piran 2021):
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for a fixed observer time T. Here, E0= EΩ(θ= 0). Additionally,
the scaling for θobs becomes more precise as long as θobs? θj.
We verify the scaling relations by numerically integrating the
light curves for several viewing angles, from θobs= 14°–60° at
steps of 1°, and for four different opening angles of the jet, i.e.,
θj= [3, 5, 6.8, 10]°. We show the results of the peak time and
the peak flux as a function of the viewing angle in Figure 16.
From the fitting lines, we see that for a ratio χ= θobs/θj
sufficiently larger than unity, the scaling relation is a power law
with slope ;2.2 (instead of 2 in Equation (D22)) for Tpeak and a
slope of ;−2.4p for  ,peakn (instead of −2p from
Equation (D23)). Furthermore, the afterglow peak tends to be
wide for χ; 1–3 and narrower for χ? 1 until the shape
converges to a certain curve. Combining Equations (D22) and
(D23), and taking into account the corrections above for the
scaling with respect to θobs, we get the generalized scaling

relations for the peak time and the peak flux:
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with l1; 2.2 and l2; 2.4. If the observer’s angle does not
change, the second term goes to 0, and the previous equation
reduces to the scaling relation of K. Takahashi & K. Ioka
(2021). We remark that even if the peak time and peak flux
coincide for different viewing angles, the previous equation
does not define a family of perfectly superposing curves, since
the afterglow light curve tends to spread the closer the observer
gets to the jet’s opening angle. This is visible from the third
panel of Figure 16, where we measure the time ΔT between the
peak time Tpeak and the asymptotic decay of the light curve
(i.e., the observer time when the flux decreases by roughly 10%
from its peak value), which roughly follows the power-law
scaling of a spreading jet (J. Granot 2007).

D.3. Jets Described by a Generalized Gaussian and Their Time
Evolution

The integral of the energy per solid angle of a jet described
by Equation (6) is rather complicated and is analytical only for
specific integer or fractional values of s; thus, it is better to
approximate the integrated function using a Taylor series
expansion of the result around θc= 0, as follows:
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Varying s and calculating the integral numerically, we can
extrapolate the behavior of the coefficients as a function of the
shape parameter s. The coefficients c1(s) and c2(s) have the
following approximate forms:
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Figure 16. Peak position, peak height, and peak spread of the afterglow curves as a function of the viewing angle θobs, for four different opening angles: 3° (blue
points), 5° (orange), 6.8° (green), and 10° (red). We superpose the points of the power-law fitting lines with the same color as the points. The viewing angle is
normalized with respect to the jet opening angle of the corresponding run. In contrast, Tpeak and  ,peakn , for simplicity, are normalized with respect to their values for
θobs = 60° (the last point of the series).
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For s→∞ , the edges of the jet become infinitely sharp. The jet
shape degenerates into a Heaviside step function E0Θ(θc− θ),
thus the integral of Equation (D25), dropping a factor 2π,
will give exactly ( ) ( )

! ! !j
1 cos 1
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which are the asymptotic limits of the coefficients c1 and c2.
In Figure 17, we show the time evolution of the fitting

parameters for four values of the opening angle θj= [3, 5, 6.8,
10]° and fixed Lj= 1051 erg s−1. We take snapshots from 25 to
450 ms of continuous jet injection, at Δt= 25 ms from each
other. We cut off the rest of the slow ejecta in each snapshot
and fit the on-axis peak with a generalized Gaussian. We use
Equations (D25) and (D26) to calculate the total energy under
the fitting function and compare it to the jet energy for each
given time. We see that for all the runs but one (θj= 10°), the
result matches the expected jet energy very well. The
discrepancy at larger angles can be explained considering that
there is a non-negligible amount of energy outside the peak,
thus giving less than expected energy. The value of θc grows in
the first 250 ms of injection to roughly stabilize around the
value of the jet’s opening angle θj. Also, the shape parameter of
the Gaussian seems to converge to a certain value at later times,
around 5. However, due to its wide angular spread, the run with
θj= 10° seems to jump to higher values (flatter central
distribution). Not surprisingly, θc and the shape parameters
are linearly correlated at later times, as shown in the bottom-
right panel of the figure. From these data, we can conclude that
taking the energy distribution EΩ too early might strongly

affect the final result when the synthetic light curves are
calculated, since its parameters tend to stabilize at later times.
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