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Binary neutron star mergers are among the most energetic events in our Universe, with magnetic fields
significantly impacting their dynamics, particularly after the merger. While numerical-relativity simulations
that correctly describe the physics are essential to model their rich phenomenology, the inclusion of
magnetic fields is crucial for realistic simulations. For this reason, we have extended the BAM code to enable
general relativistic magnetohydrodynamic (GRMHD) simulations employing a hyperbolic “divergence
cleaning” scheme. We present a large set of standard GRMHD tests and compare the BAM code to other
GRMHD codes, SPRITZ, GRaM-X, and SACRAKK22, which employ different schemes for the evolution of the
magnetic fields. Overall, we find that the BAM code shows good performance in simple special-relativistic
tests. In addition, we find good agreement and consistent results when comparing GRMHD simulation
results between BAM and SACRAKK22.
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I. INTRODUCTION

Magnetic fields play a crucial role in various astro-
physical high-energy scenarios. In particular, they are
important in binary neutron star (BNS) mergers because
the magnetohydrodynamical effects can influence the
lifetime of the merger remnant and shape the matter
outflow in the postmerger phase. In the multimessenger
event GW170817 [1], the first observation of a BNS
system by gravitational waves (GWs) accompanied by
electromagnetic (EM) counterparts including the gamma-
ray burst (GRB) GRB170817A [2,3], strong evidence has
been found for BNS merger to be sources of GRBs
triggered by a relativistic jet, e.g., Refs. [4–7]. The launch
of such a relativistic jet is most likely powered by
magnetohydrodynamic processes, e.g., Refs. [8–11].
A key in the study of BNS systems is numerical-

relativity (NR) simulations that solve Einstein’s field
equations together with magnetohydrodynamics equations.

Because of the high complexity and dynamics of the
merger process, an accurate description of the spacetime
and hydrodynamics is crucial to allow for realistic pre-
dictions and to enable us to study details of the physical
processes. Furthermore, we can extract the GW signal and
the matter outflow from NR simulations to inform GW
models as well as models for the EM counterparts, which
are fundamental for the correct interpretation of multi-
messenger observations. Among others, this allows for
studies on the behavior of matter at supranuclear densities,
e.g., Refs. [12–15]; the expansion rate of the Universe, e.g.,
Refs. [16–20]; and the synthesis of heavy elements, e.g.,
Refs. [21–24]. In the last decade, there has been rapid
progress toward more realistic representations of micro-
physics in NR simulations, such as using tabulated equa-
tions of state (EOS) based on nuclear physics calculations
to describe the interior of neutron stars (NSs), including
neutrino emission and transport, as well as including
magnetic fields.
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In this work, we focus on the latter, i.e., the implemen-
tation of general relativistic magnetohydrodynamics
(GRMHD) routines in our NR code BAM [25,26] but also
refer to previous works concentrating on employing tabu-
lated EOS [27] and on the implementation of an advanced
multipolar first-order neutrino transfer scheme [28] to
highlight recent progress in performing more accurate
simulations with BAM. Magnetic fields, although negli-
gible for the inspiral, are amplified during and after the
merger due to the Kelvin-Helmholz instability (KHI), e.g.,
Refs. [29–31]; the Rayleigh-Taylor instability, e.g.,
Ref. [32]; and the magneto-rotational instability (MRI),
e.g., Refs. [11,33]. Accordingly, they influence in particular
the evolution of the remnant system and the outflow of
matter in the postmerger phase due to magnetically driven
winds and jet formation, making their incorporation crucial
for correct ejectamodels and predictions of EM signals, e.g.,
Ref. [34]. At the same time, they significantly increase the
complexity of the simulations and pose new numerical
challenges.
One challenge in GRMHD is to fulfill the divergence-

free condition for the magnetic field. There are various
approaches in the literature to ensure that no magnetic
monopoles are formed. Among the most popular schemes
used in the NR community nowadays are the constraint
transport scheme as initially developed by Ref. [35], e.g.,
Refs. [36–38]; vector potentialmethods, e.g., Refs. [39,40];
and divergence cleaning approaches, e.g., Refs. [41–46].
Constraint transport uses the induction equation and Stokes
theorem to integrate the magnetic field (see Ref. [47] for a
detailed discussion of constraint transport methods). In
vector potential methods, one exploits the fact that the
magnetic field can be expressed by a vector potential, which
is then evolved instead. For both methods, the divergence of
the magnetic field is by construction zero at round-off
accuracy. However, both methods require a staggered grid,
as the magnetic field components are usually defined on the
surface of a grid cell, which complicates implementation in
codes using mesh refinement. Also, vector potential meth-
ods do not guarantee magnetic flux conservation across the
refinement boundary when mesh refinement is employed.
We apply in BAM the hyperbolic divergence cleaning

approach following Refs. [42,44]. In this approach, a new
field variable is introduced to damp and advect the
divergence of the magnetic field. Hyperbolic divergence
cleaning of this type originated in Ref. [41] and was
introduced to NR in Ref. [42] for magnetized rigidly
rotating NSs. Reference [44] showed very promising
results for standard tests of special relativistic MHD, while
divergence cleaning encountered some preliminary issues
for GRMHD, so their focus was on constraint transport
for GRMHD.
Divergence cleaning offers the advantage of a relatively

simple implementation but has limitations in maintaining
an exact zero divergence of the magnetic field. In fact,

we expect to find an order of 10−3 for the divergence of
the magnetic field normalized to the magnetic field
strength [48]. On the other hand, divergence cleaning
is directly compatible with high-order schemes for fluxes,
and thus high-resolution shock capturing schemes can be
applied directly without large code changes. In codes with
constraint transport or vector potential, the magnetic field
needs to be interpolated from the cell surfaces to the cell
center, which is usually done linearly.
In the present work, the goal is to analyze how well

divergence cleaning actually performs compared to the
other methods. For this reason, we conduct a comprehen-
sive comparative analysis of our implementation with other,
well-established GRMHD codes using different treatments
for the divergence-free constraint: the GRaM-X code [36];
the SACRA variant of Kiuchi et al. [37] henceforth called
SACRAKK22; and the SPRITZ code [40]. The latter uses a
vector potential method, while the other two codes use
constraint transport. Such direct code comparisons are still
rare but are crucial to identify how dependent results are on
the method used and how serious errors due to small
divergences of the magnetic field are in the evolution also
in relation to other numerical inaccuracies. In Ref. [49], a
comparison for different open-source GRMHD codes
showed discrepancies in BNS merger scenarios, particu-
larly in the merger times and remnant lifetimes.
Our code comparison includes relativistic shock tests in

one, two, and three dimensions as well as BNS merger
simulations. While the basic structure of the codes is
relatively similar, we have to consider in the comparison
not only differences in the magnetic field treatment but also
in several other numerical implementations, such as high-
resolution shock capturing (HRSC) schemes or algorithms
for flux conservation at refinement boundaries. By using
higher and lower orders for the reconstruction methods of
fluid variables and different grid setups, we can estimate
their effects and try to separate them from differences
caused by the divergence-free constraint treatments. In fact,
the tests show that the latter are negligible compared to the
effects caused by using different reconstruction methods.
For the BNS merger simulation, we run the setup also at
three different resolutions to carefully analyze the reso-
lution effects and to determine whether the differences
become larger or smaller at higher resolutions.
The article is structured as follows. Section II summa-

rizes the relevant GRMHD evolutions equations and
describes the divergence-free constraint treatment and
new numerical methods implemented in the BAM code.
In Sec. III, we present a series of relativistic tests performed
with BAM and compare them with results of the GRMHD
codes GRaM-X, SACRAKK22, and SPRITZ. We then discuss
results of BNS merger simulations performed with BAM

and SACRAKK22 and compare them in Sec. IV. A summary of
our main results follows in Sec. V. In this article, we apply a
metric with ð−;þ;þ;þÞ signature and geometric units
with G ¼ c ¼ M⊙ ¼ 1, unless otherwise specified.
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II. RELEVANT EQUATIONS
AND NUMERICAL METHODS

We summarize in this section our new GRMHD imple-
mentation in the BAM code [25,26,50,51]. Below, we
briefly outline the framework of the NR code, including
spacetime evolution and grid structure. We then discuss the
relevant evolution equations and applied divergence-free
constraint treatment. Further, we highlight new numerical
techniques that we implemented in BAM to address the
increased complexity of the systems due to magnetic fields.

A. Spacetime evolution and grid structure

BAM evolves the gravitational field in time using the
methods-of-line approach and employing finite difference
stencils for spatial discretization. For this, Einstein’s field
equations are solved in a 3þ 1 decomposition, in which the
line element is

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

with α as the lapse function, βi as the shift vector, and γij as
the spatial part of the metric tensor gμν induced on a three-
dimensional, spatial hypersurface. The latter is given by

γαβ ¼ gαβ þ nαnβ; ð2Þ

where nα is the timelike, normal vector to the three-
dimensional hypersurface defined by

nμ ¼ 1

α
ð1;−βiÞ; nμ ¼ð−α;0;0;0Þ: ð3Þ

In this work, we apply a fourth-order Runge-Kutta
integration and a Courant-Friedrichs-Lewy coefficient of
0.25 in all BAM simulations. We use the Baumgarte-Shapiro
Shibata-Nakamura (BSSN) reformulation [52–54] for the
tests presented in Sec. III and the conformal Z4 (Z4c)
reformulation with constraint damping terms [55,56] for
the BNS simulations presented in Sec. IV, combined with
1+log slicing [57] and gamma-driver shift conditions [58].
The infrastructure of BAM includes adaptive mesh refine-

ment (AMR). The grid consists of a hierarchy of L
refinement levels labeled by l ¼ 0;…; L − 1 with one or
more Cartesian boxes. Using a 2∶1 refinement strategy, the
grid spacing on each level is given by hl ¼ h0=2l. For inner
refinement levels with l ≥ lmv, the Cartesian boxes can
move and adjust dynamically during the evolution to track
the compact objects. Thereby, each box consists of n grid
points per direction or respectively nmv grid points per
direction for inner, moving boxes. The points are cell
centered and staggered to prevent division by zero at the
origin. As a result, the grid points of the successive levels l
and lþ 1 do not coincide.
Furthermore, we apply in BAM the Berger-Oliger

scheme [59] for local time stepping (see Ref. [25]) and

the Berger-Colella scheme [60] to ensure flux conservation
across refinement boundaries (see Ref. [50]).

B. General relativistic magnetohydrodynamics

We use the Valencia formulation of the GRMHD equ-
ations [61–64]. We note that we apply the ideal GRMHD
approximation assuming infinite conductivity and zero
resistivity. Although a resistive approach would be more
accurate, it leads to more complications and stiff source
terms in the final evolution equations, which is why it is
rarely used in the literature; see Refs. [65–67] for some
examples.
In GRMHD, the full electromagnetic field is described

by the Faraday tensor,

Fμν ¼ nμEν − nνEμ þ ϵμνκλnκBλ; ð4Þ

where ϵμνκλ is the four-dimensional Levi-Civita symbol and
where Eν and Bν are, respectively, the electric and magnetic
field as measured by an Eulerian observer. Accordingly, we
can obtain the electric and magnetic field by the Faraday
tensor and its dual �Fμν ¼ 1

2
ϵμνκλFκλ via

Eμ ¼ Fμνnν Bμ ¼ �Fμνnν: ð5Þ

In the case of ideal GRMHD with infinite conductivity,
there is no charge separation, and the electric field
vanishes in the fluids rest frame. Thus, ideal GRMHD
corresponds to imposing uμFμν ¼ 0 where uμ is the fluid
4-velocity. Following this condition, the electric field can
be expressed by

Eν ¼ −
1

W
ϵμνκλnκBλuμ; ð6Þ

where W ¼ αu0 ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Lorentz factor. It is

therefore sufficient to evolve the magnetic field only,
which greatly simplifies the final evolution equations.
We introduce the magnetic 4-vector bν ¼ uμ�Fμν

describing the magnetic field for a comoving observer.
The components are given by

b0¼WBivi
α

; bi¼Bi

W
þb0ðαvi−βiÞ; ð7Þ

with vi ¼ ui=W þ βi=α as the spatial components of the
fluid velocity measured by an Eulerian observer.
The full stress-energy tensor for a perfect fluid is then

defined by

Tμν ¼ ðρhþ b2Þuμuν þ
�
pþ b2

2

�
gμν − bμbν; ð8Þ

with h ¼ 1þ ϵþ p=ρ being the specific enthalpy, ρ being
the rest-mass density, p being the pressure, and ϵ being the
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internal energy density. b2 ¼ bμbμ represents twice the
magnetic pressure with pmag ¼ b2=2. We note that in our
definition of the magnetic field a factor of 4π is absorbed.
The evolution equations for ideal GRMHD are derived

from the conservation laws of baryon number and energy
momentum,

∇μðρuμÞ¼ 0; ∇μTμν¼ 0; ð9Þ

as well as from the Maxwell’s equations,

∇μ
�Fμν ¼ 0; ð10Þ

with ∇μ being the covariant derivative. Furthermore, an
EOS is required to close the evolution system.
To write the evolution system in the form of a balance

law with

∂q
∂t

þ ∂Fi

∂xi
¼ s; ð11Þ

we define the primitive variables w ¼ ðρ; vi; ϵ; p; BiÞ and
the following conservative variables q [61,64]:

D ¼ ffiffiffi
γ

p
ρW; ð12Þ

Sj ¼
ffiffiffi
γ

p �ðρhþ b2ÞW2vj − αb0bj
�
; ð13Þ

τ ¼ ffiffiffi
γ

p �ðρhþ b2ÞW2 − ðpþ pmagÞ
− α2ðb0Þ2� −D; ð14Þ

B̂k ¼ ffiffiffi
γ

p
Bk; ð15Þ

where γ is the determinant of γij. Finally, we obtain the
following evolution equations in the form of Eq. (11):

q ¼ ½D; Sj; τ; B̂
k�; ð16Þ

Fi ¼ α

2
6664

Dṽi

Sjṽi þ ffiffiffi
γ

p ðpþ pmagÞδij − bjB̂
i=W

τṽi þ ffiffiffi
γ

p ðpþ pmagÞvi − αb0B̂i=W

B̂kṽi − B̂iṽk

3
7775; ð17Þ

s ¼ α
ffiffiffi
γ

p

2
666664

0

Tμν
�
∂gνj
∂xμ − Γλ

μνgλj
�

α
�
Tμ0 ∂ lnðαÞ

∂xμ − TμνΓ0
μν

�

0k

3
777775
; ð18Þ

with ṽi ¼ vi − βi=α and the Christoffel symbols Γλ
μν.

C. Divergence-free constraint treatment

While the system of equations derived above is generally
sufficient to perform simulations and evolve the magnetic
field in time, there is no guarantee that the time component
of Maxwell’s equations (10) is satisfied. Even when starting
from constraint-satisfying initial data, numerical errors can
accumulate, leading to magnetic monopoles and thus to
violations of Eq. (10). Approaches typically used to address
this issue include constraint transport schemes as imple-
mented in GRaM-X and SACRAKK22, vector potential methods
as implemented in SPRITZ, and divergence cleaning tech-
niques. We refer to Refs. [36,37,40] for implementations
of constraint transport and vector potential methods in
GRaM-X, SACRAKK22, and SPRITZ, respectively.
Our GRMHD implementation follows the hyperbolic

divergence cleaning scheme from Refs. [42,44]. In par-
ticular, a new field variable ζ is introduced to damp and
advect divergences of the magnetic field. We use a
modification of the Maxwell’s equations,

∇μð�Fμν þ gμνζÞ ¼ κnνζ; ð19Þ

with the damping rate κ. We set κ ¼ 1 in this work. For
ζ → 0, the equation reduces again to the Maxwell equa-
tions (10). From the time component of Eq. (19), we obtain
an evolution equation for ζ:

∂tζ þ ∂i

�
αffiffiffi
γ

p B̂i − ζβi
�

¼ ζð−κα − ∂iβ
iÞ þ B̂i

∂i

�
αffiffiffi
γ

p
�
: ð20Þ

The spatial part of Eq. (19) leads to the following
modification for the evolution equation of the magnetic
field:

∂tB̂
j þ ∂i½ðαvi − βiÞB̂j − αvjB̂i þ α

ffiffiffi
γ

p
γijζ�

¼ −B̂i
∂iβ

j þ ζ∂i
�
α

ffiffiffi
γ

p
γij

�
: ð21Þ

Although divergences of the magnetic field are damped,
this approach does not prevent the occurrence of constraint
violations, unlike the constraint transport or vector poten-
tial methods. This is an obvious disadvantage of the
method, leading to finite errors. Nonetheless, these errors
should converge to zero in a reliable and controlled manner
with the scheme employed, similar to the convergence of
other constraints, e.g., the Hamiltonian constraint. On the
other hand, the implementation is much simpler as there is
no staggering of the magnetic field necessary and available
high-order HRSC schemes can be directly employed.
While BAM already uses cell-centered fields for both the
metric and fluid variables, additional work would be
required since the magnetic field is defined at the cell
faces and not in the cell centers. In particular, the AMR
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restriction and prolongation algorithms would have to be
changed and would become more complex. For a magnetic
field defined at the cell surface, it would first have to be
interpolated to the cell centers. In most codes using
constraint transport and vector potential methods, this is
often done linearly, and thus the magnetic field relies on
second-order methods. For a cell-centered magnetic field,
however, we can use the same methods as for other
variables, typically using fourth-order schemes in our
implementation. Apart from questions of complexity and
convergence rate, a key question is how a given physical
system depends on numerical errors in the divergence
constraint, which we investigate in the numerical examples
that follow.

D. Numerical schemes

1. Conversion to primitive variables

To write the evolution equations in form of a balance
law, we use the conservative variables q as defined in
Eqs. (12)–(15) which are analytical functions of the
primitive variables w. Nevertheless, we need to know
the primitive variables, for instance, to compute the flux
terms Fi at each time step. However, the inversion of
Eqs. (12)–(15) to obtain the primitive variables is non-
trivial and must be solved numerically. We refer to
Ref. [68] for a summary and discussion of different
approaches commonly used in NR codes. The scheme
we use follows the approach implemented in the RePrimAnd

library [69]. More precisely, we use its master function
[see Eq. (44) of Ref. [69]] and use a Brent-Dekker
scheme to find its root. In the numerical tests as well
as in the BNS merger simulations, which we discuss in
Secs. III and IV, this method has proven to be robust and
provides reliable results.

2. Reconstruction

BAM contains HRSC methods for the treatment of shocks
and discontinuities in the hydrodynamic variables. To
evaluate the fluxes F at the individual grid cell interfaces
and to solve the Riemann problems, the variables have to be
reconstructed to the cell surfaces from either side. Since all
field variables are cell centered in our GRMHD implemen-
tation, we can use the same reconstruction schemes for the
magnetic field variables and ζ that are already implemented
in BAM. These include, for example, a third-order convex-
essentially-nonoscillatory (CENO3) scheme [70,71], a
fifth-order weighted-essentially-nonoscillatory (WENOZ)
scheme [72], or a fifth-order monotonicity-preserving
(MP5) scheme [73].
While higher-order schemes are generally more accurate

and less dissipative, they can exhibit stronger oscillations,
as we show and discuss in some relativistic shock tests in
Sec. III. Enhanced oscillations can lead to unphysical
values. For this reason, in the BNS merger simulations

with BAM presented in Sec. IV, we apply the following
procedure in lower-density regimes to ensure the physical
validity of reconstructed variables and, in particular, to
maintain the positivity of the density and pressure:

(i) We use a high-order reconstruction scheme to
compute the GRMHD variables at the interface
between grid cell i and iþ 1.

(ii) If the rest-mass density ρ drops below a threshold
density, we examine the oscillation of all variables
by comparing the reconstructed values at the inter-
face with the cell-centered ones of i and iþ 1.

(iii) Whenever one reconstructed variable is below or
above a value in the grid cells i and iþ 1, we change
to a low-order reconstruction and recompute the
values of all variables at the interface.

(iv) Finally, we examine the physical validity of the
reconstructed values by demanding a positive rest-
mass density and a positive pressure. If this is not
given, we use a linear reconstruction method.

For high-order reconstruction schemes, we typically use
WENOZ or MP5 as fifth-order methods or CENO3 as a
third-order method. We then fall back on a linear total
variation diminishing (TVD) method with “minmod” slope
limiter [74] as a low-order reconstruction scheme.

3. Riemann solver

For the GRMHD simulations with BAM in Secs. III and
IV, we use the Harten, Lax, and van Leer (HLL) Riemann
solver [75]. HLL uses a two-wave approximation via
estimates for the fastest left- and right-moving signal
speeds,

FHLL ¼ λmaxFðqþÞ − λminFðq−Þ
λmax − λmin

−
λmaxλmin

λmax − λmin
ðqþ − q−Þ; ð22Þ

where qþ and q− are the variables respectively recon-
structed from the left and right sides of the cell face and
FðqþÞ and Fðq−Þ are the according flux terms. The fastest
left- and right-moving signal speeds are determined by

λmax ¼ max ðλiðqþÞ; λiðq−Þ; 0Þ; ð23Þ

λmin ¼ min ðλiðqþÞ; λiðq−Þ; 0Þ; ð24Þ

with λi being the characteristic wave speeds.
While there are three characteristic modes in pure

general relativistic hydrodynamics, there are seven inde-
pendent characteristic waves in ideal GRMHD: the entropy
wave, two Alfven waves, and four magnetosonic waves
(two slow and two fast modes). For a detailed discussion of
the individual waves and derivation of the eigenvalues,
we refer to Ref. [64]. Since the exact wave speeds require
the solution of a nontrivial quartic equation for the
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magnetosonic waves, we use the commonly applied
approximation proposed in Ref. [76]. We note that by
using divergence cleaning two additional modes with
characteristic velocities equal to the speed of light must
be taken into account. For the magnetic field variables and
ζ, we therefore set λmax ¼ 1 and λmin ¼ −1 in the Riemann
solver.
In addition to HLL, we started to implement the

HLLD, a five-wave relativistic Riemann solver, following
Refs. [37,77], with minor changes to adapt to the diver-
gence cleaning formulation. The implementation is still in
the test phase. For this reason, we use it only in some of the
special relativistic tests presented in Sec. III.

4. Atmosphere

In grid-based NR simulations, the vacuum region sur-
rounding the compact objects is usually modeled with an
artificial atmosphere. The reason is that too-low rest-mass
densities are numerically very demanding and can lead to
errors in the recovery of the primitive variables and in
HRSC schemes. Therefore, we set in BAM a grid cell to
atmosphere when its density falls below a density threshold
ρthr [26]. We assume a cold, static atmosphere: the density
is reduced to a fraction of the star’s original central density
ρatm ¼ fatmρc, pressure and internal energy are determined
according to the zero temperature part of the EOS, and the
velocity of the fluid is set to zero. The magnetic field
remains unchanged. The density threshold is defined as the
fraction of the atmosphere value with ρthr ¼ fthrρatm to
avoid fluctuations around the density floor. In the BNS
merger simulations presented in Sec. IV, we use fatm ¼
10−11 and fthr ¼ 100.

III. SPECIAL RELATIVISTIC TESTS

For validating our new implementation, we have per-
formed a series of well-established special relativistic
magnetohydrodynamics tests in one, two, and three dimen-
sions. In particular, it is important to analyze the reliability
of the code with respect to shocks. In each test, we compare
our results and performance with the codes SPRITZ [40],
SACRAKK22 [37], and GRaM-X [36].

A. One-dimensional tests

Relativistic shock tube problems are simple, one-dimen-
sional tests that can be used to demonstrate a code’s ability
to capture a variety of different shock wave structures. By
setting different states of the fluid to the left and right of an
interface, a shock is generated and evolved. Among the
most popular and well-known shock tube problems in
magnetohydrodynamics are the Balsara tests [78]. We
summarize the initial data for the Balsara tests I–V in
Table I by specifying the respective fluid variables of the
left and right states. The tests are performed along the x axis
with the initial fluid discontinuity at x ¼ 0. In all Balsara

tests, an ideal-gas law EOS with p ¼ ðΓ − 1Þρϵ, where Γ is
the adiabatic constant, is assumed: in Balsara test I with
Γ ¼ 2.0 and in Balsara test II–V with Γ ¼ 5=3. We evolve
the shock waves until t ¼ 0.4 for Balsara tests I–IV and
t ¼ 0.55 for Balsara test V.
The results are shown in Fig. 1 for each Balsara test at

three different resolutions with 1000, 2000, and 4000 grid
points in x∈ ½−0.5; 0.5�. We use MP5 reconstruction. For
each test, we show the profiles of the density ρ and the By

component of the magnetic field at the respective final time.
Additionally, we show the exact solution of Ref. [79] as a
comparison. Overall, all tests are in good agreement. As
expected, higher resolutions increase the accuracy and are
better able to capture the shock fronts. This is particularly
evident in the Balsara tests II, III, and IV, where a high
resolution is required to capture the sharp edges of the
shock waves in ρ. Some oscillations are visible, e.g., in By

of Balsara tests III and IV, which we attribute to the use of a
reconstruction scheme with relatively high order.
To evaluate how our GRMHD implementation performs

in these tests with respect to other NR codes, we compare
the results obtained with BAM with those obtained with
SACRAKK22, GRaM-X, and SPRITZ. Figures 2 and 3 show,
respectively, the Balsara tests I and III for all four codes.
The resolution is set to 2000 grid points in x∈ ½−0.5; 0.5�.
Although we try to choose the technical configurations to
be rather similar, each working group using different codes
has preferred numerical methods that also differ in the
individual implementations. For instance, the HLLD
Riemann solver as described in Ref. [37] is used for
both tests by SACRAKK22. This solver is more advanced
than the HLL solver used by BAM, SPRITZ, and GRaM-X.
Furthermore, different methods are used to reconstruct
the fluid variables: while GRaM-X uses a fifth-order WENO5
scheme, SACRAKK22 applies a third-order piecewise
parabolic method (PPM). SPRITZ also employs PPM

TABLE I. Initial data for Balsara tests I–V. The shock tube tests
are performed along the x axis. We list for each test the left and
right states of the fluid: the rest-mass density ρ; the pressure p;
the velocity components vx, vy, and vz; and the magnetic field
components Bx, By, and Bz.

Balsara ρ p vx vy vz Bx By Bz

I Left 1.0 1.0 0.0 0.0 0.0 0.5 1.0 0.0
Right 0.125 0.1 0.0 0.0 0.0 0.5−1.0 0.0

II Left 1.0 30.0 0.0 0.0 0.0 5.0 6.0 6.0
Right 1.0 1.0 0.0 0.0 0.0 5.0 0.7 0.7

III Left 1.0 1000.0 0.0 0.0 0.0 10.0 7.0 7.0
Right 1.0 0.1 0.0 0.0 0.0 10.0 0.7 0.7

IV Left 1.0 0.1 0.999 0.0 0.0 10.0 7.0 7.0
Right 1.0 0.1 −0.999 0.0 0.0 10.0−7.0 −7.0

V Left 1.08 0.95 0.4 0.3 0.2 2.0 0.3 0.3
Right 1.0 1.0 −0.45 −0.2 0.2 2.0−0.7 0.5
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FIG. 1. Results of Balsara tests I to V (from top to bottom) for BAM. We compare the numerical results for three different resolutions
using 1000, 2000, and 4000 grid points with the exact solution of Ref. [79] (continuous black lines). Left and right columns show,
respectively, the profiles of density ρ and magnetic field component By at t ¼ 0.4 for Balsara tests I–IVand at t ¼ 0.55 for Balsara test V.
All tests are performed using the MP5 reconstruction method.
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reconstruction in Balsara test I. However, since Balsara test
III is more demanding due to the large jump in the initial
pressure, SPRITZ uses here a second-order TVD method
with the minmod limiter. To assess the differences caused
by different reconstruction algorithms, we show in Figs. 2
and 3 for BAM results using different schemes: with MP5
(as in Fig. 1) and with a linear TVD method (labeled as
“low order”).
All codes demonstrate their ability to reliably capture and

evolve the shock waves with small differences at the shock
fronts. For Balsara test III, GRaM-X, SACRAKK22, and BAM

(with MP5) seem to be superior in modeling the exact
solution, despite showing small oscillations.We explain this
by the usage of higher orders for the reconstruction. SPRITZ
uses a second-order scheme in this test. In fact, the solution
of BAM with linear TVD method perfectly matches the
results of SPRITZ when the same reconstruction method and
Riemann solver are used. Also in Balsara test I, the largest
differences appear for BAM using different reconstruction
methods. This suggests that the differences in Figs. 2 and 3
for the individual codes are due to different HRSC

algorithms rather than different methods for the magnetic
field or the divergence-free constraint treatments.

B. Two-dimensional tests

1. Cylindrical explosion

The first two-dimensional shock problem we perform in
this test series is the cylindrical explosion, also known as a
cylindrical blast wave, a standard problem for GRMHD
codes, e.g., Refs. [39,44,80,81]. We consider a dense
medium within a cylindrical radius of rin ¼ 0.8 in a less
dense ambient medium outside of rout ¼ 1. The denser
medium has an overpressure and therefore expands. The
initial values for density ρ and pressure p are ρin ¼ 10−2

and pin ¼ 1.0 for the inner medium and ρout ¼ 10−4 and
pout ¼ 3 × 10−5 for the outer medium. For the transition
region 0.8 ≤ r ≤ 1, we apply

ρ ¼ exp

�ðrout − rÞ ln ρin þ ðr − rinÞ ln ρout
rout − rin

�
; ð25Þ

FIG. 2. Comparison of Balsara test I performed with BAM,
SACRAKK22, SPRITZ, and GRaM-X. We show the profiles of ρ and By

at t ¼ 0.4 for one resolution using 2000 grid points and add the
exact solution as continuous black lines. We note that the codes
use different reconstruction schemes: GRaM-X uses a fifth-order
WENO5, SPRITZ uses a third-order PPM, and SACRAKK22

uses a third-order PPM scheme. For BAM, we show the results
once using MP5 and once using a linear TVD method (labeled as
“low order”).

FIG. 3. Comparison of Balsara test III performed with BAM,
SACRAKK22, SPRITZ, and GRaM-X. We show the profiles of ρ and By

at t ¼ 0.4 for one resolution using 2000 grid points and add the
exact solution as continuous black lines.We note that the codes use
different reconstruction schemes: GRaM-X uses a fifth-order
WENO5, SPRITZ uses a second-order TVD, and SACRAKK22

uses a third-order PPM scheme. For BAM, we show the results
once using MP5 and once using a linear TVD method (labeled
as “low order”).
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p ¼ exp

�ðrout − rÞ lnpin þ ðr − rinÞ lnpout

rout − rin

�
; ð26Þ

with cylindrical radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
in the x-y plane. In

this test, an ideal-gas EOS with adiabatic index Γ ¼ 4=3 is
used, and we set a uniformly directed magnetic field along
the x axis with Bx ¼ 0.1 and By ¼ Bz ¼ 0. We evolve this
configuration until t ¼ 4.
The resulting blast wave at the final time is presented

in Fig. 4. We show snapshots of ρ, p, Bx, and By in the
x-y plane of a simulation with BAM using CENO3
reconstruction and a grid consisting of two refinement
levels with 200 × 200 grid points each, covering a range of
½−6; 6� in the x and y directions. A fast forward shock and a
reverse shock bounding the inner region are observable.
While there is no exact solution available for this test, the
structures shown in our results are consistent with those in
Refs. [40,44,80].
For a more quantitative comparison of our results with

SPRITZ, SACRAKK22, and GRaM-X, we show one-dimensional
slices of the final blast wave for ρ, p, and Bx along the x and
y axes in Fig. 5. To avoid discrepancies due to different
algorithms for flux conservation at the refinement bounda-
ries, we use here a grid consisting of a single refinement
level with grid spacing Δx ¼ 0.03 and 400 × 400 points.
For BAM, we apply the reconstruction as described in
Sec. II D 2 with CENO3 as a higher-order scheme and
linear TVD as lower-order method, examining oscillations
in the fluid variables in regions with ρ < 2 × 10−4.
Additionally, we run BAM once using a pure linear TVD
method, labeled as “low order” in Fig. 5. Both GRaM-X and
SPRITZ apply here a second-order TVD scheme, while
SACRAKK22 results are shown for third-order PPM
reconstruction. Lacking a well-known analytical solution
for this test problem, we perform additionally one high-
resolution test run with BAM using 8000 × 8000 grid points,

i.e., a spacing of Δx ¼ 0.0015, using CENO3. Except for
SACRAKK22, which applies the HLLD Riemann solver, the
results are obtained with HLL. The results for SACRAKK22,
GRaM-X, and SPRITZ overlap with the ones obtained with
BAM using the linear TVD reconstruction method. The
higher-order reconstruction leads to stronger oscillations at

FIG. 4. Snapshots of ρ, p, Bx, and By for the cylindrical explosion test with BAM at the final time t ¼ 4. The white dashed lines mark
the one-dimensional profiles shown in Fig. 5.

FIG. 5. One-dimensional cuts along negative x axis and
positive y axis of the cylindrical explosion test with BAM, SPRITZ,
GRaM-X, and SACRAKK22. We show for BAM results with CENO3/
linear TVD and with linear TVD (labeled as “low order”)
reconstruction as well as high-resolution results using one
refinement level with 8000 × 8000 grid points (labeled as “high
res.”). In GRaM-X and SPRITZ, a second-order TVD is used, and in
SACRAKK22 a third-order PPM reconstruction is used.
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the shock fronts, which are mainly visible in the ρ and p
profiles along the y axis. Nevertheless, all codes converge
approximately to the same solution. As before in the
Balsara tests, we conclude that the differences are primarily
due to different HRSC schemes.

2. Magnetic rotor

As a second two-dimensional standard test, we consider
the magnetic rotor, originally described for classical mag-
netohydrodynamics [47,82] and later generalized to the
relativistic case [39,71]. For this test, we initialize a dense,
fast rotating fluid in the center of a nonrotating ambient
medium. The central rotating fluid is set inside an area with
cylindrical radius r ¼ 0.1 with ρin ¼ 10 and a uniform
angular velocity of Ω ¼ 9.95, resulting in a maximum
velocity of the fluid of vmax ¼ 0.995. The density of the
surrounding medium is ρout ¼ 1. We apply in this test an
ideal-gas EOS with Γ ¼ 5=3 and consider a uniform
pressure with p ¼ 1 and magnetic field with Bx ¼ 1,
and By ¼ Bz ¼ 0. The test is simulated until t ¼ 0.4.
We perform this test with BAM on a grid with two

refinement levels and 200 × 200 points covering the range
½−0.5; 0.5� for x and y using CENO3 reconstruction.
During the simulation, the rotation leads to a twisting of
the magnetic field lines in the central region, which in turn
slows down the rotor. Figure 6 presents maps of the density
ρ, the pressure p, and the magnetic field variables b2, which
can be considered as twice the magnetic pressure, and the
Bx component at the final time. The results are in good
agreement with those in Refs. [39,44,71].
Like for the cylindrical explosion, we compare our

results with SPRITZ, SACRAKK22, and GRaM-X for one-
dimensional slices at the final time. Figure 7 shows profiles
of ρ, p, and Bx along the x and y axes. As for the cylindrical
explosion, we choose for the comparison a grid without
mesh refinement consisting of 400 × 400 grid points with a
spacing of Δx ¼ 0.0025. The results with SACRAKK22 are

obtained with the HLLD Riemann solver in combination
with a third-order PPM reconstruction, while SPRITZ and
GRaM-X apply HLL and a second-order TVD reconstruction.
For BAM, we show the results using the HLLRiemann solver
oncewithCENO3 and oncewith linear TVD, labeled as “low
order” in Fig. 7. Again, we perform additionally one high-
resolution test run for BAM with HLL and CENO3 using
8000 × 8000 grid points and a spacing of Δx ¼ 0.000125.
Overall, the results of the individual codes agree well.

Mostly at the shock fronts, i.e., along x between −0.2 and
−0.35 and along y between 0.1 and 0.25, some codes show
stronger oscillations than others, which is strongly depend-
ing on the HRSC method used. The largest differences are
present for SACRAKK22 for the Bx profile. However, the
differences decrease for higher resolutions. As shown in
Fig. 8, with increasing resolution from Δx ¼ 0.0025 to
Δx ¼ 0.00125 up to Δx ¼ 0.000625, the Bx profile for
SACRAKK22 converges against the same solution. The shock
along the y axis is well captured even at the lowest
resolution, while the shock along the x axis needs a higher
resolution. Since the main difference between SACRAKK22

and the other codes is the Riemann solver, we attribute this
to the HLLD solver being more suitable for different types
of shock waves than for others.

3. Kelvin-Helmholz instability

The last two-dimensional special relativistic magneto-
hydrodynamics test we consider in this work addresses the
KHI as proposed in Refs. [77,83]. For this test, we are
focusing the comparison on the BAM and SACRAKK22 codes.
We use the same setup as in Ref. [37] and specify a tanh-
shaped velocity profile with

vx ¼ −vsh tanh ðy=aÞ: ð27Þ

Here, vsh determines the shear velocity, and a determines
the thickness of the shear layer. As in Ref. [37], we set

FIG. 6. Snapshots of ρ, p, Bx, and b2 for the magnetic rotor test with BAM at the final time t ¼ 0.4. The white dashed lines mark the
one-dimensional profiles shown in Fig. 7.
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vsh ¼ 0.25 and a ¼ 0.02. Further, we initialize a uniform
density of ρ ¼ 1 and pressure of p ¼ 20 and apply an ideal-
gas EOS with Γ ¼ 4=3. The components of the magnetic
field are Bx ¼ ffiffiffiffiffiffiffiffi

2σp
p

and By ¼ Bz ¼ 0. We set σ ¼ 0.01.
To disturb the shear layer, movement along the y

direction is introduced by

vy ¼ A0vsh sin ð2πxÞ exp ð−100y2Þ; ð28Þ

where A0 ¼ 10−4 determines the strength of the perturba-
tion. The vz component remains zero.
Figure 9 presents snapshots of the density ρ for BAM at

t ¼ 10.9 and for SACRAKK22 at t ¼ 10.0. In both cases, the
grid consists of one refinement level with 100 × 200 points
covering a range for x∈ ½−0.5; 0.5� and y∈ ½−1; 1�. We use
in BAM MP5 and in SACRAKK22 PPM reconstruction. Both
codes demonstrate their ability to resolve the vortex formed
in the KHI test. The observable structure is very similar,
although the vortex forms later for BAM than for SACRAKK22.
We attribute this to the usage of different Riemann solver:
BAM applies HLL, and SACRAKK22 applies HLLD. Similar
behavior for different solvers is also found in Ref. [37].
To be able to compare the simulations quantitatively, the

perturbed velocity difference Δvy ¼ 0.5ðvymax − vyminÞ is
shown as a function of time in Fig. 10. We show the results
for BAM additionally for using the HLLD solver that is still
under development. As in Ref. [37], Δvy grows exponen-
tially until nonlinear saturation is reached. The growth rate
is higher, and nonlinear saturation is reached faster for
SACRAKK22 and BAM using HLLD than for BAM using HLL,
whereas the saturation amplitude is about the same for all
cases. This demonstrates that the exponential growth for the
KHI test depends strongly on the Riemann solver used,
while the nonlinear saturation is only weakly dependent.

FIG. 7. One-dimensional cuts along negative x axis and
positive y axis of the magnetic rotor test with BAM, SPRITZ,
GRaM-X, and SACRAKK22. We show for BAM results with CENO3
and with linear TVD (labeled as “low order”) reconstruction as
well as high-resolution results using one refinement level with
8000 × 8000 grid points (labeled as “high res.”). In GRaM-X and
SPRITZ, a second-order TVD is used, and in SACRAKK22 a third-
order PPM reconstruction is used.

FIG. 8. One-dimensional cuts for Bx along negative x and
positive y axis of the magnetic rotor test with SACRAKK22 for
different resolutions: R1 with Δx ¼ 0.0025, R2 with
Δx ¼ 0.00125, and R3 with Δx ¼ 0.000625. We show addition-
ally the high resolution results for BAM with Δx ¼ 0.000125.

FIG. 9. Snapshots of ρ for the KHI test. The top panel shows the
vortex formed with BAM at t ¼ 10.9, and the bottom panel shows
the vortex formed with SACRAKK22 at t ¼ 10.0.
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C. Three-dimensional tests

1. Spherical explosion

As a demanding three-dimensional shock problem
for GRMHD codes, we perform the spherical explosion
test with BAM and SACRAKK22. We follow the description in
Ref. [40], which corresponds to a three-dimensional version

of the cylindrical explosion test in Sec. III B 1, where the
cylindrical radius is substituted for a spherical radius: a
dense medium with ρin ¼ 10−2 and pin ¼ 1.0 is set inside a
spherical radius of rin ¼ 0.8. The ambient medium outside
of rout ¼ 1 has ρout ¼ 10−4 and pout ¼ 3 × 10−5. In the
transition region between rin ¼ 0.8 and rout ¼ 1, we set

ρ ¼ exp

�ðrout − rÞ ln ρin þ ðr − rinÞ ln ρout
rout − rin

�
; ð29Þ

p ¼ exp

�ðrout − rÞ lnpin þ ðr − rinÞ lnpout

rout − rin

�
: ð30Þ

We apply again an ideal-gas EOS with Γ ¼ 4=3 and
initialize a uniform magnetic field with Bx ¼ By ¼ 0.0
and Bz ¼ 0.1. The results obtained with BAM are shown
in Fig. 11 at the final time t ¼ 4. For this test, we apply
CENO3 reconstruction and use a grid with two refinement
levels and 200 × 200 × 200 points ranging from ½−6; 6� in
each direction. The grid spacing is accordingly Δx ¼ 0.06
on l ¼ 0 and Δx ¼ 0.03 on l ¼ 1.
We compare in Fig. 12 our results for one-dimensional

profiles along the x and z axes at the final time for ρ, p, and
Bx. In this case, we focus on the comparison with
SACRAKK22 and choose a grid with two refinement levels
as already described above. We include in Fig. 12 lines for

FIG. 10. Time evolution for the perturbed velocity difference
Δvy ¼ ðvymax − vyminÞ=2 of the KHI test for BAM and SACRAKK22.
The vertical dashed lines correspond respectively to times for the
snapshots shown in Fig. 9.

FIG. 11. Snapshots of ρ, p, Bz, and Bx for the spherical explosion test with BAM at the final time t ¼ 4 in the x-z plane (upper panels)
and x-y plane (lower panels). The white dashed lines mark the one-dimensional profiles shown in Fig. 12.
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the profiles on level l ¼ 0 and l ¼ 1. Overall, the
differences between BAM and SACRAKK22 are small: in
the center, differences are of the order 10−8 for the rest-
mass density, 10−7 for the pressure, and 10−5 for the
magnetic field component Bx. The highest differences are
found at the shock front of the p profile along the x axis.
SACRAKK22 shows here larger values than BAM by a factor of
almost 10. However, these larger differences are only
outside the inner refinement level, where the resolution
is quite low.
This test also enables us to access the conservation of the

magnetic flux across refinement levels. By integrating the
magnetic flux over the refinement boundary on levels l ¼ 1
and l ¼ 0, we can compare the magnetic flux violations.
Figure 13 shows the time evolution of the magnetic flux
conservation across the positive z refinement boundary, i.e.,
the area with z ¼ 3, x∈ ½−3; 3�, and y∈ ½−3; 3�, and
presents the relative difference between

R
zþ Bl0dA andR

zþBl1dA. We present results for BAM, SACRAKK22,
and additionally for BAM using a lower resolution with
Δx ¼ 0.12 on l ¼ 0 and Δx ¼ 0.06 on l ¼ 1 (labeled as
“low res.”). While both codes use methods to correct fluxes
across refinement boundaries, it is evident that the magnetic
flux is better conserved in the simulation with SACRAKK22

than in the simulations with BAM. For SACRAKK22, the
violations are of the order of 10−14, i.e., at round-off
accuracy. For BAM, the difference between the fluxes is
initially zero but increases significantly once matter crosses
the refinement boundary at t ≈ 1.5, reaching orders of 10−5.
Using divergence cleaning in BAM, the evolution equation

for the magnetic field contains additional source terms.
Although BAM incorporates algorithms to correct the fluxes
across refinement boundaries, the source terms are not
matched and may marginally differ, resulting in slightly
different values. Figure 13 shows small improvements for
increased resolution.

IV. BINARY NEUTRON STAR
MERGER SIMULATIONS

A. Configurations

We perform simulations of BNS merger with magnetic
fields and compare the simulation results with SACRAKK22.
The publicly available, spectral code FUKA [84] is used to
construct initial data for an equal-mass BNS system with
gravitational masses mA ¼ mB ¼ 1.35M⊙ and baryonic
masses mb;A ¼ mb;B ¼ 1.49M⊙. As SACRAKK22 has an
implemented FUKA reader, the same initial data are used to
directly compare the evolution and results of the BNS
simulations. We set an initial coordinate separation of
∼28.4 km to ensure a short inspiral, focusing the simulation
on the merger and postmerger phases. The initial ADMmass
isMADM ¼ 2.673M⊙. For theEOS, a piecewise polytropic fit
of SLy [85] is applied following Ref. [86] with four pieces,
three for theNS core and one for the crust. To include thermal
effects, the zero-temperature EOS is extended by a thermal
pressure Pth ¼ ðΓth − 1Þρϵth [87], where ϵth is the thermal
part of the specific internal energy andwe set Γth ¼ 1.75. We
note that a slightly different value is used for the simulations
with SACRAKK22, namely, Γth ¼ 1.8.
We initialize a poloidal magnetic field for each star by a

vector potential,

Ax ¼ −ỹAbmaxðp − pcut; 0Þ2; ð31Þ

Ay ¼ x̃Abmaxðp − pcut; 0Þ2; ð32Þ

FIG. 12. One-dimensional cuts along negative x and positive z
axes of the spherical explosion test with BAM and SACRAKK22. We
show profiles for ρ, p, and Bz on the refinement levels of l ¼ 0
and l ¼ 1.

FIG. 13. Magnetic flux conservation across refinement levels
for the spherical explosion test with BAM, SACRAKK22, and
additionally with BAM for a lower resolution (labeled as “low
res.”). Magnetic fluxes are computed as integral over the zþ
refinement boundary, i.e., over the surface with z ¼ 3, x∈ ½−3; 3�,
and y∈ ½−3; 3�. We show the relative difference between the flux
computed on l ¼ 0 and l ¼ 1. We use here a first-order Savitzky-
Golay filter with the window length of five samples for visuali-
zation purposes.
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Az ¼ 0; ð33Þ

with x̃ ¼ x − xNS and ỹ ¼ y − yNS as distances from
the center of the NS along x and y, respectively. We set
Ab ¼ 1000 and pcut ¼ 0.004 × pmax, where pmax is the
maximum pressure in the NS at t ¼ 0 ms. In this way, we
obtain a maximum magnetic field strength of the order
∼1015 G inside the stars.
For the grid, we use in BAM eight refinement levels

where the three outermost are nonmoving and the five
innermost are moving levels. The simulations are per-
formed on three different resolutions: R1 with n ¼ 128
and nmv ¼ 64 grid points, R2 with n ¼ 256 and nmv ¼
128 grid points, and R3 with n ¼ 512 and nmv ¼ 256 grid
points in each direction. The grid spacing on the finest box
covering the NS are Δxmin ≈ 368.6 m for R1, Δxmin ≈
184.3 m for R2, and Δxmin ≈ 92.1 m for R3. We use the
HLL Riemann solver as described in Sec. II D 3 and the
reconstruction method as described in Sec. II D 2 with
MP5 as high-order reconstruction and CENO3 as low-
order reconstruction; i.e., we examine oscillations and fall
back to CENO3 or further to linear reconstruction if
necessary. We employ this only for low-density regions: in
the R1 and R2 simulations for ρ < 100 × ρatm and in the
R3 simulation for ρ < 106 × ρatm.

1

SACRAKK22 uses a similar grid configuration with 10
refinement levels and the same resolutions R1, R2, and
R3 as in BAM.However, the box sizes of the refinement levels
are larger as SACRAKK22 uses a fixedmesh refinement (FMR).
The half-size of the finest level is set to Lfin ¼ 35.5 km. For
the inner part of the finest refinement level, a constant
atmosphere is set with ρatm ¼ 103 g=cm3. Outside, a power-
law profile is applied with ρatm ¼ 103ðLfin=rÞ3 g=cm3.
SACRAKK22 introduces a restriction for high magnetic-
pressure regions with b2=ρ ≥ 103 by artificially suppressing
the specific momentum. The reason is that the numerical
accuracy is not good in those regions and, as a result, the
primitive recovery procedure often fails. However, in the
current work, in which the postmerger evolution is not
followed over a long timescale, we do not find such a highly
magnetized region. As in Sec. III, SACRAKK22 applies the
HLLD solver with third-order PPM reconstruction.

B. Evolution and magnetic field amplification

The evolved BNS system merges after about four orbits
and forms a hypermassive neutron star (HMNS), collapsing
into a black hole (BH) within a few tens of milliseconds.
The lifetime of the HMNS varies for different resolutions

because the HMNS just prior to the collapse is marginally
stable, and hence small perturbations including numerical
errors can trigger the collapse. In Fig. 14, we present
snapshots of the rest-mass density and the magnetic field
lines for the simulation with the highest resolution. The
snapshots show the two NSs at the beginning of the
simulation, at the merger (at about 9.6 ms), and the remnant
before and after the collapse. The initial magnetic dipole
field inside the NSs is clearly visible, as is the winding of
the magnetic field lines during the merger, forming a
helicoidal structure.
We show the time evolution for the magnetic energy and

maximum magnetic field strength in Fig. 15 for the R1, R2,
and R3 simulations with BAM. The magnetic energy is
defined by

Emag ¼
1

2

Z
u0

ffiffiffiffiffiffi
−g

p
b2d3x: ð34Þ

Additionally, the toroidal and poloidal contributions are
shown. We note that they are defined with respect to the
coordinate center, which is only approximately correct after
the merger assuming the remnant stays in the center. During
the merger, the magnetic field is amplified. We observe here
a strong resolution dependency: for R1, there is almost no
amplification during the merger itself. Only on later time-
scales of about 10 ms after the merger, the magnetic energy
and field strength rise. For R2, the maximummagnetic-field
strength doubles, and for R3, it increases tenfold, leading to
energies up to 1049 erg. The amplification is triggered by a
variety of instabilities. For example, the shear layer between
the two NS induces a KHI during the merger, which forms
vortices that twist the magnetic field and lead to exponential
growth; see, e.g., Refs. [29,30]. Another mechanism is
driven by large-scale differential rotation in the postmerger,
whichwinds up themagnetic field lines.While themagnetic
winding can already be resolved with lower resolutions,
higher resolutions are required to capture the KHI andMRI.
To fully capture these instabilities and the associated
magnetohydrodynamic turbulence, even higher resolutions
are required as illustrated in Refs. [29,30] (see also
Ref. [88]).
Although the magnetic field is initially purely poloidal,

the toroidal component becomes dominant after the merger
as shown in Fig. 15. For a qualitative analysis of the
magnetic field in the remnant system, Fig. 16 presents
snapshots in the x-z plane after the merger. We show the
magnetic field strength and the ratio between the toroidal
and poloidal components before and after the collapse for
the R3 simulation. Before the collapse, the magnetic field
in the polar region is already predominantly poloidal. This
becomes even clearer after the collapse. The disk of the
remnant has rather toroidal magnetic fields. After the
collapse, the magnetic field in the polar region decreases
from an order of magnitude of 1012 G to an order of

1At the highest resolution, we encountered issues when using
MP5 due to larger oscillations leading to unphysical behavior of
the matter outflow along the grid axes. This problem could be
solved with a higher threshold for the rest-mass density using our
scheme to detect enhanced oscillations and maintain the pos-
itivity of the reconstructed density and pressure.
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magnitude of 1011 G. The magnetic field is strongest inside
the disk with up to 1016 G.
Additionally, we show in Fig. 16 the divergence of the

magnetic field. As already mentioned, a limitation of
the implemented divergence cleaning method is that the
divergence of the magnetic field is not exactly zero and
cannot prevent the formation of magnetic monopoles. To
assess how large the divergence actually is, we present
maps of the remnant after the merger. It is largest in the
interior of the disk, where the magnetic field is also
strongest, with values in the order of 108 G=cm and
smallest in the polar regions with values in the order
of 103 G=cm.
One important point is to compare errors introduced by

the magnetic field divergence violation with other uncer-
tainties, e.g., due to finite resolution, flux computation, or
shock treatments. Following Gauss’s law, we can translate
the divergence into an error on the magnetic field within a
grid cell by multiplying with its volume dVi and dividing
by its surface area dSi. With Emag ∝ B2, we obtain an
estimate of the relative error on the magnetic energy by
normalizing with the magnetic field strength and squaring
the quantity. In Fig. 17, we compare this relative error of the
simulations using R1, R2, and R3 with the relative differ-
ence of the magnetic energy between resolution R2 and R3.
The error in the magnetic energy due to the magnetic field

FIG. 15. Time evolution of magnetic energy (upper panel) and
maximum magnetic field strength (lower panel) for the BNS
simulations with BAM with resolution R1, R2, and R3. The
dashed lines show the toroidal part and dotted lines show the
poloidal part of the magnetic energy. The magnetic energy is
extracted from refinement level l ¼ 1 and the maximum magnetic
field strength from l ¼ 6. The vertical lines show the respective
merger time (dashed) and collapse time (solid).

FIG. 14. Three-dimensional snapshots of the BNS simulation using BAM for the highest resolution. In the lower half with a cut at
z ¼ 0, the rest-mass density ρ is shown, while the magnetic field lines are shown in blue in the upper half.
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divergence increases during the merger. Overall, the rela-
tive error is between 10−8 and 10−4 and decreases with
higher resolution. The relative difference between the
magnetic energy at R2 and R3 resolution is about 10−2

and increases to 10 after the merger. We note that, in
agreement with other GRMHD simulations shown in
previous studies, even our highest resolution is well outside
the convergence regime, explaining the large differences
here. Nevertheless, this indicates that the errors due to the
divergence of the magnetic field when using the divergence
cleaning scheme are minor if not negligible compared to
the errors caused by other resolution-dependent effects.

C. Comparison

Finally, we compare the results of the BNS simulations
performed with BAM and SACRAKK22 in Figs. 18 and 19.
The time evolution of the total baryonic mass, ejecta mass,
and the central density inside the NSs is shown in Fig. 18
and the magnetic energy and maximum field is shown in
Fig. 19 for both codes at resolution R1 to R3. We use the
geodesic criterion for the ejecta. Accordingly, matter is
considered unbound if the condition ut < −1 with a
positive radial velocity vr > 0 is satisfied. We find that
the merger time in the simulations with SACRAKK22

is about 1.4 ms earlier than in the simulations with BAM.

FIG. 16. Magnetic field snapshots on the x-z plane after the merger of the BNS simulation with BAM for the highest resolution. We
show the ratio between the toroidal and poloidal component in the upper row, the absolute magnetic field strength in the middle row, and
the divergence of the magnetic field in the bottom row.
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This is due to the different gauge conditions used in
SACRAKK22. We discuss this in more details in the
Appendix.
The ejecta mass is considerably larger in the simulations

performed with SACRAKK22 than in the ones performed with
BAM, i.e., by a factor of ∼1.9 for resolution R1, ∼4.1 for
resolution R2, and ∼2.4 for resolution R3. Thereby, the
variation for different resolutions is greater for SACRAKK22

ranging between 0.015M⊙ and 0.022M⊙ than for BAM

ranging between 0.0055M⊙ and 0.0064M⊙. A possible
reason for the larger variations could be attributed to using
different reconstruction schemes with different orders in
SACRAKK22 and BAM. Another reason that could explain the
strong differences in ejecta mass is the treatment of the
vacuum region. As described in Sec. II D 4, BAM uses an
artificial atmosphere with fatm ¼ 10−11, resulting in atmos-
phere densities of the order of 104 g=cm3, while SACRAKK22

uses lower atmospheric values of at most 103 g=cm3, which
further decreases with increasing radius. This can lead to
differences in the ejecta as the outward flowing matter
travels more freely. The lower atmosphere densities can
therefore explain the higher ejecta masses in the simula-
tions with SACRAKK22.
The values for the final ejecta mass, disk mass, remnant

BH mass, and energy radiated by GWs evaluated at the
end of the simulations at t ≈ 50 ms are listed in Table II.

FIG. 17. Time evolution of the relative error on the magnetic
energy with BAM; cf. the main text. Upper panel: relative
difference on the magnetic energy between R2 and R3 simu-
lation. Lower panel: estimated relative error caused by the
violation of the magnetic monopole conservation. The divergence
is multiplied by the volume of a grid cell dVi and divided by its
surface area dSi to obtain the error on the magnetic field.
Normalizing this quantity by the magnetic field strength and
squaring it provides an estimate of the relative error in magnetic
energy caused by the divergence. The quantities are extracted
from level l ¼ 1. We use in the lower panel a first-order Savitzky-
Golay filter with the window length of 50 samples for visuali-
zation purposes.

FIG. 18. Comparison of total mass, ejecta mass, and central
rest-mass density in BNS simulations with BAM and SACRAKK22

for resolutions R1, R2, and R3. For the BAM results, total and
ejecta mass are extracted from refinement level l ¼ 1 and the
central rest-mass density from l ¼ 6.

FIG. 19. Comparison of magnetic energy and maximum
magnetic field strength in BNS simulations with BAM and
SACRAKK22 for resolutions R1, R2, and R3. For the BAM results,
the magnetic energy is extracted from refinement level l ¼ 1, and
the maximum magnetic field strength is extracted from l ¼ 6.
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Since resolution R1 is too low to give reliable results after
the BH formation, we stopped the simulation for SACRAKK22

after the collapse. For BAM, there was no BH formation
within the simulation period for R1. Results for R1
simulations are therefore not listed in Table II. Indeed,
the remnant BH masses and disk masses are more similar
for both codes. Comparing the values for R3 resolution,
SACRAKK22 predicts a slightly larger BH mass of ∼2.57M⊙
than BAM with ∼2.54M⊙. On the other hand, the disk
masses in the simulations with BAM are greater than the one
with SACRAKK22 by about∼0.005M⊙ for R2 and ∼0.002M⊙
for R3. In order to assess the error size in the conservation
of the energy, we compute ΔE ≔ MADM −MBH −Mdisk −
Meje − EGW. For R2 and R3 in BAM, we get respectively
ΔE ≈ 0.0504M⊙ and 0.0188M⊙, while for R2 and R3 in
SACRAKK22, we get ΔE ≈ 0.0121M⊙ and 0.0025M⊙. The
values of ΔE for R3 are much smaller than in R2 for both
codes, showing good convergent behavior. The error size
for R3 in SACRAKK22 is slightly smaller than that in BAM,
which we suggest comes from the different settings of the
artificial atmosphere influencing the measured Meje.
Considering the violation of the divergence constraint

for the magnetic field, we find larger violations for BAM

than for the SACRAKK22 simulations, caused by the
employed evolution schemes. The norm of the magnetic
field divergences normalized to the norm of the magnetic
field strength lies for BAM between 10−9 cm−1 and
5 × 10−8 cm−1 and for SACRAKK22 between 10−19 cm−1
and 2 × 10−18 cm−1.
In addition, we analyze the conservation of the magnetic

flux across refinement boundaries in Fig. 20. For this
purpose, we integrate the magnetic field across the refine-
ment boundaries at level l and its adjacent coarser level
l − 1 and compute the relative difference of the magnetic
flux similarly as in the spherical explosion test. We show
the results along the positive z direction for SACRAKK22 at
the refinement boundary of level l ¼ 10 and for BAM at
level l ¼ 6. The comparison here is not straightforward
since the refinement boxes for SACRAKK22’s FMR are much
larger than for BAM. The refinement boundary of the finest
level of SACRAKK22 lies between the refinement boundaries
of l ¼ 6 and l ¼ 5 of BAM, whereby the boxes move

dynamically within BAM. Nevertheless, it is visible that the
relative differences for BAM are orders of magnitude larger
than for SACRAKK22: for BAM at orders of 10−2 and 10−1,
whereas for SACRAKK22 at orders of 10−15 to 10−14, i.e.,
machine accuracy.
However, for comparing the magnetic energy and the

maximum field strength in Fig. 19, both codes predict
overall similar values for the respective resolutions. In the
R1 simulations, there is almost no amplification during the
merger in both cases. The magnetic field only increases
after the merger, which happens slightly earlier for
SACRAKK22 than for BAM, but with a similar slope in the
magnetic energy. With R2, both codes show an amplifi-
cation of the magnetic field during the merger up to
1048 erg. Despite the different merger time, the collapse
time coincides at this resolution for both codes, and the
lines for the magnetic energy almost overlap between 17
and 25 ms. Thereafter, SACRAKK22 predicts slightly higher
energies than BAM. In the highest-resolution simulation,
both codes reach a maximum magnetic field strength of
∼1016 G shortly after the merger. The simulation per-
formed with BAM reaches higher magnetic energies than
SACRAKK22 by a factor of 2, which could be caused by the
higher-order reconstruction in BAM that possibly resolves
small-scale effects slightly better. The collapse time is a few
milliseconds earlier with SACRAKK22 than with BAM. In
general, both codes predict similar magnetic energies and
field strengths at the end of the simulation.

TABLE II. Properties of the remnant system, from left to right:
code name, resolution, ejecta mass, disk mass, BH mass, and total
energy radiated by GWs EGW. The values are extracted at the end
of the simulation at t ≈ 50 ms.

Code Resolution
MBH
ðM⊙Þ

Mdisk
ðM⊙Þ

Meje

ðM⊙Þ
EGW
ðM⊙Þ

BAM R2 2.512 0.0264 0.0055 0.0787
BAM R3 2.543 0.0177 0.0064 0.0871

SACRAKK22 R2 2.560 0.0213 0.0225 0.0571
SACRAKK22 R3 2.569 0.0158 0.0152 0.0705

FIG. 20. Conservation of the magnetic flux across refinement
boundaries in BNS simulations with BAM and SACRAKK22 for
resolutions R1, R2, and R3. Magnetic fluxes are computed as
integral over the refinement boundary along the positive z
direction: for SACRAKK22 at the boundary of level l ¼ 10 and
for BAM at l ¼ 6. For visualization purposes, we use a first-order
Savitzky-Golay filter with window length of 10 samples for
SACRAKK22 simulations and 3 samples for BAM simulations.
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V. CONCLUSIONS

We successfully extended the infrastructure of the BAM

code for ideal GRMHD simulations employing a hyper-
bolic divergence cleaning scheme. Additionally, we com-
pared results for well-known special-relativistic tests
with established GRMHD codes: SPRITZ, GRaM-X, and
SACRAKK22. Overall, the tests showed good agreement
between all codes. In the one-dimensional Balsara test,
we observed only minor differences at the shock fronts,
which can be attributed to the fact that the reconstruction
methods used in the individual codes are either more
diffuse or more oscillatory. Similarly, we found minor
differences in the two-dimensional cylindrical explosion
and magnetic rotor tests, which we attribute to different
reconstruction schemes for the fluid variables. The largest
differences occur for SACRAKK22, whereby higher resolution
converges to the same results. The SACRAKK22 code is the
only one using the HLLD Riemann solver for these tests.
The other codes use the HLL solver, which could explain
the larger differences here. We also compare results for
the Kelvin-Helmholz instability test between BAM and
SACRAKK22. Both codes show that they are able to capture
the vortex. In SACRAKK22, the vortex forms earlier than in
BAM, and the perturbation grows faster. However, we show
that we achieve the same growth rate in BAM when using
the same Riemann solver as in SACRAKK22. In the three-
dimensional spherical explosion test, we compare the
conservation of magnetic flux over a refinement boundary
for BAM and SACRAKK22. Both codes apply schemes to
conserve the flux. Still, SACRAKK22 proves to be superior in
magnetic flux conservation. Applying divergence cleaning
in BAM leads to additional source terms in the evolution
equation for the magnetic field, which are not matched and
could explain the worse performance.
We performed first BNS simulations with our new BAM

implementation and compare our results with simulations
performed with SACRAKK22 using the same initial data.
Although we obtain large differences in ejecta mass, with
SACRAKK22 having more than twice the amount of ejecta
than BAM, both codes predict similar values for the
magnetic field. The amplification of the magnetic field
during the merger is stronger with increasing resolution, as
capturing KHI and MRI that trigger this amplification
requires high resolution. Note that none of the simulations
performed is in the convergent regime because resolving
the KHI requires an extremely high grid resolution,
which is not feasible for full three-dimensional GRMHD
simulations.
We demonstrate that our divergence cleaning implemen-

tation in BAM is able to perform reliable simulations,
including the magnetic field. The scheme is simpler than
other divergence-free treatments, but it does not prevent the
formation of magnetic monopoles, even though this cor-
responds to a constraint violation near zero. However, the
finite resolution error associated with other variables is

larger than the errors due to divergence cleaning in all cases
considered here, and all these errors should converge to
zero. Our results show that uncertainties stemming from
different methods for the fluxes, shock capturing methods,
or Riemann solvers are more severe.
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APPENDIX: COMPARISON GENERAL
RELATIVISTIC HYDRODYNAMIC

SIMULATIONS

For a benchmark, we run the BNS simulation with R1
once without magnetic field. From these simulations, we
analyze the different merger times between BAM and
SACRAKK22. Additionally, we run the same setup with
the SACRA code [89]. On the one hand, SACRAKK22

implements an original Shibata-Nakamura version of the
BSSN formulation [53] incorporating locally a Z4c pre-
scription for constraint propagation [56] and employs the
gauge condition based on the Nakamura variable Fi ≡
δjkγ̃ij;k [90]. On the other hand, the SACRA code implements
the BSSN formulation employing the gauge conditions in a
very similar way as BAM. Also, the AMR implementation
based on the box-in-box in SACRA follows BAM [25].
Therefore, in the SACRA run, we employ the same grid
configuration as BAM. In the SACRAKK22 run, the grid
configuration is a nested grid as described in the main
text. However, we change for SACRAKK22 the Z4c parameter
κ1 in order to mimic the SACRA setup: while the BNS
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simulations with magnetic fields use κ1 ¼ 0, we set in the
simulation without magnetic field κ1 ¼ 5 × 10−3.
We show the time evolution of the central rest-mass

density in Fig. 21. The results from the corresponding
simulations with magnetic fields are added as dashed lines.
As the overall dynamics of the inspiral and merger are not
affected by the magnetic field at this resolution, the time
evolutions of the central rest-mass density for BAM of the
simulation with and without magnetic fields agree. The
different gauge condition and κ1 values change the merger
time in the SACRAKK22 simulation, and indeed the
differences become smaller. Since the merger time is a
gauge-dependent quantity, a fair comparison between our
different codes with different settings is difficult. Therefore,
we focus our comparison in Sec. IV C on gauge-independent
quantities such as the ejecta mass, magnetic energy, and
magnetic field strength.
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