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Rapidly and differentially rotating compact stars are believed to be formed in binary neutron star merger
events, according to both numerical simulations and the multimessenger observation of GW170817.
Questions that have not been answered by the observation of GW170817 and remain open arewhether or not
a phase transition of strong interaction could happen during a binary neutron star merger event that forms a
differentially rotating strange star as a remnant aswell as the possibility of having a binary strange starmerger
scenario. The lifetime and evolution of such a differentially rotating star is tightly related to the observations
in the postmerger phase. Various studies on the maximum mass of differentially rotating neutron stars have
been done in the past, most of which assume the so-called j-constant law as the rotation profile inside the star.
In this paper, we extend the studies to a more realistic differential rotation law and concentrate on bare quark
star models. Significant differences are found between differentially rotating strange stars and neutron stars,
with both the j-const law and the new rotation profile model. Amoderate differential rotation rate for neutron
stars is found to be too large for strange stars, resulting in a rapid drop in themaximummass as the differential

rotation degree is increased further from Â ∼ 2.0, where Â is a parameter characterizing the differential
rotation rate for the j-const law. As a result, the maximum mass of a differentially rotating self-bound star
drops below the uniformly rotating mass-shedding limit for a reasonable degree of differential rotation. The
continuous transition to the toroidal sequence is also found to happen at a much smaller differential rotation

rate and angular momentum than for neutron stars. In spite of those differences, Â-insensitive relation
between themaximummass for a given angularmomentum is still found to hold, even for the new differential
rotation law. Astrophysical consequences of these differences and how to distinguish between strange star
and neutron star models with future observations are also discussed.
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I. INTRODUCTION

In the coming multimessenger astronomy era led by the
observation of GW170817 [1] and its electromagnetic
(EM) counterparts [2], it is very likely that a conclusion
could be drawn on the equation of state (EoS) of compact
stars, which is a challenging topic in nuclear physics due to
the nonperturbative nature of strong interaction at the low-
energy scale. In fact, GW170817 alone has already
provided ample information on the radius of neutron stars
(NSs) by measuring the tidal deformability in the gravita-
tional wave (GW) signal at the late inspiral stage (cf. sys-
tematic studies in Refs. [3,4]). Moreover, constraints on the
maximum mass have also been put forward by considering
the fate of the merger remnant together with the electro-
magnetic counterparts of GW170817 [5–8].

However, besides conventional NS EoS, other possibil-
ities such as stars composed of strange quark matter [9–11],
namely, strange star (SS) models, are not excluded by
the observation of GW170817 [1]. In addition, the EM
counterparts of GW170817 could also be understood
within the scenario of a binary strange star (BSS) merger
[12–15]. Because of their self-bound nature, SSs are quite
different from NSs. The tidal deformability measurement
from GW170817 will imply a different radius constraint if
the SS branch is taken into account [16,17]. For the case,
that it is supported by rigid rotation, the maximum mass of
SSs can be increased much more than NSs [12]. Rotating
SSs can reach a much higher T=jWj ratio than NSs, leading
to a more important role of triaxial instabilities for the case
in which the rotation is fast enough and shear viscosity is
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sufficient [18–20]. Even in the case of a binary neutron star
(BNS) merger, whether or not a phase transition and the
formation of a SS happens during the merger will signifi-
cantly alter the GW signals [21]. Considering all of the
above, it is also quite important to calculate models of
differentially rotating strange stars [22–24] to better under-
stand the observation of binary merger events.
Depending on the maximum mass of the EoS and the

total mass of the merging binary, there could be several
different outcomes after the merger: a prompt collapse to a
black hole, a short-lived hypermassive neutron star
(HMNS, the mass of which exceeds the mass-shedding
limit with rigid rotation a nd hence is only stable with
differential rotation), or a long-lived supramassive neutron
star. The amount and the velocity of the ejected mass in the
postmerger phase, the neutrino emission, and the energy
injection from the merger remnant are quite different in
every case. Therefore, it is possible to make constraints on
the remnant type, and hence the maximummass of the EoS,
according to the EM counterparts of the merger event.
Following the evolution of a differentially rotating

compact star in the postmerger phase for a long time is
computationally expensive. Therefore, the study of equi-
librium models is very useful, especially when one is
concerned with the parameter space explorations (e.g.,
Refs. [25,26]). Also, the evolution of SSs is a numerically
challenging problem due to its finite surface density [14].
As a result, calculating differentially rotating SSs is an
effective way to study the outcome of merger events for the
hypothetical SS formation. The choice of a differential
rotation law [i.e., the angular velocity as a function of the
cylindrical radial coordinate Ω ¼ Ωðr sin θÞ in the
Newtonian case] is essential for modeling differentially
rotating stars. In the case of relativistic gravity, instead, one
has to choose the relativistic specific angular momentum as
a function of angular velocity [i.e., j ¼ jðΩÞ, in which j ≔
utuϕ and uα is the 4-velocity of the fluid]. The most
commonly used differential rotation law is the so-called j-
const law [27–33],

jðΩÞ ¼ A2ðΩc −ΩÞ; ð1Þ

in which A and Ωc are two constant parameters in the
model. A dimensionless parameter Â ¼ A=re, where re is
the equatorial radius of the star, is also quite often used.
This choice results in a monotonically decreasing angular
velocity with respect to the cylindrical radius. However, it
has been realized that such a differential rotation profile is
not realistic from numerical simulations of BNS mergers.
In the equatorial plane, simulations suggest that the angular
velocity starts from a nonzero finite value on the rotational
axis, then increases towards a maximum value, and then
decreases to a minimum [34–39]. Hence, it is quite
interesting and important to model differentially rotating
stars with such a rotation law, as is done in Ref. [40].

In this paper, we have applied both the j-const law as
well as a more realistic rotation law to SS models. The
Compact Object CALculator (COCAL) code, which we have
modified to include self-bound stars and the convergence
and accuracy of which we tested before [19], is used for
constructing the equilibrium solutions. The results of
differentially rotating SSs with the j-const law are also
compared with previous results (e.g., Ref. [24]) to validate
the accuracy of our numerical scheme (in Sec. III) in
studying this topic. We have compared our results to those
of neutron stars and found that for differentially rotating
SSs both the drop of the maximum mass and the transition
to the toroidal sequence happen at a much smaller differ-
ential rotation rate, compared with the results of NSs.
Interestingly enough, the maximum mass of a differentially
rotating SS can be smaller than that of a rigidly rotating one
for both differential rotation laws with a reasonable differ-
ential rotation rate.
The paper is organized as follows. The SS EoS used in

this paper will be introduced in Sec. II. In Sec. III, we
briefly review the formulations and differential rotation
laws used in the calculation. The results will be presented in
Sec. IV. The astrophysical implications of those results will
be discussed in Sec. V. Note that in this paper we use units
with G ¼ c ¼ M⊙ ¼ 1 unless otherwise stated. Here, G
and c are the gravitational constant and speed of light,
respectively.

II. STRANGE STAR EQUATIONS OF STATE

In this work, we have considered two types of EoS for
SSs. One of them is the widely used MIT bag model [41].
As we are only interested in the self-bound nature of SSs
and the impact of differential rotation, the effects of
perturbative QCD due to gluon-mediated quark interactions
[42–45] will not be considered; nor will the finite mass of
the strange quark. This allows us to have a much simpler
EoS model for numerical calculations (similar to, e.g.,
Ref. [46]), in which pressure is related to total energy
density according to

p ¼ 1=3ðϵ − ϵsÞ; ð2Þ

where ϵs ¼ 4B is the total energy density at the surface and
B is the bag constant [10,11]. p and ϵ are the pressure and
total energy density of the matter, respectively. In this work,
B is chosen to be ð138 MeVÞ4.
Another EoS model considered in this work is the so-

called strangeon star model [47]. Unlike the MIT bag
model in which quarks are assumed to be deconfined and
described by Fermi gas approximation, Lai and Xu sug-
gested that clustering of u, d, and s quarks is possible at the
density of a cold compact star since the coupling of strong
interaction is not negligible at such an energy scale. Lai and
Xu attempted to approach the EoS with phenomenological
models, i.e., to compare the potential with the interaction
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between inert molecules [48] (a similar approach has
also been discussed in Ref. [49]). They also take the
lattice effects into account as the potential could be deep
enough to trap the strangeons. Combining the intercluster
potential and the lattice thermodynamics, an EoS could be
derived in terms of the number density of the constituent
strangeon (n):

p ¼ 4U0ð12.4r120 n5 − 8.4r60n
3Þ þ 1

8
ð6π2Þ13ℏcn4

3: ð3Þ

The parameters U0 and r0 are the depth of the potential and
the characteristic range of the interaction, respectively.1 The
EoS depends also on the number of quarks in each
strangeon particle (Nq). Similar to the MIT bag model
case, we use the rest-mass density parameter in the
numerical code, which is

ρ ¼ mu
Nq

3
n; ð4Þ

where mu ¼ 931 MeV=c2 is the atomic mass unit. In this
work, the model with U0 ¼ 50 MeV and Nq ¼ 18 is
chosen. The causal condition of this EoS model is inves-
tigated in Ref. [50], and superluminal behavior does not
occur for any solutions discussed in this paper. The details
about the explicit implementation of SS models in the
COCAL code are explained in detail in our previous
work [19].
Both the MIT bag model and the strangeon star model

used in this work satisfy the maximum mass constraint by
the discovery of massive pulsars [19,51,52] as well as the
tidal deformability constraint by GW170817 ([1,13,53],
also cf. Table I). It is worth it to remark that there is a
positive correlation between the maximum mass and tidal
deformabilty for NS EoSs as they both relate to the stiffness
of the EoS model. According to Fig. 1 in Ref. [3], in order
to satisfy the tidal deformability constraint, there will be an
upper limit for the maximum mass of any NS EoS. This
correlation holds qualitatively for SSs (cf. Refs. [53,54])
but not quantitatively due to the finite surface density of
SSs, which leads to a correction in the calculation of tidal
deformablity [55,56]. As a result, it is much easier for
strange star models to accommodate the observation of
GW170817 and massive pulsars at the same time.
Additionally, previous studies have also demonstrated
the possibility of understanding some puzzling observa-
tions within the SS scenario, such as the energy release
during pulsar glitches [57], the peculiar x-ray flares [58],
the optical/UV excess of X-ray-dim isolated neutron stars
[59] as well as the multiple internal plateau stages in short
gamma bursts [60].

In Table I, we list some properties of the two EoS
considered in this work. The MIT bag model has a much
larger ratio between the central density and surface density
compared with the strangeon star model for the Tolman-
Oppenheimer-Volkoff (TOV) maximum mass solution (i.e.,
5.42=1.4 vs 4.03=2). This result indicates that the strangeon
star model is more similar to an incompressible EoS than
MIT bag model quantitatively. Moreover, this difference in
incompressibility will remain the same regardless of the bag
constant we are using for MIT model. As pointed out by
Refs. [11,20], when neglecting strange quark mass and
interaction between quarks mediated by gluons (like the
model used in this paper), the properties of the maximum
mass solution for both rotating and nonrotating cases simply
rescale with the bag constant, keeping ρc=ρsurf unchanged.
This quantitative difference between the two models will be
discussed again in Sec. IVA. This quantitatively larger
incompressibility of SSs induced by their finite surface
density compared with other EoS models that involves
strong interaction phase transitions and hence quark matter
(i.e., hybrid star and twin star models [21,61–63], which has
surface density equal to zero) is also the most important
motivation for us to carry out the calculation on SS models.

III. DIFFERENTIAL ROTATION MODELS

The hydrostatic equation in equilibrium can be derived
from the conservation of energy momentum,∇μTμν ¼ 0, in
which Tμν ¼ ðϵþ pÞuμuν þ pgμν is the energy-momentum
tensor of a perfect fluid. For stationary and axisymmetric
differential rotating stars, the Euler equation becomes [64]

∇μ ln
h
ut

þ utuϕ∇μΩ −
T
h
∇μs ¼ 0; ð5Þ

where h ¼ ðϵþ pÞ=ρ is the specific enthalpy, ρ is the rest-
mass density, T is the temperature, and s is the specific
entropy. Assuming isentropic configurations, Eq. (5) can be
integrated as

h
ut
exp

�Z
jdΩ

�
¼ E; ð6Þ

provided an integrability condition j ≔ utuϕ ¼ jðΩÞ is
assumed. E in Eq. (6) is a constant to be determined once
the axis ratio and central density of the star is fixed.

TABLE I. Surface density (ρsurf ), TOV maximum mass
(MTOV), and central density for the TOV maximum mass solution
(ρc;TOV) for the two EOS in this work. The densities are in units of
nuclear saturation density (ρ0 ¼ 2.67 × 1014 g cm−3). We also
show the radius and tidal deformability for a 1.4 solar mass star
for both EoS.

EOS ρsurf MTOV ρc;TOV R1.4 ðkmÞ Λ1.4

MIT 1.4ρ0 2.217 5.42ρ0 11.814 792.8
LX 2ρ0 3.325 4.03ρ0 10.459 381.9

1Note that this equation has a unique nonzero root (i.e.,
pressure vanishes at finite density), demonstrating the self-bound
nature of the strangeon star model.
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The choice of a differential rotation law is exactly a
choice for jðΩÞ. As explained in Ref. [64], a simple
generalization of the j-const law [Eq. (1)] is

jðΩÞ ¼ A2Ω
��

Ωc

Ω

�
q
− 1

�
; ð7Þ

where A is a parameter characterizing the differential
rotation rate, Ωc is the angular velocity along the rotation
axis, and q is a new parameter. Setting q ¼ 1, one recovers
the j-const law. In the COCAL code, normalized coordinates
are used (equatorial radius of the star is normalized to 1);
thus, parameter A in Eq. (7) is the same as Â in other studies
such as Ref. [31]. The rotation profile reduces to rigid
rotation in the limit of A → ∞.
Apart from the j-const law, we have also considered a

more realistic differential rotation profile used in Ref. [40],
which mimics the nonmonotonicΩ distribution as observed
in the HMNS remnant formed in BNS simulations [38,39].
It should be remembered that for such a nonmonotonic
differential rotation profile jðΩÞ becomes a multivalued
function. Hence, the integrability condition is written as
Ω ¼ ΩðjÞ instead. As described in Ref. [40], we use

Ω ¼ Ωc
1þ ðj=B2ΩcÞp
1þ ðj=A2ΩcÞqþp ; ð8Þ

where A, B, p, and q are parameters that control the
differential rotation profile. For the integration in Eq. (6),
the following rearrangement is applied:

Z
jdΩ ¼

Z
j
dΩ
dj

dj: ð9Þ

The choice of ðp; qÞ is (1,3) in our calculations. For this
law, rather than fixing A and B, we choose to fix the ratio
between the maximum angular velocity and the central
angular velocity (Ωm=Ωc) as well as the equatorial
angular velocity with respect to the central (Ωeq=Ωc) and
then solve for the corresponding A and B iteratively for
each solution [40].

Fixing the two angular velocity ratios mentioned above,
we find that the corresponding A and B parameters vary
more significantly for SSs with different central densities
and axis ratios than in NSs [40]. For solutions with large
central densities or close to the mass-shedding limit, this
affects the convergence of the method in a very delicate
way. Hence, similar to what is done in Ref. [40], we
concentrate on differential solutions with several constant
axis ratios (i.e., Rz=Rx ¼ 0.25, 0.5, and 0.75) instead of
exploring the entire parameter space. The results will be
demonstrated in the next section.
For the equations of the gravitational field, we employ

the Isenberg-Wilson-Mathews formulation [65], which
assumes the spatially conformal flat approximation [19].
Its validity and accuracy in calculating both rigidly rotating
and differentially rotating relativistic stars has been verified
in Refs. [66,67]. Particularly, as the quantities of solutions
of MIT bag model SSs scales with the bag constant
employed, we manage to make a direct comparison of
the results obtained from our code to those in Ref. [24]
(cf. Table II). The relative difference increases as the
configuration gets more massive or more rapidly rotating
but is within our expectation due to the spatially conformal
flat approximation. To be specific, it will be useful to keep
in mind that the quantities calculated and reported in this
paper might have up to 2% error for global quantities (e.g.,
gravitational mass and radius) and up to 5% error for local
quantities (e.g., angular velocity).

IV. RESULTS

In this section, we present results for differentially
rotating SSs both with the j-const as well as with the
more realistic law, Eq. (8). We focus on the properties of the
maximum mass and the transition to toroidal topologies for
the EoS mentioned in Sec. II.

A. Maximum mass of differentially
rotating strange star

Differentially rotating NSs could normally reach a much
higher maximum mass compared with uniformly rotating

TABLE II. Comparison of the results obtained from our code and that in Ref. [24] for the MIT bag model. We have shown the rescaled
gravitational mass (MB1=2), coordinate equatorial radius (RB1=2), and central angular velocity (Ωc=B1=2) for four different solutions: the
TOV maximum mass solution, the maximum mass solution for rigid rotation case (UR), the type A solution with largest mass with
Â ¼ 5, and the type C solution with largest mass with Â ¼ 2. The relative difference for all three quantities increases as the mass
increases. For the largest mass case (type C Â ¼ 2), the difference is 1% for mass, 2% for radius, and 5% for the angular velocity, which
is acceptable due to the spatially conformal flat approximation (cf. the discussion in the end of Sec. III).

TOV UR Type A Â ¼ 5 Type C Â ¼ 2

COCAL FlatStar COCAL FlatStar COCAL FlatStar COCAL FlatStar

ðM=M⊙ÞðB=MeV fm−3Þ1=2 15.231 15.221 21.779 21.847 25.282 25.297 33.172 32.880
ðRx=kmÞðB=MeV fm−3Þ1=2 58.213 58.383 85.947 86.616 91.374 89.621 74.982 73.348
ðΩc=rad s−1Þ=ðB=MeV fm−3Þ1=2 � � � � � � 1279.7 1245.6 1400.8 1423.9 2659.7 2517.3
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ones, thus called HMNS. Early studies on differentially
rotatingNSs have shown that themaximummass could be as
high as twice MTOV [31]. With more careful exploration of
the entire parameter space, it has been realized thatmaximum
mass of HMNSs actually depends both on the differential
rotation degree (i.e., Â) and on the type of the solutions
(cf. Ref. [29] for Γ ¼ 2 EoS, and similar results are obtained
by various different EoS in Refs. [24,30,62,68]).
As first pointed out by Ref. [28], there are four types of

differentially rotating neutron stars. For a small differential
rotation rate, a differentially rotating star has a mass-
shedding limit when the star is still ellipsoidal (type A),
whereas for moderate differential rotation rates, there exist
type B and C solutions, which can reach the toroidal limit
(Rz=Rx ¼ 0). The difference between type B and C is that
the latter can smoothly transit into an ellipsoidal sequence
and eventually a spherical star by reducing angular
momentum, whereas the former one cannot and terminates
at Rz=Rx < 1 when losing angular momentum. In the case
of modest differential rotation, there is also type D solution
coexists with type C solution (as type B coexists with
type A), which have two mass-shedding limit but no
toroidal or spherical limit.
The maximum mass for type A solutions increases as the

differential rotation degree increases, while for types B, C,
and D solutions, the maximum mass decreases as the star
becomes more differentially rotating. Particularly, the
maximum mass of all possible configurations is always
found to be the type B solution with a moderate differential
rotation degree [29]. The maximum possible mass could be
as high as four times MTOV.
For SSs considered in this paper, we have found that only

type C solutions exist for most of the Â parameter range we
considered. In other words, types A and B solutions vanish
at a much smaller differential rotation rate for SSs com-
pared to NSs. Details will be explained again in Sec. IV C.
Only in the case of Â ¼ 5.0, typa A and C solutions coexist
for the model shown in Fig. 1 (in dash and solid curves
respectively). For all the other cases, without further
mention, the maximum mass case is for the type C
configuration.2

To investigate the maximum mass of a hypermassive
strange star (HMSS) and its dependence on the Â param-
eter, we have calculated HMSSmodels with the j-const law
and various choices of Â ranging from 0.6 to 6. This will
enable us to make a direct comparison with the HMNS
models that obey the same differential rotating law.

Solutions are calculated for both the strangeon star model
and MIT bag model mentioned above.
The broad brush picture of HMSSs with j-const law is

similar to that of HMNSs, but the quantitative dependence
on the Â parameter (namely, the differential rotation rate) is
quite different from what was mentioned in the paragraphs
above. As the Â parameter approaches infinity, the rigid
rotation mass-shedding limit will be recovered for HMSSs.
Decreasing Â from infinity results in an increase of the
maximum mass of HMSSs, up until Â ∼ 5 for both the
strangeon star model and approximately 3 for the MIT bag
model (the corresponding value for HMNSs is around 1).
This maximum possible mass for HMSSs is above 5 M⊙.
As Â is further decreased from Â ∼ 5, the maximum mass
begins to decrease (as in the HMNS case). We have chosen
several models with Â ranging from 2 to 0.5 in Figs. 1 and 2
to better illustrate the difference compared with HMNSs
with a moderate differential rotation rate.
There are several interesting points in the results shown

in the figures. First of all, as pointed out by Ref. [20], the
maximum mass of a rigidly rotating SS (red curve) is

FIG. 1. Gravitational mass vs maximum density (inG ¼ M⊙ ¼
c ¼ 1 unit) diagram for the strangeon starmodel. Theblack curve is
for the nonrotating case (TOV solution), while the red curve is for
the mass-shedding limit for the uniformly rotating axisymmetric
case. Curves with gradually changing color from green to blue
represent the maximum mass configurations obtained for the
differentially rotating case with j-const law. The Â parameter
applied to those curves ranges from 1.8 to 0.8 as the color changes
from green to blue (from top to the bottom). Note that, due to the
existence of typeC solutionsmentioned in Sec. IV C, themaximum
mass of the differentially rotating case could probably be found for
the case in which the central density is not the maximum density
inside the star. We have also shown the Â ¼ 5 case, which
corresponds to the maximum possible mass in our calculation in
the yellow curve on top. For this particular differential rotation rate,
type C solutions and the toroidal limit are only found for large
central densities (i.e.,ρmax > 1.12 × 10−3).We label the part where
only type A solutions exist by a dashed curve.

2It is worth noting that for type C solutions the mass could be
arbitrarily large as the configuration becomes arbitrarily thin
toroidal. In practice, one has to restrict to simply connected
bodies to define a maximum mass [28]. Therefore, we try to
approach the maximum mass of a type C solution by the smallest
axis ratio, i.e., Rz=Rx ¼ 1=64 in our calculation.
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approximately 40% larger than MTOV (black curve) for
both EoS, almost twice as large as the case of NS EoS [25].
Second, compared to the results of polytropic NSs with
Γ ¼ 2 shown in Fig. 1 in Ref. [31], in which the maximum
mass of HMNSs increases significantly from Â ¼ 2.0 to
1.0, the maximum mass of HMSSs actually decreases
significantly in the exactly same range of Â. In other words,
while Â ¼ 2.0 is a small differential rotation degree for
NSs, it corresponds to a very large one for SSs. This is
understandable, considering the self-bound nature of SSs.
SSs have finite surface densities that are of the same order
of magnitude as the central density. In this sense, SSs are
more like an incompressible star. In the case of NSs,
varying the equatorial angular velocity has a smaller effect
since the density at the equator approaches zero. For SSs,
the situation is completely different, and the configuration
of the star is affected much more by differential rotation.
Another interesting feature is that HMSSs can have a

smaller maximum mass for type C solutions than in the
rigid rotation case with a moderate differential rotation rate.
For the strangeon star, this happens at Â ∼ 1.8, while for the
MIT bag model, it happens at Â ∼ 0.7. According to the
results of NSs, (cf. Fig. 10 in Ref. [29]), even with higher
differential rotation rates, the maximum mass of type C
solutions for a Γ ¼ 2 EoS is still much larger than that of
rigidly rotating solutions. Two aspects can account for this
very interesting result: on one hand, due to the finite surface
density and larger incompressibility, the maximum mass of
strange stars drops more rapidly as differential rotation is
enhanced in strange stars; on the other hand, the supra-
massive mass-shedding limit for SSs is much larger than
NSs given the same MTOV, making it possible for the

HMSS maximum mass to drop below it with moderate Â.
The quantitative difference for the MIT bag model and
strangeon star model could then also be interpreted by the
difference in their incompressibility, as mentioned in
Sec. II. In addition, the rotational profile for the critical
case in which the maximum mass becomes comparable to
the mass-shedding limit of the rigid rotation case can also
be seen in Fig. 3. The MIT bag model indeed needs a larger
physical differential rotation rate, as it has a larger Ωc and
smaller Ωeq.
To probe the behavior above under the more realistic

differential rotation law, Eq. (8), we construct sequences
of differentially rotating stars with deformations
Rz=Rx ¼ 0.25, 0.5, 0.75 in Fig. 4. The parameters are
chosen such that Ωm=Ωc ¼ 1.1 and Ωeq=Ωc ¼ 0.5. Both
the j-const law (dashed lines) and the new differential
rotation law (solid lines) are shown for comparison. As can
be seen, with the new differential law, the maximummass is
increased compared to the j-const law case. The smaller the
axis ratio is (in other words, the faster the rotation), the
more significant the difference between the two cases is. In
the case of Rz=Rx ¼ 0.25, the maximum mass exceeds the
mass-shedding limit for rigid rotation.
However, as can be seen by comparing the DR-LX-I and

DR-LX-II models in Table III, the angular momentum and
kinetic energy are also increased in the case of the non-
monotonic differential rotation law as a tradeoff for a higher
maximum mass. The angular momentum and kinetic
energy of the merger remnant originate from the binary
inspiral stage, which should be independent of the rotation
law. Hence, for merger events, only comparing the remnant
mass to the mass-shedding limit might not be sufficient
enough to tell the real outcome of the merger product,

FIG. 2. Gravitational mass vs maximum density diagram for
MIT bag model SSs. The models for curves with different colors
are exactly the same as in Fig. 1. We calculated one more model
for the MIT bag model with Â ¼ 0.6 as shown by the bottom
blue curve. The yellow curve on the top, which corresponds
to the maximum possible mass case for the MIT bag model,
is with Â ¼ 3.0.

FIG. 3. The angular velocity profile for the strangeon star (blue)
and MIT bag model (green) when the maximum mass becomes
close to their rigidly rotating mass-shedding limit. This means
Â ¼ 1.8 for the strangeon star model and Â ¼ 0.8 for the MIT
bag model. The dashed horizontal line indicates the angular
velocity for the mass-shedding limit of the rigid rotation case.
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especially for the case in which the remnant normally
would not obtain enough angular momentum to reach the
mass-shedding limit. In this case, investigating the relation-
ship between the maximum mass for a given angular
momentum will be particularly useful, and we will explore
it in the next subsection.

B. Critical mass of constant angular
momentum sequences

One of the most important results in the theory of
stability of rigidly rotating stars is the “turning point”
theorem of Friedman et al. [69], which states that along a
sequence with a constant angular momentum J and varying
mass and central density, secular instability sets in at the
maximum mass, i.e., at the turning point of the M − ρ
curve. The conjecture that, similar to uniformly rotating
stars, the dynamical stability line also exists in differentially
rotating stars was proven in the affirmative in Ref. [70], and
thus the turning-point criterion can be used as a first
approximation for finding the critical mass for prompt
collapse to a black hole. We refer to this critical mass by
Mcrit hereafter.

3

Inspired by the fact mentioned in the previous subsection
that the maximum mass of a HMSS correlates with its
angular momentum, it is interesting to investigate whether
HMSSs follow a similar universal relationship revealed by
Ref. [26]. In particular, it has been found that the relation-
ship between Mcrit and J is Â insensitive. Furthermore,

when renormalize by the TOV maximum mass, the
relationship between dimensionless critical mass and
angular momentum is found to be independent on EoS
of NSs [26]. In other words, for any NS EoS, the enhance-
ment in maximum mass is determined only by the angular
momentum of the rotating star, but not how the angular
momentum is distributed inside the star. The reason that a
HMNS can have a larger maximum mass than a SMNS is
because a HMNS can reach larger angular momentum.
Although in Ref. [26] it has been shown that this EoS-
independent relationship cannot be extended for the case of
even uniformly rotating SSs, it is quite useful if one can at
least verify whether the Â-insensitive relationship still
holds for differentially rotating SSs.

FIG. 4. Gravitational mass vs maximum density diagram for the
strangeon star model. The black and red curves are for the
nonrotating and uniformly rotating mass-shedding limit cases,
respectively. The other curves ranging from green to blue colors
are differentially rotating solutions with constant axis ratio
Rz=Rx ¼ 0.75, 0.5 and 0.25. The dashed curves are for models
with the j-const law with Â ¼ 1.0, and solid curves are for
models with the new rotation law, Eq. (8).

FIG. 5. The relationship between critical gravitational mass
Mcrit and angular momentum J for strangeon stars (upper panel)
and MIT bag model stars (lower panel). Both the rigid rotating
case (solid blue line) and differentially rotating case (green dots
for Â ¼ 3.0 and red dots for Â ¼ 1.0) are shown. The 1% error
range for the relationship of the rigid rotating case is shown in
dashed blue lines for comparison purposes. As can be seen, for
both EoS even in the case of Â ¼ 1.0, the relationship between
Mcrit and J is still reasonably consistent with the rigid rotating
case. We have also labeled the results from the new differential
rotation law with black markers.

3In practice, we find Mcrit by finding the point where
∂M
∂ρmax

jJ ¼ 0.
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We have considered the case of Â ¼ 1.0 and 3.0 for both
the strangeon star model and MIT bag model to test the
relationship between Mcrit and J. The results are shown in
Fig. 5, in which the rigid rotation case (solid blue line) and
the differential rotation case (colored dots) are compared.
As can be seen, even though Â ¼ 1.0 already represents a
large differential rotation degree for SSs, the Mcrit − J
relation does not deviate much from the rigid rotation case
(which is Â → ∞) for both EoS. The relative difference as
defined in Ref. [26] satisfies

funi − fÂ
funi

≤ 2.0% ∀ Â > 1.0 ð10Þ

for SSs, too, where funi denotesMcrit for a certain J for the
uniform rotation case and fÂ for the differential rotation
case. According to the upper panel in Fig. 5, the angular
momentum a differentially rotating strangeon star can reach
is much smaller than that of the rigid rotating case. This
explains why a HMSS could have a smaller maximummass
than SMSS. What is more interesting is that, as can be seen
from Fig. 5, the solutions with the new differential rotation
law are also found to follow this relation betweenMcrit and
J. This result excludes the possibility that this relationship
is due to a choice of any particular differential rotation law.
Hence, one can try to infer the outcome of a binary merger
event without having to know the details of the rotational
profile in the merger remnant.

C. Type C solutions of differentially
rotating strange star

Another interesting and important feature of differen-
tially rotating relativistic stars is the existence of different
types of solutions according to their geometrical surface
shape, namely, spheroidal or toroidal classes [28]. By using

COCAL, we are able to construct and study the type C
solutions of differentially rotating SSs according to the
classification in Ref. [28]. For rigidly rotating relativistic
stars or differentially rotating stars with relatively weak
differential rotation rates, the solution sequences terminate
at the so-called mass-shedding limit with a finite axis ratio
Rz=Rx. Nevertheless, with a relatively strong differential
rotation degree, the solution sequence could go through a
continuous transition to a toroidal class with Rz=Rx ¼ 0. In
such solution sequences, the stellar surface in the x − z
plane may look like a peanut shape, and the maximum
density is no longer in the center of the star but in a ring of a
finite radius inside the star (cf. Fig. 6 as an example).
Identifying such solutions for differentially rotating SSs is
helpful in determining the maximum mass as well as in
understanding the influence of a certain differential rota-
tion rate.
According to the parameter study for the solution space

of differentially rotating NSs [29], type C solutions come to
exist for Â≲ 1.0,4 although a more precise value depends
on the central density. To make a comparison, we have also
tested the j-const law for SSs. Properties of selected type C
solutions for differentially rotating SSs are listed in
Table III. It turns out that type C solutions emerge at much
larger Â, and thus a much smaller differential rotation rate.
For instance, for both the strangeon star and MIT bag
model with Â ¼ 3.0 (which corresponds to Ã ¼ 1=3 in
Fig. 5 in Ref. [29]), toroidal solutions are already found for
the whole central density range we considered. Note that
homogeneous stars are the extreme case of an incompress-
ible star. Following this comparison between SSs and NSs,
one would naturally expect type C/D solutions to emerge at

TABLE III. Quantities of selected solutions for rotating SSs. In the above, Rx is the coordinate (proper) equatorial radius, and Rz=Rx is
the ratio of coordinate (proper) polar to the equatorial radius. ρc is the central rest-mass density, and ρmax is the maximum rest-mass
density in the star. Ωc, MADM, J, and T=jWj are the central angular velocity, Arnowit-Deset-Misner mass (same as gravitational mass),
angular momentum, and ratio between kinetic energy and gravitational potential. Definitions can be found in the Appendix of Ref. [64].
In this table, UR-LX and UR-MIT label the maximum mass solution of a uniformly rotating strangeon star and MIT bag model star,
respectively. DR-LX-1 and DR-MIT-1 are the maximum mass solutions for a differentially rotating strangeon star and MIT bag model
star with the Â ¼ 1 j-const law. DR-LX-2 is the maximum mass solution for the new differential rotation law with Rz=Rx ¼ 0.25 for the
strangeon star model. DR-LX-3 and DR-LX-4 are two selected type C solutions with the j-const law and the new differential rotation
law, respectively.

Model Rx Rz=Rx ρc ρmax Ωc MADM J T=jWj
UR-LX 4.82 (15.1) 0.53125 (0.584) 1.56 × 10−3 1.56 × 10−3 0.0603 4.39 16.4 0.222
DR-LX-1 4.36 (12.4) 0.015625 (0.0190) 8.68 × 10−4 1.51 × 10−3 0.382 3.78 10.3 0.183
DR-LX-2 4.07 (14.4) 0.25 (0.295) 1.20 × 10−3 1.40 × 10−3 0.110 4.49 17.6 0.290
DR-LX-3 4.83 (10.9) 0.9375 (0.947) 1.51 × 10−3 1.51 × 10−3 0.0638 3.25 2.28 0.0135
DR-LX-4 4.26 (12.8) 0.50 (0.553) 1.46 × 10−3 1.51 × 10−3 0.0945 3.92 11.9 0.203
UR-MIT 8.23 (15.1) 0.484375 (0.523) 1.76 × 10−3 1.76 × 10−3 0.0433 3.17 8.56 0.198
DR-MIT-1 6.79 (13.9) 0.015625 (0.0172) 6.07 × 10−3 1.34 × 10−3 0.163 3.60 10.8 0.236

4Note that in Ref. [29] the definition of Ã is different from Â
used in this paper, but they are related simply as Ã ¼ 1=Â.
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an even smaller differential rotation rate. Indeed, according
to the study in Ref. [28], for large central density range,
type C/D solutions exist for Â as large as 10 for homo-
geneous stars.
We have identified the first solution in a sequence, the

maximum density of which is no longer at the center of the
star, as the beginning of the transition to the toroidal class.5

By doing so, we realize that the transition happens at an
axis ratio very close to 1 for differentially rotating SSs with
Â ¼ 1. In other words, with very little angular momentum,
the differential rotation is already playing an important role
in the changing of the configuration of a SS. One such
solution is also listed as DR-LX-3 in Table III to illustrate
the onset of this transition.
Similar analysis has been conducted for the solutionswith

the new differential rotation law, although, as mentioned

above, it is not easy to have a solution with a very small axis
ratio as it is increasingly difficult to adopt the A and B
parameter for smaller axis ratios. Despite that, we still
managed to reach Rz=Rx ¼ 0 and find toroidal solutions for
the low central density sequence for the case used in our
calculation (Ωm=Ωc ¼ 1.1 and Ωeq=Ωc ¼ 0.5). For a rela-
tively large central density sequence, we attempted to figure
out whether the transition to toroidal class is already
triggered by looking at the stellar surface and density profile
of the star. The result shows that for theRz=Rx ¼ 0.5 case the
onset of the transition already happens for all the central
density range (an example can be found in Fig. 6). Hence,
this type C solution should be a common feature for
differentially rotating relativistic stars, regardless of the
EoS and details of the rotation profile.

V. DISCUSSION AND CONCLUSION

In this paper, we have calculated differentially rotating
SSs, with both theMIT bag model and strangeon star model.
Besides the widely used the j-const law, we have also
considered a more realistic nonmonotonic rotation profile.
The maximum mass of HMSSs, toroidal solutions, and the
relationship between the critical mass and angular momen-
tum are investigated and compared with previous results of
HMNSs. Two major differences are found between HMNSs
and HMSSs. First, with a moderate differential rotation rate,
the maximum mass of a HMNS is increased significantly as
the Â parameter decreases (from 2.0 to 1.0), whereas in the
same range, the maximum mass of a HMSS drops signifi-
cantly. In particular, the maximum mass drops below the
rigid rotation case with a moderate differential rotation rate.
Second, the continuous transition to the toroidal solutions
happens at much larger Â, i.e., much smaller differential
rotation rate (typically Â ¼ 3.0 compared with Â ¼ 1.0 in
the case of NSs). Both differences indicate that a moderate
differential rotation degree for NSs is already too large for
SSs. The self-bound nature of SSs can account for this
difference, as a certain difference in the angular velocity will
play a more important role for SSs, the density of which is
almost uniform inside the star. Despite these differences,
similarly toNSs, a universal relationship betweenMcrit and J
is found for SSs, even for the new differential rotation law.
This provides amore realistic way to interpret the outcome of
a binary merger event, rather than comparing the remnant
mass to the maximum mass.
Combining all the results we have obtained in this paper,

one conclusion we can draw on the differentially rotating
SS remnant formed in a binary merger event is that it is
most likely to be a type C solution of which the maximum
density is not at the center. Meanwhile, due to the self-
bound nature, the moment of inertia of SSs is larger
than NSs and hence the T=jWj ratio (similar results have
already been reported in Ref. [19], and the resulting secular
instability for uniformly rotating SSs is studied). According

FIG. 6. Stellar surface and rest-mass density contour of a
differentially rotating strangeon star (upper panel) and its density
and angular velocity profile (lower panel). Details about the
solution shown in this figure can be found in the DR-LX-4 model
in Table III.

5Identically, one can also try to find the first solution, the
surface of which in the x − z plane is no longer elliptical.
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to previous studies on the dynamical instabilities [71–74] of
differentially rotating NSs, for the extremely differential
rotation rate cases (especially for the case in which the
maximum density is no longer in the center, cf. the
discussions in Ref. [72]), the T=jWj ratio for the onset
of such dynamical instabilities could be reduced signifi-
cantly. Consequently, such instabilities may easily take
place if a differentially rotating SS is formed in a binary
merger, redistributing matter and angular momentum inside
the star and destroying the toroidal shape of the star in a few
central rotation periods, thus producing additional signa-
tures in the GW radiation of the postmerger phase. At the
same time, such instability will compete against other
mechanisms such as magnetorotational instability in dis-
sipating the differential rotation, whereas the later one is
known to be responsible to enhance the magnetic field of
the merger remnant with the differential rotational kinetic
energy. Therefore, the remnant SS might have significantly
smaller dipole magnetic fields compared with a NS
remnant scenario, providing a way to distinguish between
a BSS and BNS merger scenario with the EM counterparts.
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