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We investigate the properties of postmerger remnants of binary neutron star mergers in the framework of
Damour–Esposito-Farese-type scalar-tensor theory of gravity with a massive scalar field by numerical
relativity simulation. It is found that the threshold mass for prompt collapse is raised in the presence of the
excited scalar field. Our simulation results also suggest the existence of a long-lived ϕ mode in
hypermassive neutron stars due to the presence of the massive scalar field that enhances the quasiradial
oscillation in the remnant. We investigate the descalarization condition in hypermassive neutron stars and
discover a distinctive signature in postmerger gravitational waves.
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I. INTRODUCTION

After the monumental event GW170817 [1–4], huge
effort has been devoted to modeling the physics involved in
the course of binary neutron star (BNS) mergers with the
hope of learning more about the nuclear equation of state
(EOS) of matters in extreme environment, exploring
r-process nucleosynthesis in the merger ejecta, and under-
standing the nonlinear nature of gravity. In particular,
through measuring the size of matter effects of the neutron
star (NS) members in the late inspiral stages for this event,
the stiffness of the EOS has been constrained to a narrow
range [5–9]. In addition, general relativity (GR) has proven
to accurately reproduce gravitational effects at least
up to the stage shortly before the merger. Considering
the Damour–Esposito-Farese type extension to GR (DEF
theory in what follows), this can be translated to an upper
bound on the coupling constant, which prohibits sponta-
neous scalarization in isolated NSs for massless scalar
fields [10] while admitting mild scalarization for massive
cases [11]. A plausible agent to push the known con-
straints further is the remnant system in the aftermath of the
merger, where higher-energy physics, for which details
have not been yet understood, can play an important role.
The evolution process of BNS remnants is also the key

determinant of multimessenger signals [12,13]: the proper-
ties of the electromagnetic (EM) signals depend strongly on
the mass and the composition of ejecta from the remnant,
including some ultrarelativistic jets [14], and postmerger
gravitational waves (GWs) encode information about BNS
parameters [15–17].
Joint detection of EM and GW signals provides a unique

avenue to learn the details of postmerger systems such as
the lifetime of the remnant NSs. The latter quantity is
sensitive to the EOS and underlying gravitational theory.
Although GR functions quite well throughout the inspiral
history of binaries, beyond-GR signatures may reveal
shortly before, during, and after the merger. For example,
the DEF theory can admit dynamical scalarization and/or
an enhanced scalar cloud in the parameter region corre-
sponding to GW170817 [11]. Additionally, the additional
scalar degree of freedom can lead to qualitative differences
in the postmerger waveform and impact the evolution of the
object produced in the merger. The goal here is thus to
extensively investigate the outcomes of BNS mergers in the
DEF theory, whereas magnetic, neutrino, and thermal
physics are not taken into account, as we focus on the
postmerger stage only for a short timescale.
In most BNS mergers, either a hypermassive neutron star

(HMNS, which is stabilized by a high degree of angular
momentum with a differential rotation [18–20]) is formed
and lives for some time before collapsing to a black hole,
or a prompt collapse occurs if the total mass of the BNS
exceeds a threshold Mthr. The threshold mass for the
prompt collapse is sensitive to the nuclear EOS [12,21].
On the other hand, it is expected to be rare that a supra-
massive NS is produced from a BNS since the total mass of
the system should be less than the maximum mass that is
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supportable by rigid rotation (Mc). An empirical relation
of such critical value is Mc ≃ 1.2MTOV, where MTOV is
the maximum mass of a spherical cold NS of a given EOS
[22–24], which then suggests Mc ≲ 2.6M⊙ (e.g., [25,26]).
Some population studies thus suggest that only ≲15% of
BNSs have a total mass lower than Mc [27] (see also [28]).
In the present work, we focus on scenarios with total mass
larger than Mc, i.e., a black holeþ torus will be formed
either shortly after the merger or after the rotational profile
is modified within the HMNS [29,30].
The presence of a torus surrounding the black hole plays

an essential role in determining the postmerger emissions,
such as short γ ray bursts [21,31] and kilonovae [32–35].
The amount of matter ejected to form the torus depends
strongly on the total mass and the nuclear EOS for
both prompt collapse and HMNS formation scenarios
[16,36–38] (see also [12] for a review). In the latter
scenario, the lifetime of HMNS τH is the main factor that
determines the torus mass, especially when the BNS is of
(nearly) equal mass, since the matter injection from the
central object ceases upon the formation of the black
hole [30].
It has been known that the value of τH for short-lived

HMNSs is determined primarily by the BNS’s total mass if
the system is moderately symmetric (e.g., [13,21,36,39–41])
in GR. Under the framework of the DEF theory, the lifetime
of HMNSs is also likely to be sensitive to the scalar
parameters, which are the strength of the coupling (B) of
the scalar field to the metric functions and the mass of the
scalar field (mϕ). In addition to their lifetime, the scalar
field can also exist in the HMNSs for a certain time,
τSð≤ τHÞ. Depending on τH, three possibilities for the out-
come are generically expected: (i) prompt collapse to a
black hole, (ii) short-lived HMNS formation, and (iii) long-
but finite-lived HMNS formation. In the presence of an
excited scalar field in the DEF theory, τS further divides
channel (iii) into (iii.a) long-lived scalarized HMNSs and
(iii.b) those descalarizing at some point. The two character-
istic timescales are dependent on the source and theory
parameters, namely, the total mass and mass ratio of the
BNSs, (Mtot, q), the EOS, B, and mϕ. The main goal of the
present study is to investigate how the two crucial time-
scales are modified by the scalar quantities by performing
numerical relativity simulations for equal-mass BNSs.
The paper is organized as follows. Section II briefly

introduces the DEF theory, the associated 3þ 1 decom-
position for numerical evolution, EOS employed, details of
the numerical setup, and parameters we consider in this
work. In Sec. III we discuss in detail the postmerger sce-
narios, including the formation of a long-lived HMNS, a
short-lived HMNS, and prompt collapse to a black hole,
and investigate the effect of the scalar field on the HMNS
lifetime and the threshold mass. The properties of the
remnant including dynamical ejecta, GW signal, and mass
of the final black hole and disk with potential quantities

relevant to observation are given in Sec. IV. Section V is
devoted to summary and discussion. Throughout this paper,
we employ the geometrical units c ¼ G� ¼ ℏ ¼ 1, where
c, G�, and ℏ are the speed of light, the “bare” gravitational
constant, and the reduced Planck constant, respectively. In
the DEF theory, the gravitational constant in the action is
G ¼ G�ϕ. Subscripts a; b; c;… running from 0 to 3 denote
the spacetime components, while i; j; k;… running from 1
to 3 denote the spatial components.

II. FORMALISM

In the so-called Jordan frame, the action of the DEF
theory reads [42]

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR −

ωðϕÞ
ϕ

∇aϕ∇aϕ − UðϕÞ
�

− Smatter; ð1Þ

whereR is the Ricci scalar associated with metric gab, ϕ is
the scalar field, Smatter is the action for matter, and ωðϕÞ is
chosen to have the form [43,44]

1

ωðϕÞ þ 3=2
¼ B lnϕ; ð2Þ

for a coupling constant B. For the latter use, we introduce
the auxiliary variable φ,

2 lnϕ ¼ φ2; ð3Þ

with respect to which the scalar potential is defined
as [11,45]

UðϕÞ ¼ 2m2
ϕφ

2ϕ2

B
; ð4Þ

where it can be seen that mϕ is the scalar mass when one
rewrites the potential into the so-called Einstein frame. We
assume that the asymptotic value of the scalar field φ0

vanishes at the spacial infinity, the same as [11,45].

A. Evolutionary equations

The associated equations for the metric and scalar fields
can be derived as (e.g., [11])

Gab¼8πϕ−1TabþωðϕÞϕ−2
�
ð∇aϕÞð∇bϕÞ−

1

2
gab∇cϕ∇cϕ

�

þϕ−1
�∇a∇bϕ−gab□gϕ

�
−
m2

ϕφ
2ϕ

B
gab; ð5aÞ

and

LAM, KUAN, SHIBATA, VAN AELST, and KIUCHI PHYS. REV. D 110, 104018 (2024)

104018-2



∇a∇aϕ ¼ 1

2ωðϕÞ þ 3

�
8πT −

dω
dϕ

ð∇cϕÞð∇cϕÞ þ 4m2
ϕϕ

2

B

�
¼ 2πφ2BT þ ϕ−1φ−2ð∇cϕÞð∇cϕÞ þm2

ϕφ
2ϕ2;

ð5bÞ

where Gab and ∇a are the Einstein tensor and covariant
derivative associated with gab, and Tab is the stress-energy
tensor with T ≔ Ta

a. Since we evolve φ rather than ϕ, we
rewrite Eq. (5b) in terms of φ as

∇a∇aφ ¼ 2πϕ−1BTφ − φð∇cφÞð∇cφÞ þm2
ϕφϕ; ð6Þ

which will be used to derive the evolution equation for the
auxiliary scalar field.
The evolution equations for gravitational and scalar

fields can be derived by 3þ 1 decomposition (see Ref. [43]
for the detailed derivation in the massless DEF case).
Following the Baumgarte-Shapiro-Shibata-Nakamura for-
malism [46,47], we can obtain the modified evolution
equations in the Cartesian coordinates as follows [45]:

ð∂t − βk∂kÞW ¼ 1

3
WðαK − ∂kβ

kÞ; ð7Þ

ð∂t − βk∂kÞγ̃ij ¼ −2αÃij þ γ̃ik∂jβ
k þ γ̃jk∂iβ

k −
2

3
γ̃ij∂kβ

k;

ð8Þ

ð∂t − βk∂kÞÃij ¼W2½αRij −DiDjα− 8παϕ−1Sij�TF

þ α

�
KÃij − 2ÃikÃj

k

�
þ Ãkj∂iβ

k

þ Ãki∂jβ
k −

2

3
Ãij∂kβ

k þ αÃijφΦ

− αW2½ωφ2DiφDjφþϕ−1DiDjϕ�TF; ð9Þ

ð∂t − βk∂kÞK ¼ 4παϕ−1ðSii þ ρhÞ þ αKijKij −DiDiα

þ αωφ2Φ2 −
�
3

2
þ 1

B

�
αm2

ϕφ
2ϕ

þ αϕ−1
�
DiDiϕ − KΦϕφ − 3πφ2BT

þ 3

2φ2ϕ

�
Φ2ϕ2φ2 −DkϕDkϕ

��
; ð10Þ

ð∂t − βk∂kÞΓ̃i ¼ 2α

�
Γ̃i
jkÃ

jk −
2

3
γ̃ij∂jK −

3

W
Ãij

∂jW

�

− 2Ãij
∂jα − 2αγ̃ij

�
8πϕ−1Jj − φKj

kDkφ

þ
�
1þ 2

B
−
φ2

2

�
ΦDjφþ φDjΦ

�

þ γ̃jk∂j∂kβ
i þ 1

3
γ̃ij∂j∂kβ

k

− γ̃klΓ̃j
kl∂jβ

i þ 2

3
γ̃jkΓ̃i

jk∂lβ
l; ð11Þ

ð∂t − βk∂kÞφ ¼ −αΦ; ð12Þ

ð∂t − βk∂kÞΦ ¼ −αDiDiφ − ðDiαÞDiφ − αφð∇aφÞ∇aφ

þ αKΦþ 2παϕ−1BTφþ αm2
ϕφϕ; ð13Þ

where α is the lapse function, βi is the shift vector,
Φ ≔ −na∇aφ is the “momentum” of the scalar field with
na ¼ ð1=α;−βi=αÞ, γij is the spatial metric with γ ≔
detðγijÞ, W ≔ γ−1=6, γ̃ij ≔ γ−1=3γij is the conformal spatial
metric, Γ̃i

jk is the Christoffel symbol of γ̃ij with Γ̃i ≔
−∂jγ̃ij, ðSijÞTF ≔ Sij − γijSkk=3 denotes the trace-free part
of the stress tensor Sij, Kij is the extrinsic curvature with
K ≔ Ki

i being its trace, Ãij ≔ W2ðKijÞTF is the conformal
traceless part of Kij, Sij ≔ γaiγ

b
jTab, ρh ≔ nanbTab, Ji ≔

−γainbTab are the spacetime decomposition of the stress-
energy tensor, Rij is the spatial Ricci tensor, and Di is the
covariant derivative with respect to the spatial metric. We
adopt the moving-puncture gauge [48,49] for the lapse
function and shift vector in the form

ð∂t − βj∂jÞα ¼ −2αK; ð14Þ

ð∂t − βj∂jÞβi ¼ ð3=4ÞBi; ð15Þ

ð∂t − βj∂jÞBi ¼ ð∂t − βj∂jÞΓ̃i − ηBBi; ð16Þ

where Bi is an auxiliary variable and ηB is a parameter
typically set to be ∼1=Mtot. The Hamiltonian and momen-
tum constraints can be found in Eqs. (15) and (16) of [11],
and will not be repeated here.
In the Jordan frame, the scalar field does not affect the

matter evolution explicitly, and thus, the equations of
motion for matter are the same as those in GR. We assume
a perfect fluid [i.e., Smatter ¼

R
d4x

ffiffiffiffiffiffi−gp
ρð1þ ϵÞ], for

which the stress-energy tensor is expressed as

Tab ¼ ρhuaub þ Pgab; ð17Þ
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and the conservation equations are given by

∇aTa
b ¼ 0: ð18Þ

Here ρ is the rest-mass density, P is the pressure, ϵ is the
specific internal energy, h ≔ 1þ ϵþ P=ρ is the specific
enthalpy, and ua is the four-velocity of the fluid. In addition
to Eq. (18), we solve the continuity equation,∇aðρuaÞ ¼ 0.

B. Equation of state

We adopt the piecewise-polytropic approximation [50]
for the barotropic EOS APR4 [51], MPA1 [52], and
H4 [53], which cover a range of stiffness favored by
GW170817 [5,9,54]. In addition, we adopt the following
description for the thermal pressure, which is associated
with the generation of shocks in the plunge and postmerger
stages:

P ¼ PcoldðρÞ þ Pthðρ; ϵÞ; ð19Þ

where the cold contribution to the pressure PcoldðρÞ is
dictated by the cold EOS, and the thermal contribution is
assumed to take the form [55]

Pth ¼ ðΓth − 1Þρϵth; ð20Þ

with the adiabatic index Γth for heated matter, and ϵth ¼
ϵ − ϵcold is the residual in the specific internal energy that is
not included in the cold EOS. In general, Γth depends on the
temperature and rest-mass density [56], while it has been
suggested that a (reasonable) constant approximation
suffices for investigating the fate of the merger remnant
[36,39,57]. We choose Γth ¼ 1.8 for our simulations.
Depending on the EOS and theory parameters, NSs in a
coalescing BNS can remain unscalarized up to merger, be
dynamically scalarized in the late inspiral, or be sponta-
neously scalarized at large separation [43,44,58–60].

C. Numerical setup

We implement the Z4c version of the evolution equations
by extending the code developed in [61], which was
parallelized to SACRA-MPI in [62]. SACRA-MPI employs a
box-in-box adaptive mesh refinement with 2∶1 refinement
and imposes equatorial mirror symmetry on the z ¼ 0
orbital plane. For the simulations shown in this article, each
NS is covered by four comoving finer concentric boxes,
with six coarser domains underneath containing both piles
of the finer domains. The size of the finest domain is chosen
to be about 1.3–1.5 times the NS radius. All domains are
covered by ð2N; 2N;NÞ grid points for ðx; y; zÞ with N
being an even number. We employ the finite-volume
scheme with a reflux prescription and Harten-Lax–Van
Leer contact Riemann solver, as that implemented in [63],
for hydrodynamics evolution to better conserve the total
baryon mass of the system.

For the outer boundary condition, we use the outgoing
boundary condition for metric variables following [46] and
specifically include an additional term for the scalar-field
variables Q ¼ ðφ;ΦÞ as

Qðt; rÞ ¼
�
1 −

Δr
r

�
Qðt − Δt; r − ΔrÞe−mϕΔr; ð21Þ

to capture the exponential decay tail due to the mass term
mϕ. Here, Δr ¼ cΔt with Δt as the time step in numerical
computation. We test the convergence of our code in three
different resolutions (see Appendix A). Unless otherwise
specified, we adopt N ¼ 94 as the standard resolution of
this paper, which corresponds to Δx ¼ 157 m in the finest
box. The details of the numerical setup can be found in
Table I in Appendix A.
The primary purpose of this paper is to investigate how

the scenarios of postmerger remnants depend on the binary
mass, B, mϕ, and the EOS while restricting ourselves to
equal-mass binaries. However, rather than specifying the
binary mass as the sum of the Arnowitt-Deser-Misner
(ADM) masses of the two NS members, we identify the
binary mass as the total “rest mass,”

Mb ≔
Z

ρut
ffiffiffiffiffiffi
−g

p
d3x; ð22Þ

contained in the binary. Taking into account the GW event
GW170817, scalar masses of mϕ ≳ 10−11 eV are favored
unless the coupling constant B is so small that the NSs in
the observed system are nonscalarized [11]. This condition
on mϕ is several orders of magnitude greater than the
constraint concluded from the pulsar timing observations,
which is mϕ ≳ 10−15 eV [64–66], while more rigorous
Bayesian inference studies are required to transform the
suggestion of mϕ ≳ 10−11 eV into a constraint (for strong
couplings). On the other hand, a mass of mϕ ≳ 2 ×
10−11 eV would significantly suppress scalarization in
NSs since the associated Compton length is shorter than
the stellar size. Aiming to study the scalar’s influence on
BNS mergers, we focus on cases where NSs can develop a
scalar cloud before and/or after merger, and thus the range
of interest ofmϕ is narrow. We will consider only one cano-
nical value for the scalar mass, viz. mϕ ¼ 1.33 × 10−11 eV
(ƛcomp ¼ 14.8 km), to quantitatively study how B influen-
ces the lifetimes of the HMNSs (τH) and scalar cloud (τS) in
postmerger systems.
For each EOS, we choose three different coupling

strengths B such that an isolated NS with Mb ¼ 1.60M⊙
would be either nonscalarized, marginally scalarized,
or spontaneously scalarized as illustrated in Fig. 1. We
explore a wide range of NS baryon masses spanning from
1.60M⊙ to 1.90M⊙ as summarized in Appendix B with
Tables III–V for APR4, MPA1, and H4 EOS, respectively,
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to investigate different outcomes of postmerger remnants.
Each model is referred to in the manner of the example:
MPA1_B16.5_M1.70 corresponds to the equal-mass
binary with the MPA1 EOS, B ¼ 16.5, and Mb ¼
1.70M⊙ for an individual NS. Since the coupling strengths
considered are not very strong, the ADM mass (MADM) of
the isolated NS deviates only slightly (≲10−3M⊙) from the
star having the same baryon mass in GR.
We construct the BNS initial data in a quasiequilibrium

state by generalizing the public spectral code FUKA [67] to
the massive DEF theory. The BNS configurations are
prepared with an initial separation of 44.31 km, with which
the BNS models experience 3–5 orbits before merger. Note
that, in our numerical simulation, the virial error of the
initial data defined by the relative difference of ADM mass
and Komar mass is always smaller than 0.04%.We refer the
readers to Ref. [11] for the detailed initial data formulation
for constructing quasiequilibrium states of BNS in the
massive DEF theory.

D. Gravitational wave extraction

The information of GWs emitted is obtained by
extracting the complex Weyl scalar Ψ4 in the local wave
zone (see, e.g., [61,62,68] for details). The Weyl scalar Ψ4

is decomposed into ðl; mÞ modes with spin-weighted
harmonics as

Ψ4ðtretÞ ¼
X
l;m

Ψl;m
4 ðtretÞ−2Ylmðθ;ϕÞ; ð23Þ

where the retarded time tret is defined by [62,69]

tret ≔ t −D − 2Minf ln

�
D

2Minf
− 1

�
: ð24Þ

Here, Minf ≔ M1;ADM þM2;ADM is the total ADM mass of
the isolated NSs separated at spatial infinity and D is the
areal radius of the extraction sphere approximated as [62]

D ≈ R0

�
1þMinf

2R0

�
2

; ð25Þ

by assuming isotropic coordinates of nonrotating black
holes in the wave zone with R0 being the corresponding
coordinate radius. We evaluate Ψ4 at the finite radius
R0 ¼ 480M⊙ ≈ 709 km and then analytically extrapolate
the waveform toward null infinity by Nakano’s method
[70–72]. We shall focus only on the dominant ðl; jmjÞ ¼
ð2; 2Þ mode in this work because the contribution from
other higher-multipole modes is minor for the equal-mass
BNSs. The harmonic mode of GWs can be evaluated by
integrating Ψl;m

4 twice in time given by

hl;mðtretÞ ¼ hl;mþ ðtretÞ − ihl;m× ðtretÞ

¼ −
Z

tret
dt0

Z
t0

Ψl;m
4 ðt00Þdt00

¼
Z

df0
Ψ̃l;m

4 ðf0Þ
ð2πmaxðf0; fcutÞÞ2

e2πif
0tret ; ð26Þ

where the last line shows the fixed frequency method
of [73] we employed for the calculation and fcut is the
cutoff frequency set to be 0.8MinfΩ0=ð2πÞ, with Ω0 being
the initial angular velocity of the binary obtained from the
initial data. The merger time tmerge is defined at the time of

the peak GW strain h2;2 ≔ h2;2þ − ih2;2× , where h2;2þ and h2;2×

are the plus and cross polarization of l ¼ m ¼ 2 GWs,
respectively. We also calculate the instantaneous frequency
fGW of the (2, 2) mode by

fGW ¼ 1

2π
Im

�
h�2;2ḣ2;2

jh2;2j2
�
; ð27Þ

where the asterisk and dot symbols denote the complex
conjugate and the time derivative, respectively. The interval
between tmerge and the apparent horizon formation time tAH
defines the lifetime of HMNSs (i.e., τH ≔ tAH − tmerge), and
the lifetime of the scalar cloud τS is determined by the
interval between the merger and the descalarization in the
HMNSs (if at all).
We obtain the amplitude of the Fourier spectrum of GWs

following [16,36]

h̃ðfÞ2;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jh̃2;2þ ðfÞj2 þ jh̃2;2× ðfÞj2

2

s
; ð28Þ

from the Fourier transforms of plus h̃2;2þ ðfÞ and cross
h̃2;2× ðfÞ polarization of GWs with f being the GW’s

FIG. 1. Critical baryon rest mass of NSs that are marginally
scalarized when isolated as functions of the coupling constant B
for mϕ ¼ 1.33 × 10−11 eV. The plus markers indicate the cou-
pling strength which we choose to generate the mass sequences
for each EOS.
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frequency. The dimensionless effective amplitude heffðfÞ of
GWs is defined by

heffðfÞ ≔ fh̃2;2ðfÞ: ð29Þ

The propagation group velocity of scalar waves (vg)
is stretched by mϕ, and the dispersion relation is given
by [11,74]

vg ¼ ð1þm2
ϕƛ

2
gwÞ−1=2; ð30Þ

with ƛgw being the wavelength of the scalar wave. For
ƛgw ≫ ƛcomp, the speed of scalar waves is much lower than
the speed of light, thus, essentially prohibiting the emission
of scalar waves [75,76]. In this work, we consider a zero
asymptotic value for the scalar field (φ0 ¼ 0), and con-
sequently, scalar waves do not couple to the interferometer,
leaving no extra mode such as the breathing and longitude
modes in emitted GWs.

III. POSTMERGER SCENARIOS

In GR, the final fate of the postmerger remnant of BNSs
depends primarily on the total mass and the EOS, while the
mass of dynamical ejecta and the torus formed around the
postmerger black hole (if at all) should be also sensitive to
the mass ratio [38,77,78]. In terms of the HMNS’s lifetime,
we categorize the final outcome of BNS mergers into three
different scenarios:

(i) prompt collapse to black hole,
(ii) short-lived HMNS formation ðτH < 10 msÞ,
(iii) long-lived HMNS formation ðτH > 10 msÞ,

where the criteria of 10 ms is a subjective choice. On top of
the above categorization for BNS remnants, the presence
of a scalar field introduces more variety in the final states
(see Fig. 2).
All the possible outcomes are showcased in Fig. 3, where

the evolution of the relative difference of maximum rest-
mass density

δρmax ≔ ρmaxðtÞ=ρmaxðt ¼ 0Þ − 1 ð31Þ

and the maximum scalar-field amplitude1

φamp ≔ sgnðφÞmaxðjφjÞ ð32Þ

are plotted for four selected models with MPA1 EOS and
scalar-field parameters ðB;mϕÞ ¼ ð16; 1.33 × 10−11 eVÞ.

We briefly summarize all the possible scenarios of the
scalar-field evolution according to Fig. 3 and leave the in-
depth discussion to the following sections. In the premerger
phase, the scalar field can be excited if the NSs are compact
enough to undergo spontaneous scalarization (blue and
yellow lines) or dynamical scalarization (green line).
Otherwise, the scalar field remains insignificant up to
merger (red line). As we will show in Sec. III C, the
scalarization history of the BNS plays an important role in
the prompt collapse threshold mass. In the postmerger
phase, depending on the final mass of the HMNS, it can
either be spontaneously scalarized (red) or “descalarize”
after a certain time to form an oscillating scalar cloud with
appreciable amplitude. In the case where black holes are
formed (blue and yellow), the scalar field does not dissipate
away entirely, and an oscillating scalar cloud forms from
the fossil scalar field instead. Although we will discuss
different outcomes of BNS mergers based on the lifetimes
of the HMNS and the scalar cloud, it should be noted that
these timescales are not to be taken as exact for simulated

FIG. 2. Summary of all the models in this work. The circle,
triangle, and black star markers represent the final fate of
postmerger remnant as long-lived HMNSs, short-lived HMNSs,
and prompt collapse to a black hole, respectively. The filled
(respectively, hollow) markers indicate the presence (respectively,
absence) of spontaneous scalarization for isolated NS, while the
plus markers indicate the occurrence of dynamical scalarization.
The models that undergo descalarization are marked in the
red color.

1Since the change of sign of φ → −φ does not alter the
evolution of the system, we adopt the convention of negative
value of φ when spontaneous scalarization happens. Therefore,
we flip the sign of φ in the plots if positive φ arises when the
HMNS is spontaneously scalarized unless φ experiences change
of sign in the scalarization/descalarization process.
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models. In fact, it is impossible to determine accurately the
lifetimes in the numerical simulation in practice, since the
HMNS after the merger is close to a marginally stable state,
and any small perturbation (including numerical errors)
will alter its collapse time; thus, the dynamics is extremely
sensitive to the grid resolution. Thus, the values can be
considered as an approximate estimate and the scenarios
characterized by them are still qualitatively robust.
It can be noticed that the scalar field φamp experiences

∼10% perturbation for scalarized binaries in the inspiral
phase, which indicates that the scalar field has not yet
perfectly reached the quasiequilibrium state. One possible
reason is the insufficient grid resolution to resolve the
exponential falloff tail of the scalar field in our initial data
solver. The other possible reason is that the zero scalar-field
momentum Φ ¼ 0 condition employed in our initial data
formulation [11] could possibly induce some initial per-
turbation in the system.While any initial perturbation of the
scalar field in the massless DEF theory [43,44] can freely
propagate out and dissipate quickly, in the presence of
nonzero scalar mass mϕ, perturbations with a wavelength
smaller than the Compton wavelength will be trapped and
remain in the vicinity of the system. Nonetheless, the initial
perturbation of the rest-mass density δρmax is less than 1%,
and hence, we believe that the effect of the scalar-field
perturbation is minor.

A. Long-lived neutron star remnant

We first recap the key criterion for spontaneous scala-
rization in a single star following [43,45,79], which is also

useful in explaining the evolution of the scalar field in the
HMNS. The onset of scalarization can be approximately
described by taking the weak field limit of Eq. (6) with an
average value of T within the star radius R, T̄, as

ðΔ −m2
ϕÞφ ¼ 2πBT̄φ; ð33Þ

where Δ is the flat Laplacian. Denoting k2 ≔
−ð2πBT̄ þm2

ϕÞ, the conditions for scalarization are given
as k2 > 0 and kR → π=2 for R the NS’s radius [43,45]. For
the case of B > 0 and assuming that the relativistic
corrections to matter are small (i.e., T̄ ∼ −ρ), scalarization
is likely to happen if T̄ ∼ −ρ < Tcrit ≔ −m2

ϕ=ð2πBÞ. How-
ever, scalarization is unlikely to occur if a bulk of the HMNS’s
interior is ultrarelativistic with T ¼ −ρhþ 4P > Tcrit. The
critical value of T̄ depends on the actual profile of the star,
while Tcrit still serves as a good indicator for understanding
the scalarization criterion (see below).
Shortly after the merger, an ultrarelativistic region can be

formed in the HMNS for some cases, where the descala-
rization soon ensues. However, the core of a natal HMNS
may not be in an ultrarelativistic regime even though
possessing a much higher central density than that of the
progenitors. In this case, scalarization may occur in the
HMNS even if the progenitors remain unscalarized up to
the merger (i.e., for a not-extremely-large value of B).
However, the subsequent mass accretion may lead to the
emergence of a region with T̄ > Tcrit, resulting in a
descalarization. In the event of a marginal descalarization,
the scalar cloud trapped by the central object oscillates with
a larger amplitude than the case where the condition of
T̄ > Tcrit is conspicuously satisfied.
Before delineating different scalarization and de-

scalarization scenarios for long-lived HMNSs in the fol-
lowing subsections, we demonstrate each channel by a
representative model in Fig. 4, in which the snapshots
of rest-mass density (left column of each panel) and
scalar field (right column of each panel) on the equa-
torial plane in the postmerger phase are displayed. For
MPA1_B16.0_M1.60, the HMNS never reaches the
ultrarelativistic regime and remains scalarized until the end
of the simulation, while the descalarization upon the crite-
rion is met fully and marginally for MPA1_B17.0_M1.80
and MPA1_B16.5_M1.70, respectively.

1. Long-lived scalarized HMNS

Figure 5 shows the evolution of the maximum rest-mass
density ρmax and scalar-field amplitude φamp for selected
models that yield a long-lived HMNS for three different
EOSs. We first focus on the cases for which the HMNS
confidently (solid) and marginally (dashed; present
only for the H4 EOS) remains spontaneous scalarized at
t − tmerge ¼ 10 ms. Some models with small values of B do
not exhibit dynamical scalarization during the inspiral

FIG. 3. Evolution of the relative difference of maximum
rest-mass density δρmax ≔ ρmaxðtÞ=ρmaxðt ¼ 0Þ − 1 (top) and of
the maximum scalar-field amplitude φamp (bottom) with different
initial baryon rest mass of individual NSs with MPA1 EOS.
The scalar-field parameters are set as B ¼ 16 and mϕ ¼
1.33 × 10−11 eV.
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phase, but scalarization can still occur in the postmerger
phase (e.g., MPA1_B16.0_M1.60), because the HMNS
has a higher compactness compared to the corresponding
isolated NS, so that even for a small value of B,

ffiffiffiffiffiffiffi
−T

p
R ∼ffiffiffi

ρ
p

R ∼
ffiffiffiffiffiffiffiffiffiffi
M=R

p
in the resulting HMNS can be high enough

to fulfill the criterion of spontaneous scalarization.
Generally, the scalar field for scalarized HMNSs first

gets amplified during merger and then settles down to a
certain saturation level (jφj ∼ 0.5–0.7 in our cases) in a time
interval of ∼2 ms. The exact timescale depends on the
coupling strength B; for example, the scalar field for
H4_B17.5_M1.60 takes ≈1.7 ms to grow to the peak
value after merger, while for H4_B17.0_M1.60 it takes
≈2.1 ms. This illustrates that it typically takes longer for
the scalar field to grow to saturation for a weaker coupling,
in line with the previous numerical studies where massless
scalar field is considered [43].
The enhancement or activation of the scalar field during

merger introduces an oscillation for it in the HMNS.
Because of the nonzero mass of the scalar field, this
oscillation does not dissipate quickly in contrast to the
massless case [43], but instead gets trapped and persists
for a timescale longer than 10 ms after the onset of merger
with appreciable oscillation amplitude ≲0.1 for φ. The
oscillation frequency of the scalar field coincides with the

one for the rest-mass density at around 1 kHz. The mode
associated with this pattern is believed to attribute to the
radial ϕmode since it falls in the band of a radial mode [80]
of scalarized HMNSs.
For H4_B17.0_M1.60 (blue solid line), H4_B17.5_

M1.64 (green dashed), and H4_B18.0_M1.66 (red
dashed) in the bottom panel of Fig. 5, we find a unique
feature. For these models, the scalar fields go to zero at
∼10 ms after the onset of merger, and a black hole forms
very soon afterward, as we can see that the rest-mass
density is also growing rapidly. The descalarization
shortly prior to the black hole formation is not triggered
by the criterion T̄ > Tcrit, but rather should be attributed to
the no-hair theorem in the DEF theory (e.g., [81] and the
references therein).

2. Descalarized HMNS

In this section, we pay attention to the models for which
the long-lived HMNSs undergo descalarization that is
induced by the secular contraction of the HMNS due to
the GWemission and angular momentum redistribution via
gravitational torque associated with the nonaxisymmetric
structure of the merger remnant.
The dotted curves in Fig. 5 show the evolution of models

that descalarize over a dynamical timescale after the onset

FIG. 4. Snapshots of the rest-mass density ρ (left column of each panel) and scalar field φ (right column of each panel) on the
equatorial plane for the cases of long-lived HMNS formation with the MPA1 EOS. The baryon massMb of each NS in units ofM⊙ and
coupling strength B are ðMb;BÞ ¼ ð1.60; 16.0Þ (left), ðMb;BÞ ¼ ð1.80; 17.0Þ (middle), ðMb;BÞ ¼ ð1.70; 16.5Þ (right). The time for
each snapshot is indicated in the red boxes with time measured from the onset of merger.
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of merger. Taking MPA1_B16.0_M1.82 as an example
(blue dotted curve in the middle panel), we find that the
scalar field promptly goes to zero when the maximum
density rises to become ultrarelativistic during the post-
merger evolution. However, the scalar field does not stop at
zero, but instead forms an oscillating scalar cloud around
the HMNS with an appreciable amplitude of ≲0.1, which

differs from the massless case in which the scalar field is
completely turned off after descalarization [43]. A note is
necessary here to say that the term “descalarized HMNS”
does not mean the scalar field is totally dissipated, but
rather, it represents an HMNS with a long-lived oscillating
scalar field with the zero time-averaged value hφampi ¼ 0.
Owing to the residue scalar cloud, it is nontrivial to
determine definitely the time when descalarization hap-
pens, and we simply define the descalarization time τS as
the time of the first zero crossing of the scalar-field
amplitude φamp during the postmerger phase.
To further understand the condition of the descalariza-

tion, we show the evolution of the scalar-field amplitude
φamp together with T at the maximum density TðρmaxÞ in
Fig. 6 for model MPA1_B16.0_M1.82 for which the
prompt descalarization happens during the postmerger
phase with τS ¼ 0.60 ms. Here, TðρmaxÞ in units of the
nuclear saturation density ρnuc (¼ 2 × 1014 g=cm3) is
plotted. In the inspiral phase, the NSs are initially sponta-
neously scalarized which is consistent with the scalariza-
tion condition TðρmaxÞ < Tcrit as the central value of
T ≈ −2ρnuc. Once the NSs merge, TðρmaxÞ raises rapidly
due to the increase in maximum density and thermal
contribution from shock heating and immediately flips
sign to become positive. Soon after the scalar field
crosses Tcrit, the descalarization occurs. Note that
TðρmaxÞ fluctuates around Tcrit for a few times due to the
radial oscillation, temporally satisfying the scalarization

FIG. 5. Evolution of the maximum rest-mass density ρmax and
scalar-field amplitude φamp for the long-lived HMNS formation
with APR4 (top), MPA1 (middle), and H4 (bottom) EOS. The
solid and dashed curves correspond to spontaneously scalarized
HMNS formation, and the dotted curves correspond to models in
which descalarization happens within 10 ms after the merger.

FIG. 6. For a prompt descalarization scenario
MPA1_B16.0_M1.82, left panels show the evolution of the
scalar-field amplitude φamp (top left) and trace of stress-energy
momentum tensor T ≔ Ta

a (bottom left) in units of the nuclear
saturation density ρnuc ¼ 2 × 1014 g=cm3 at maximum density
ρmax point. The blue dotted vertical line and the black dashed
horizontal line show the descalarization time τS and the critical
value Tcrit, respectively. The blue stars indicate the time of the
snapshots of φ (top right) and T (bottom right) on equatorial (x-y)
and vertical (x-z) planes.
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condition (T < Tcrit) during those cycles. As it turns out,
the scalar field is likely to temporarily reach a high value, as
in spontaneous scalarization, and hence introduces large
oscillation after τS.
As TðρmaxÞ shifts further away from Tcrit, the scalar field

quickly damps, leaving an oscillating scalar cloud around
the HMNS. In contrast to the ϕ mode in spherical NSs in
the massless DEF theory, for which the damping time of φ
is ≲1 ms [80], the residual scalar cloud persists for more
than 10 ms in the massive case, forming a long-lived
quasinormal mode with appreciable amplitude ∼Oð0.1Þ.
Such a long-lived ϕ mode observed in both scalarized and
descalarized cases is consistent with the results of [82],
which suggests that the presence of mass term mϕ could
significantly extend the lifetime of the radial ϕ mode in the
massive Brans-Dicke scalar-tensor theory. Also shown in
the right panels of Fig. 6 are the snapshots of the scalar
field φ and T at 7.389 ms after the onset of merger. Despite
the large value of T ∼ 2ρnuc at the center, which forbids
the HMNS from being spontaneously scalarized, it still
contains considerable matter with T < Tcrit surrounding
the center, whose size is comparable to the Compton
wavelength ƛcomp ¼ 14.8 km. This creates an off-centered
potential well on the right-hand side of Eq. (33) and as
such traps the scalar field in a hollow sphere shape
as shown in Fig. 6; this is different from the scalar-field
profile of spontaneous scalarized HMNSs in Fig. 4, for
which the peak value of φ is located at the center of the NSs
(see also [83]).
Other than the prompt descalarization scenario, the

HMNS can still be subsequently descalarized due to the
secular contraction. In some models shown as red dotted
curves in Fig. 5, such as APR4_B16.3_M1.60 and
MPA1_B17.0_M1.80, the HMNSs remain spontane-
ously scalarized for a few milliseconds after the onset of
merger. Meanwhile, the rest-mass density ρmax continues
increasing due to the contraction resulting from the angular
momentum dissipation by the GWemission and the angular
momentum redistribution via gravitational torque associ-
ated with the nonaxisymmetric structure of the HMNS until
it reaches the ultrarelativistic limit and triggers the des-
calarization. However, if the maximum rest-mass density of
the HMNS settles down to a value very close to the critical
value for scalarization, the HMNS may undergo several
cycles going between states of scalarization and descala-
rization due to the density fluctuation caused by the radial
oscillation. Figure 7 shows the evolution of maximum
density ρmax and scalar-field amplitude φamp for the margin-
ally descalarized models, which are denoted as the least
massive descalarized HMNS along the mass sequence. As
the transition state between scalarized and descalarized
HMNSs, any perturbation in density allows the HMNS to
temporarily reach the scalarization criteria and drive the
scalar field toward the level of the spontaneously scalarized
HMNS. Different from the hollow spherical scalar clouds

formed around the descalarized HMNS, the scalar cloud’s
profile still peaks at the center, similar to the spontaneously
scalarized models in the marginally descalarized cases as
illustrated in Fig. 4 for model MPA1_B16.5_M1.70
(right panel). Therefore, it contains a much stronger
oscillation in φ than for other descalarized models with
the amplitude ∼0.5.
In addition to the strong scalar-cloud oscillation, the

marginally descalarized models also have a much lower
frequency of ϕ mode with ≲500 Hz. We perform Fourier
transform of φ2

amp for the postmerger phase of long-lived
HMNSs to obtain the characteristic frequency2 since the
scalar field enters the modified Einstein field equations,
Eq. (5), as ϕ ∼ φ2 and thus φ2 is physically more relevant
to hydrodynamics. Indeed, we find a better agreement
between the Fourier spectrum of ρmax

3 and φ2
amp. To obtain

a cleaner spectrum, we cut the transient evolution of the
scalar field after the change of the scalarization state, which
is the first 2 ms after the onset of merger for the scalarized
cases, while for the descalarized cases we cut the first few
milliseconds after the descalarization happened until the
scalar field reaches at most twice its final amplitude.

FIG. 7. Evolution of the maximum density ρmax (top) and
scalar-field amplitude φamp (bottom) for marginally descalarized
models with APR4 and MPA1 EOSs.

2Note that, instead of the conventional choice φamp used in
other studies [80,82], we choose specifically φ2

amp for the Fourier
analysis which introduces an extra factor of 2 in frequency for the
perturbation of φ if the background scalar field is zero (i.e., in the
case of a descalarized HMNS with time-averaged hφampi ¼ 0).
However, this choice does not alter the frequency of the Fourier
spectrum for the spontaneously scalarized HMNS case.

3While the perturbation of rest-mass density ρ is decoupled
with φ in the GR branch of static spherical stars [80], the
evolution of ρ would still be affected by φ even for the
descalarized HMNS case in full dynamical simulation.
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Denoting fϕ;peak as the peak frequency of the Fourier
spectrum of φ2

amp, which is believed to be the ϕmode of the
HMNS, Fig. 8 summarizes how fϕ;peak varies along the
mass sequence for the APR4 and MPA1 EOSs, for which a
descalarized HMNS can be formed. The cross and circle
markers indicate the models with and without descalariza-
tion, respectively. As the total baryon rest mass of the
scalarized HMNS increases, fϕ;peak drops and eventually
reaches its minimum at the marginally descalarized models.
After that, fϕ;peak rises along the mass sequence for the
descalarized HMNS. This is consistent with the character-
istics of ϕ mode as shown in Fig. 2(c) in [80] for which the
mode frequency of the spontaneously scalarized branch
first drops to zero at the bifurcation point, indicating the
end of the scalarized state due to the mode instability, and
then rises again in the GR branch. Therefore, we believe
that the dominant mode in φ2

amp is the radial ϕmode and the
zero-frequency point of fϕ;peak at the marginally descalar-
ized model indicates the bifurcation point of scalarized and
GR branches.
We summarize τH (solid) and τS (dashed) for the

simulated models whenever they can be determined in
Fig. 9. The scalar cloud’s lifetime τS depends strongly on
the coupling strength B as shown by the dashed curves in
Fig. 9. In general, τS is longer for the larger values of B. It is
noticed that the descalarization of HMNSs only occurs in
APR4 and MPA1 EOSs, while all the models with the H4
EOS (bottom panel) only descalarize right before the
collapse, i.e., the lifetimes τH and τS overlapped with each
other. Although we pick up weak coupling strengths that

induce the scalarization for the static spherical NSs, ranging
from B ¼ 17 to 18 for H4 EOS, the critical coupling
strength B for the marginal scalarization decreases rapidly
for more massive NSs as shown in Fig. 1. For static
spherical NSs with total baryon mass greater than 2M⊙,
spontaneously scalarization can happen for much lower
coupling B < 16 in H4 EOS, and we expect such critical
value of B could go even lower for more massive HMNSs
with Mb > 3M⊙. Therefore, the coupling constant B we
covered is relatively strong for HMNSs, prolonging the
scalarization time and thus explaining the strong scalariza-
tion behavior.

B. Delayed collapse

When the total mass of merger remnants is slightly below
the threshold mass Mthr, the HMNS survives for a short
period of time and then collapses to a black hole after
subsequent angular momentum dissipation by the GW
emission and angular momentum transport via the gravi-
tational torque associated with nonaxisymmetric structure
of the HMNS. We classify these delayed collapse models
with τH < 10 ms as a short-lived HMNS. We expect that
the collapse could be further delayed if the HMNS is
spontaneously scalarized since the scalar field will weaken
the gravitational force on the surrounding matter. Figure 10
shows the evolution of ρmax and φamp for short-lived
HMNS models. HMNSs with the H4 EOS always remain

FIG. 8. The peak frequency of φamp for EOS APR4 (top) and
MPA1 (bottom) with respect to the total baryon mass of the
system for the long-lived HMNS scenario. The cross and circle
markers indicate the models with and without descalarization,
respectively.

FIG. 9. Lifetimes of the excited scalar field (dashed) and
HMNS (solid) for the DEF theory with mϕ ¼ 1.33 × 10−11 eV
with various coupling strengths as functions of the total mass
Minf ≔ MADM;1 þMADM;2 of NSs for APR4 (top), MPA1
(middle), and H4 (bottom) EOSs.
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spontaneously scalarized until the formation of a black hole
because of the choice of the relatively strong coupling
strength. Then, the descalarization occurs when the black
hole is formed and the scalar field is quickly dissipated due
to the no-hair theorem. On the other hand, HMNSs
pertaining to the APR4 and MPA1 EOSs undergo descala-
rization earlier before the black hole formation, leaving an
oscillating scalar cloud. These descalarized HMNSs have
a mass > MGR

thr and yet they still survive for a few ms
before forming a black hole. This indicates that the small-
amplitude scalar cloud jφj ≲ 0.1 provides a temporal
support to stave off the collapse.
Taking one particular model as an example (the same one

as the red curve for MPA1 in Fig. 10), we find that the
evolution of the scalar field and the HMNS in this scenario
is visualized in Fig. 11 through the snapshots of the rest-
mass density (left) and scalar field (right) on the equatorial

plane. The HMNS descalarizes at ≲2 ms after the onset of
merger and forms a hollow spherical scalar cloud around it
(middle), similar to the scalar profile of the descalarized
models (cf. Fig. 6). The scalar cloud delays the collapse
of the HMNS until 5.67 ms after the onset of merger.
Eventually, a black hole is formed, which is surrounded by
a long-lived quasibound state of the scalar cloud with the
amplitude of ∼10−4 (bottom) because of the nonzero mass
of the scalar field (see more details in Sec. III C).

C. Prompt collapse and the threshold mass

Shortly after the fully GR BNS merger simulations were
feasible, Refs. [77,84] showed that there is a mass limit on
the BNSs beyond which they immediately collapse into a
black hole within a dynamical timescale ≲1 ms. In GR, the
threshold mass MGR

thr of NSs for which the prompt collapse
proceeds has been vastly studied for different EOSs,
whereby it was found that this threshold mass varies for
different EOSs [13,21,36,39–41], but is not sensitive to the
mass ratio unless the system is appreciably asymmetric as
q < 0.7 [85]. The threshold masses for the considered
EOSs, APR4, MPA1, and H4, have been found to be
2.825M⊙, 3.225M⊙, and 3.125M⊙, respectively, in [86]
with GR hydrodynamics simulations under conformal
flatness approximation. In addition to dynamical studies,

FIG. 10. Evolution of maximum density ρmax (top) and scalar
field amplitude φamp (bottom) for short-lived HMNS cases. The
dashed line indicates the collapse time for the correspondingmodels.

FIG. 11. Snapshots of rest-mass density ρ and scalar field
φ on the equatorial plane for a short-lived HMNS model
MPA1_B17.0_M1.82 at the onset of merger (top), before
the formation of apparent horizon (middle), and at 10.9 ms after
the onset of merger (bottom). The time after the onset of merger is
indicated in the red box and the black filled circles plotted in the
bottom panels show the location of the black hole. Notice the
varying scale rule for φ in different panels.
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the threshold mass can also be approximately determined
by the maximummass of differentially rotating NSs along a
constant angular momentum sequence for a given EOS, i.e.,
the turning-point criteria is approximately valid to a large
extent, provided that the rotational law can be phenom-
enologically modeled [87–89]. However, in the DEF
theory, there could emerge a scalarized branch of equilib-
rium under the same EOS, angular momentum, and rota-
tional law. The presence of the scalar field in spontaneously
scalarized NS will effectively increase the stiffness of the
EOS, providing additional support against gravitational
collapse and thus the maximum achievable on the
scalar branch has been shown to exceed that on the GR
sequence [83]. This suggests the existence of HMNSs
heavier than the prompt collapse threshold in GR, i.e., the
final remnant with mass greater than Mthr in GR may not
undergo prompt collapse if it is scalarized.
In practical simulations, there is no clear criterion to

classify the outcome as the prompt collapse scenario. Some
studies [36] used the monotonically increasing feature of
ρmax after the onset of merger as an indication of the prompt
collapse, while some used the monotonically decreasing
feature of the minimum value of the lapse function αmin
toward zero as a criterion [85]. In this study, we employ
the minimum lapse function αmin as the indicator for the
prompt collapse when it decreases monotonically in the
merger phase. Although αmin is a gauge-dependent varia-
ble, it directly reflects the geometrical property compared
to the maximum rest-mass density ρmax in the DEF
framework since the contribution of hydrodynamics is
coupled to the scalar field as ϕ−1Tab [cf. Eq. (5)]. When
the remnant undergoes gravitational collapse, the scalar
field jφj drops to zero drastically due to the no-hair theorem
and causes a small bump in the evolution of the rest-mass
density ρmax.
To better resolve the threshold mass for prompt collapse,

we increase the grid resolution in the binary mass sequence
such that the least massive prompt collapse model and the
most massive delayed collapse model differ by ΔMb ¼
0.02M⊙ in total baryon mass (i.e., ΔMb ¼ 0.01M⊙ for
each NS). We define the threshold mass as Mthr ≔
ðMinf;PC þMinf;SLÞ=2 following [86], in which Minf;PC

and Minf;SL are the ADM masses of the least massive
prompt collapse model and most massive delayed collapse
model at infinite orbital separation, respectively.
Figure 12 shows the threshold mass of NSs with different

values of B for the three EOSs considered. We investigate
the dependence of Mthr on B until it reaches the minimum
coupling strength Bcrit (circle markers in Fig. 12) with
which spontaneous scalarization is possible for spherically
symmetric NSs as shown in Fig. 1. The shaded region
indicates the error bar given by Minf;PC and Minf;SL. For
the weak coupling case B≲ Bcrit, the NSs are not scala-
rized in the inspiral phase, and thus, the contribution of the
scalar field is negligible. For this case, the resultant

threshold masses are essentially the same as in GR with
MGR

thr ¼ 2.816M⊙, 3.174M⊙, and 3.091M⊙ for APR4,
MPA1, and H4 EOSs, respectively. Although the obtained
threshold massesMGR

thr are ∼1% lower than the correspond-
ing values found in [86], this could be due to the systematic
error caused by the conformal flatness approximation
employed in their study, which cannot accurately evolve
spacetime with high angular momentum. This is in agree-
ment with [40], in which the obtained Mthr is also lower
than those in [90].
As the coupling strength B increases, the threshold mass

Mthr begins to rise when the scalar effect becomes impor-
tant. Note that whether the threshold massMthr is modified
from GR is determined by scalarization history of the
BNS in the inspiral phase. If spontaneous scalarization or
dynamical scalarization happens before the merger, the
scalar field is large enough to alter the subsequent evolution
of the remnant HMNS. Otherwise, even if the final remnant
could be potentially scalarized with the associated mass and
angular momentum, the scalarization time is longer than
the dynamical time of the remnant so that the prompt
collapse can happen before the HMNS reaches a state of
spontaneous scalarization. This can be found in model
H4_B16.5_M1.71 shown in Fig. 13 (red), for which the
scalar field grows exponentially in the merger phase,
hinting at a sign of scalarization. However, the remnant
undergoes prompt collapse before the scalar field is
significantly amplified, and hence, the scalar effect is
negligible throughout the evolution process. On the other
hand, dynamical scalarization kicks in and gets saturated at
2–3 ms before merger for model APR4_B14.8_M1.62
(green in Fig. 13). Hence, the final remnant is evaded
from prompt collapse with total mass of 2.887M⊙ greater
than threshold mass in GR MGR

thr of 2.816M⊙ because

FIG. 12. Threshold mass Mthr for equal-mass BNSs as a
function of the coupling constant B for APR4 (red), MPA1
(green), and H4 (blue) EOSs. The circle markers indicate the
minimum value of the coupling strength Bcrit with which sponta-
neous scalarization is possible for spherically symmetric NSs.
The width of each curve reflects the bin size of the mass
sampling.

BINARY NEUTRON STAR MERGERS IN MASSIVE SCALAR- … PHYS. REV. D 110, 104018 (2024)

104018-13



appreciable scalar field is built up in the inspiral phase
through the scalarization process.
As mentioned in Sec. III B, after the HMNS collapses, a

quasibound state of the oscillating scalar cloud will form
around the black hole from the fossil scalar field if the
system undergoes scalarization beforehand. Figure 13
shows that the scalar field for model H4_B18.0_
M1.78 (blue) quickly dissipates most of its energy after
the prompt collapse. Nonetheless, a small fraction of the
original scalar field remains and settles down to a long-
lived oscillating cloud with the amplitude ∼10−4. The final
scalar cloud contains dominantly a monopole component as
illustrated in the bottom panels of Figs. 11 and 14.

IV. PROPERTIES OF REMNANTS

A. Dynamical ejecta

First, we briefly discuss the material ejected from the
BNS merger in the DEF theory.
One common method to identify the unbounded fluid

element is to use geodesic criteria ut ≤ −1 for particles
moving on ballistic trajectories [37,91–94]. We define the
total baryon rest mass Mej, total energy Eej, and total
internal energy Uej of the ejected material by

MejðtÞ ≔
Z
ut≤−1

ρut
ffiffiffiffiffiffi
−g

p
d3x; ð34Þ

EejðtÞ ≔
Z
ut≤−1

Tμνnμnν
ffiffiffi
γ

p
d3x; ð35Þ

UejðtÞ ≔
Z
ut≤−1

ρutϵ
ffiffiffiffiffiffi
−g

p
d3x ð36Þ

and approximate the kinetic energy Tej as

TejðtÞ ≔ Eej −Mej − Uej: ð37Þ

Assuming that the ejecta has nonrelativistic motion, we
then estimate the average velocity vej of it as [37]

vejðtÞ ≔
ffiffiffiffiffiffiffiffiffi
2Tej

Mej

s
: ð38Þ

However, the influence of gravitational potential still
remains in Tej as evaluated within the computation domain
≲7500 km, hence overestimating the ejecta velocity. We
therefore further estimate the extrapolated velocity vej;ex
following [95,96] as

vej;exðtÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2ej − 2

Minf

vej × ðt − tmergeÞ

s
; ð39Þ

where vej is evaluated at time t. In this paper, we define the
mass Mdyn and the average velocity vdyn of unbounded
dynamical ejecta at 10 ms after the onset of merger from
Mej and vej;ex, respectively. Note that, due to the residual
eccentricity e ∼ 10−2 in our simulations and limited grid
resolution, the total mass of the ejected material could be
altered by Oð10%Þ compared to circular orbits [97].
Figure 15 summarizes the total mass Mdyn and extra-

polated average velocity vdyn of the dynamical ejecta.

FIG. 13. Evolution of the maximum scalar-field amplitude
jφampj for three different collapse models. The H4_B16.5_
M1.71 (red) and H4_B18.0_M1.78 (blue) are prompt collapse
models, while APR4_B14.8_M1.62 (green) is a delayed
collapse model. The colored dotted lines show the collapse times
for the corresponding models.

FIG. 14. Snapshots of rest-mass density ρ and scalar field φ on
the equatorial plane for a prompt collapse model H4_B18.0_
M1.78 at three different time slices. The time after the onset of
merger is indicated in the red box and the black filled circles
denote the black hole.
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The circle, triangle, and cross markers represent long-lived
HMNS, short-lived HMNS, and prompt collapse models,
respectively. The error bars are estimated by the conver-
gence test for long-lived HMNSs, short-lived HMNSs, and
prompt collapse cases: see Appendix A. Since the collapse
time is very sensitive to the grid resolution in the short-lived
HMNS formation and hence alters the final ejecta proper-
ties, the corresponding error bar is much larger than the

other two cases. The ejecta mass Mdyn falls in the range of
10−3–10−2M⊙ depending on the EOS for the long-lived
HMNS formation case with the average velocity vdyn ∼
0.2c–0.3c. The ejecta mass is found to be often very low as
≲10−3M⊙ for the prompt collapse case (in particular, for
the H4 EOS) due to inefficient time for outward angular
momentum transport. For the APR4 and MPA1 EOSs, the
ejecta mass is not extremely low as ≳10−3M⊙. The reason
for this is that we pay particular attention to the BNS mass
that is close to the threshold of the prompt collapse, and
thus, shock heating effects at the merger induce a certain
amount of the dynamical mass ejection. For these models,
the ejecta velocity becomes fairly high 0.3 − 0.4c because
the shock heating is the dominant source of the dynamical
mass ejection.
We find that the ejecta properties are determined pri-

marily by the lifetime of HMNSs, while the scalar effect is
minor for the long-/short-lived HMNS formation case. This
is reasonable because the dynamical ejecta quickly escapes
the Compton wavelength ƛcomp ≈ 15 km of the scalar field,
and hence, the ejecta evolution is not significantly influ-
enced by the scalar effect. This picture may change for
lower values of mϕ, while observationally allowed values
of B will be further bounded to lower values.

B. Black hole and disk

For models that undergo gravitational collapse to a black
hole, we estimate the parameters of the black hole from the
equatorial circumferential radius Ce and the area AAH of the
apparent horizon by assuming that the spacetime is
approximately stationary with negligible effect from the
matter. The black hole’s massMBH and dimensionless spin
parameter χBH can be approximately computed via [98]

MBH ¼ Ce

4π
; ð40Þ

χBH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
AAH

8πM2
BH

− 1

�
2

s
; ð41Þ

respectively. Here, we evaluateMBH and χBH at 10 ms after
the apparent horizon is formed. The total bounded baryon
rest mass outside the apparent horizon is determined via

MdiskðtÞ ≔
Z
r>rAH

ρut
ffiffiffiffiffiffi
−g

p
d3x −MejðtÞ; ð42Þ

with rAH ¼ rAHðθ;ϕÞ being the coordinate radius of the
apparent horizon. We also refer to the final disk mass
Mdisk;0 asMdiskðt − tAH ¼ 10 msÞ, where we recall that tAH
is the first formation time of the apparent horizon.
We summarize the properties of the black hole (BH)

and disk in Fig. 16 for short-lived HMNS formation and
prompt collapse models. For the prompt collapse models

FIG. 15. Dynamical ejecta mass (Mdyn) and extrapolated
average velocity (vdyn) as functions of mass Minf for all the
simulated BNS models. Each panel refers to a given EOS, while
different coupling strengths B are distinguished by different
colors. The circle, triangle, and cross markers represent long-
lived HMNS, short-lived HMNS, and prompt collapse models,
respectively. The error bars are estimated from the convergence
test shown in Appendix A.
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(cross markers), the remnant disk mass is significantly
suppressed with Mdisk;0 ≲ 10−3M⊙ due to the insufficient
time for angular momentum to be transported outward and
hence most of the matter falls into the BH as shown by the
relatively high MBH=Minf factor and dimensionless spin
parameter χBH. Nonetheless, the dynamical timescale
for the remnant to collapse to a black hole is slightly
extended for larger values of B due to the decrease in
compactness of isolated NSs. For example, the lifetime
τH rises from 0.83 ms in H4_B17.0_M1.80 to 1.01 ms
in H4_B18.0_M1.80 as the coupling strength B is
increased from 17 to 18. As a result, more matter remains
outside the black hole, yielding a slight decrease in MBH
and χBH.
For the short-lived HMNS formation case, the disk mass

is much higher than for the prompt collapse case and typi-
cally falls in the range of ∼10−2–10−3M⊙. Simultaneously,
the resultant black hole mass and spin are lower. This result
is consistent with that found in GR hydrodynamics; the
lifetime of the HMNS primarily determines the final disk
mass in the case of equal-mass BNSs. Since Mthr could be
modified for large enough values of B in the DEF theory,
the disk mass could be significantly modified compared to
in GR with the same value of Minf .
Figure 17 shows the snapshots of the disk on the x-z

plane at 10 ms after the formation of the apparent horizon
for MPA1_B16.0_M1.86 and MPA1_B17.0_M1.86.

FIG. 17. Snapshots of rest-mass density ρ on the x-z plane for a
prompt collapse model MPA1_B16.0_M1.86 (top) and a short-
lived HMNS formation model MPA1_B17.0_M1.86 (bottom)
at 10 ms after the formation of apparent horizon. The black filled
circles at the center denote the black hole.

FIG. 16. Summary of final black hole and disk properties for
short-lived HMNS formation (dot markers) and prompt collapse
(cross markers) cases with APR4 (top), MPA1 (middle), and H4
(bottom) EOSs. For each EOS subplot, the black hole mass scaled
by the total mass MBH=Minf (top), dimensionless spin parameter
χBH (middle), and the final disk massMdisk;0 (bottom) are shown.
The error bars are estimated from the convergence test shown in
Appendix A.
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Despite their similar masses Minf (ΔMinf < 0.002M⊙),
the short-lived HMNS formation model MPA1_B17.0_
M1.86 has a thick torus with mass Mdisk;0 ¼ 7.3 ×
10−3M⊙ outside the horizon, while only a thin disk with
tiny mass Mdisk;0 ¼ 5.1 × 10−4M⊙ remains in the black
hole’s proximity for the prompt collapse model MPA1_
B16.0_M1.86.

C. Characteristics of gravitational waves from
descalarized HMNS

In this paper, we focus on the discussion for a property of
postmerger waveforms that is special to the scenarios
involving a descalarization, while leaving more extensive
investigation about other scenarios to a future paper [99].
Taking model APR4_B15.8_M1.56 as an example,
Fig. 18 shows the plus polarization (top) and simultaneous
frequency [Eq. (27); bottom] of the GW signal. We denote
the instantaneous frequency at the onset of merger at which
the absolute amplitude jhj reaches its maximum as fmerge,
which is sometimes denoted as fpeak or f2;max in the
literature. We also define f2;peak as the frequency as the
dominant peak in the Fourier spectrum of heff in the
postmerger phase, which is attributed to the l ¼ m ¼ 2
mode of the HMNS [15,36,100–103]. The acceleration
spectral density (ASD) h̃

ffiffiffi
f

p ðHz−1=2Þ is plotted in Fig. 19
for this model assuming a source distance of 50 Mpc. Since
the HMNS in this model undergoes descalarization at
5.6 ms after the onset of merger, we perform the Fourier

analysis of the waveform within two different time seg-
ments before and after descalarization indicated by the
solid blue curves on the top and bottom panels in Fig. 19,
respectively, while the spectrum of the whole waveform is
shown by the black dashed curve. By comparing the
spectrum of the whole waveform to that of the two
time windows, we find that the f2;peak is determined
primarily by the state of the HMNS at a few milli-
seconds after the onset of merger. In the later time window,
we find an upwind shift in f2;peak after the descalarization
since the compactness of the HMNS increases during this
process. Both the increased compactness and the higher
f2;peak are similar characteristics of the GW signature
shared with the influence of a phase transition from
confined hadronic matter to deconfined quark matter
(e.g., [104–107]).
For comparison, we show in Fig. 20 the ASD in two time

segments separated by 5 ms after the onset of merger for
model H4_B18.0_M1.64, whereas the remnant HMNS
remains scalarization in the postmerger phase. The f2;peak
does not shift in the absence of a state transition in the
HMNS throughout the postmerger phase, which verifies
that the shift in f2;peak is indeed caused by the state
transition of descalarization.

FIG. 18. GWs emitted by APR4_B15.8_M1.56. Top: the
plus hþ (red) polarization of GWs normalized by the extraction
radius D ¼ 480M⊙ and initial ADM mass of BNSs Minf as a
function of retarded time tret − tmerge. Bottom: the instantaneous
GW frequency fGW. The red star marker indicates the merge
frequency fmerge.

FIG. 19. ASD h̃
ffiffiffi
f

p
(Hz−1=2) of APR4_B15.8_M1.56 at a

distance of 50 Mpc. The black dashed curve indicates the ASD of
the whole waveform and the vertical red dashed line indicates the
f2;peak. The blue line in the upper and lower panels shows,
respectively, the ASD of the waveform before and after the onset
of descalarization (5.6 ms after merge).
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V. SUMMARY AND DISCUSSION

We performed numerical relativity simulations to study
the properties of postmerger remnants and GW emission
from BNS mergers in the DEF theory with a massive scalar
field. We focused on a canonical scalar mass of mϕ ¼
1.33 × 10−11 eV suggested in [11] to explore a wide range
of NS mass and coupling strength B for the APR4, MPA1,
and H4 EOSs. In the framework of the DEF theory, a scalar
cloud can be induced in NSs and HMNSs by spontaneous
scalarization or through dynamical scalarization in the
binary system. This additional scalar field modifies the
classic picture of BNS postmerger remnants. In the pres-
ence of scalarization, the lifetime of the HMNSs is
prolonged due to the extra support from the scalar field.
This raises the threshold mass for the prompt collapse by
0.1–0.2M⊙, which depends on the EOS (Fig. 12).
For lower BNSs from which a long-lived HMNS is

formed, the excited scalar field also changes its dynamics
the from GR one. We find that the remnant can undergo
descalarization if the maximum density reaches a certain
critical value to become ultrarelativistic (Fig. 6), either due
to the merger or subsequent postmerger evolution by the
GWemission and the angular momentum redistribution via
gravitational torque associated with the nonaxisymmetric
structure of the remnant. Afterward, an oscillating scalar
cloud remains in the vicinity of the descalarized HMNS and
lasts over 10 ms after descalarization with appreciable

amplitude Δφ≲ 0.1 (Figs. 5 and 7) instead of rapidly
dissipating away as would happen for a massless scalar
field. Not only in a descalarized HMNS can we observe a
long-lived ϕmode. Even for HMNSs that remain scalarized
to the end of the simulation, the ϕ mode excited during
merger is exhibited (Fig. 5) and helps enhance a quasiradial
oscillation in the HMNS. Such a long-lived scalar cloud can
also be found even after the HMNS collapses to a black
hole, while with much smaller amplitude (Fig. 13).
The scalar field alters the lifetime of HMNSs (Fig. 9),

which in turn modifies the dynamical ejecta mass and disk
mass. This may give a different kilonova signature from the
GR prediction for a system with the same mass. We also
observe an upward shift in f2;peak frequency in the post-
merger GW signal due to the transition in the HMNS’s state
caused by descalarization (Fig. 19), which assembles the
characteristics of the EOS phase transition when decon-
fined quark matter is revealed. The result for more detailed
analysis of gravitational waveforms and their spectra will
be presented in a separate paper.
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APPENDIX A: CONVERGENCE TEST

We summarize the details of numerical setup used in the
simulations in Table I. We adopt N ¼ 94 as the standard
resolution throughout this paper.
Figure 21 shows a result of the convergence test con-

sidering models of long-lived HMNSs MPA1_B16.5_
M1.76 [Fig. 21(a)], short-lived HMNSs MPA1_B16.5_
M1.82 [Fig. 21(b)], and prompt collapse MPA1_B16.5_
M1.88 [Fig. 21(c)] with three different grid resolutions
as N ¼ ð110; 94; 78Þ. We obtain convergent result in the
inspiral phase, while the poor resolution in the postmerger

FIG. 20. ASD 2h̃
ffiffiffi
f

p
(Hz−1=2) of H4_B18_M1.64 at a

distance of 50 Mpc. The black dashed curve indicates the
ASD of the whole waveform and the vertical red dashed line
indicates the f2;peak. The blue line in the upper and lower panels
shows, respectively, the ASD of the waveform before and
after t − tmerge ¼ 5 ms.

TABLE I. Numerical setups for the simulations. The grid
number for covering one positive direction (N), grid spacing
in the finest refinement level ðΔxÞ, total size of computation
domain ½−L;L�, total number of moving boxes ðnfixÞ and fixed
(nonmoving) boxes ðnfixÞ, total number of refinement depths (d),
and the extraction radius ðrexÞ.
N Δx (m) L (106 m) nmv nfix d rex (km)

78 189 7.56 8 6 10 709
94 157 7.56 8 6 10 709
110 134 7.56 8 6 10 709
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FIG. 21. Convergence test for three different models. In each subplot, the upper panel shows the evolution of maximum density ρmax
with resolution N1 ¼ 110 (red), N2 ¼ 94 (green), and N3 ¼ 78 (blue), together with the relative error jδρmaxj ≔ jρmax=ρ1;max − 1j in
N2;3 with respect to the highest resolution ρ1;max. The lower panel shows the evolution of scalar field φamp and the relative error
jδφamp

2j ≔ jφamp
2=φ1;amp

2 − 1j in the corresponding resolutions. The black dashed line shows the merger time in N1, while the colored
dotted lines in (b) and (c) show the collapse time in different resolutions respectively. (a) Long-lived HMNS MPA1_B16.5_M1.76.
(b) Short-lived HMNS MPA1_B16.5_M1.82. (c) Prompt collapse MPA1_B16.5_M1.88.
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phase becomes notable in the presence of shocks. In
particular, for the short-lived HMNS formation model
MPA1_B16.5_M1.82 [Fig. 21(b)], ρmax and φamp deviate
significantly at 2 ms after the onset of merger with
nonconverging collapse time since the evolution of the
marginally stable HMNS is extremely sensitive to the grid
resolution. Nonetheless, we find consistent evolution of
ρmax and φamp for the cases of long-lived HMNS formation
model MPA1_B16.5_M1.76 [Fig. 21(a)] and prompt
collapse model MPA1_B16.5_M1.88 [Fig. 21(c)]. In
addition, the descalarization time τS and the collapse time
in MPA1_B16.5_M1.76 and MPA1_B16.5_M1.88,
respectively, have a good convergence. This indicates that

the standard resolutionΔx ¼ 157 mwe employed through-
out this paper is acceptable to explore the scenarios of long-
lived HMNS formation and prompt collapse.
We estimate the errors of dynamical ejecta mass Mdyn

and velocity vdyn, remnant disk mass Mdisk, and black hole
parameters MBH, χBH by their difference under the three
resolutions considered, which are given by Table II.

APPENDIX B: LIST OF THE SELECTED
MODELS

In Tables III–V, we summarize the outcomes for all the
models considered in this paper.

TABLE II. Errors of remnant properties for long-lived HMNSs, short-lived HMNSs, and prompt collapse cases.

Models ΔMdyn 10−4M⊙ Δvdyn 10−2 ΔMdiskM⊙ ΔMBH 10−3M⊙ ΔχBH 10−3

Long-lived HMNS 2.5 1.0 � � � � � � � � �
Short-lived HMNS 23.3 5.9 5.9 × 10−5 2.7 1.5
Prompt Collapse 7.1 3.6 1.6 × 10−2 29.2 15.2

TABLE III. Summary of outcomes for the BNS mergers in the massive DEF theory with APR4 EOS. The first
column lists the model name which combines EOS, coupling strength B, and baryon mass of each NS in units of
M⊙. The second column shows the ADM mass MADM of each isolated NS. The third column shows the state of
premerger scalarization with symbols ×, △, and ○ corresponding to no scalarization, dynamical scalarization, and
spontaneous scalarization in the premerger phase, respectively. The fourth column lists the postmerger remnants
with LL, SL, and PC being a long-lived HMNS, a short-lived HMNS, and prompt collapse. The last two columns
summarize the lifetime of the HMNS τH and scalar cloud τS for the cases of LL and SL, with centered dots
representing the absence of descalarization in the postmerger phase.

Model name MADM (M⊙) Premerger φ Fate τH (ms) τS (ms)

APR4_B13.8_M1.57 1.4040 × LL > 10 � � �
APR4_B13.8_M1.58 1.4119 × PC 1.13 � � �
APR4_B14.3_M1.57 1.4040 × LL > 10 � � �
APR4_B14.3_M1.58 1.4119 × PC 1.13 � � �
APR4_B14.8_M1.62 1.4434 △ SL 2.13 0.52
APR4_B14.8_M1.63 1.4513 △ PC 1.17 0.50

APR4_B15.3_M1.48 1.3323 △ LL > 10 � � �
APR4_B15.3_M1.50 1.3483 △ LL > 10 � � �
APR4_B15.3_M1.52 1.3643 ○ LL > 10 5.28
APR4_B15.3_M1.54 1.3802 ○ LL > 10 4.06
APR4_B15.3_M1.56 1.3961 ○ LL > 10 4.65
APR4_B15.3_M1.58 1.4119 ○ LL > 10 1.66
APR4_B15.3_M1.60 1.4276 ○ LL > 10 1.86
APR4_B15.3_M1.62 1.4433 ○ SL 2.50 0.63
APR4_B15.3_M1.64 1.4590 ○ SL 2.21 0.58
APR4_B15.3_M1.65 1.4668 ○ PC 1.15 0.57
APR4_B15.3_M1.66 1.4746 ○ PC 1.00 0.55
APR4_B15.3_M1.68 1.4901 ○ PC 0.92 0.53

APR4_B15.8_M1.50 1.3482 ○ LL > 10 � � �
APR4_B15.8_M1.52 1.3641 ○ LL > 10 � � �
APR4_B15.8_M1.54 1.3800 ○ LL > 10 6.20

(Table continued)
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TABLE III. (Continued)

Model name MADM (M⊙) Premerger φ Fate τH (ms) τS (ms)

APR4_B15.8_M1.56 1.3959 ○ LL > 10 5.55
APR4_B15.8_M1.58 1.4116 ○ LL > 10 4.38
APR4_B15.8_M1.60 1.4274 ○ LL > 10 1.97
APR4_B15.8_M1.62 1.4430 ○ LL > 10 1.65
APR4_B15.8_M1.64 1.4586 ○ SL 2.21 1.82
APR4_B15.8_M1.65 1.4664 ○ SL 3.06 0.82
APR4_B15.8_M1.66 1.4742 ○ PC 1.31 0.67
APR4_B15.8_M1.67 1.4820 ○ PC 1.06 0.64
APR4_B15.8_M1.68 1.4897 ○ PC 0.98 0.60
APR4_B15.8_M1.70 1.5052 ○ PC 0.91 0.57

APR4_B16.3_M1.52 1.3638 ○ LL > 10 � � �
APR4_B16.3_M1.54 1.3796 ○ LL > 10 � � �
APR4_B16.3_M1.56 1.3954 ○ LL > 10 6.02
APR4_B16.3_M1.58 1.4112 ○ LL > 10 5.40
APR4_B16.3_M1.60 1.4269 ○ LL > 10 4.07
APR4_B16.3_M1.62 1.4425 ○ SL 5.03 2.97
APR4_B16.3_M1.64 1.4581 ○ SL 3.21 1.73
APR4_B16.3_M1.66 1.4736 ○ SL 2.23 1.70
APR4_B16.3_M1.68 1.4891 ○ SL 1.89 0.92
APR4_B16.3_M1.69 1.4968 ○ SL 1.12 0.78
APR4_B16.3_M1.70 1.5045 ○ PC 1.03 0.71

TABLE IV. Same as Table III but for the MPA1 EOS.

Model name MADM (M⊙) Premerger φ Fate τH (ms) τS (ms)

MPA1_B15.0_M1.78 1.5831 × LL > 10 � � �
MPA1_B15.0_M1.79 1.5909 × PC 1.18 � � �
MPA1_B15.5_M1.78 1.5831 × SL 3.06 � � �
MPA1_B15.5_M1.79 1.5909 × PC 1.18 � � �
MPA1_B16.0_M1.60 1.4398 × LL > 10 � � �
MPA1_B16.0_M1.62 1.4559 × LL > 10 � � �
MPA1_B16.0_M1.64 1.4719 × LL > 10 � � �
MPA1_B16.0_M1.66 1.4880 × LL > 10 � � �
MPA1_B16.0_M1.68 1.5039 × LL > 10 9.27
MPA1_B16.0_M1.70 1.5198 × LL > 10 2.76
MPA1_B16.0_M1.72 1.5357 △ LL > 10 3.00
MPA1_B16.0_M1.74 1.5515 △ LL > 10 2.01
MPA1_B16.0_M1.76 1.5673 ○ LL > 10 2.64
MPA1_B16.0_M1.78 1.5831 ○ LL > 10 0.66
MPA1_B16.0_M1.80 1.5987 ○ LL > 10 0.63
MPA1_B16.0_M1.82 1.6144 ○ LL > 10 0.61
MPA1_B16.0_M1.84 1.6300 ○ SL 2.37 0.57
MPA1_B16.0_M1.85 1.6377 ○ PC 1.30 0.56
MPA1_B16.0_M1.86 1.6455 ○ PC 1.15 0.55

MPA1_B16.5_M1.60 1.4398 △ LL > 10 � � �
MPA1_B16.5_M1.62 1.4559 ○ LL > 10 � � �
MPA1_B16.5_M1.64 1.4719 ○ LL > 10 � � �
MPA1_B16.5_M1.66 1.4879 ○ LL > 10 � � �
MPA1_B16.5_M1.68 1.5039 ○ LL > 10 � � �
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TABLE IV. (Continued)

Model name MADM (M⊙) Premerger φ Fate τH (ms) τS (ms)

MPA1_B16.5_M1.70 1.5198 ○ LL > 10 6.38
MPA1_B16.5_M1.72 1.5356 ○ LL > 10 10.5
MPA1_B16.5_M1.74 1.5514 ○ LL > 10 5.74
MPA1_B16.5_M1.76 1.5672 ○ LL > 10 4.41
MPA1_B16.5_M1.78 1.5829 ○ LL > 10 1.94
MPA1_B16.5_M1.80 1.5986 ○ LL > 10 1.90
MPA1_B16.5_M1.82 1.6142 ○ SL 6.57 0.76
MPA1_B16.5_M1.84 1.6297 ○ SL 2.75 0.67
MPA1_B16.5_M1.86 1.6452 ○ SL 2.77 0.62
MPA1_B16.5_M1.87 1.6530 ○ PC 1.27 0.61
MPA1_B16.5_M1.88 1.6607 ○ PC 1.11 0.60
MPA1_B16.5_M1.90 1.6761 ○ PC 0.95 0.57

MPA1_B17.0_M1.70 1.5195 ○ LL > 10 � � �
MPA1_B17.0_M1.72 1.5353 ○ LL > 10 � � �
MPA1_B17.0_M1.74 1.5511 ○ LL > 10 � � �
MPA1_B17.0_M1.76 1.5668 ○ LL > 10 5.79
MPA1_B17.0_M1.78 1.5825 ○ LL > 10 4.47
MPA1_B17.0_M1.80 1.5981 ○ LL > 10 3.27
MPA1_B17.0_M1.82 1.6137 ○ SL 5.67 1.90
MPA1_B17.0_M1.84 1.6293 ○ SL 2.50 1.90
MPA1_B17.0_M1.86 1.6448 ○ SL 2.69 0.85
MPA1_B17.0_M1.87 1.6525 ○ SL 2.95 0.74
MPA1_B17.0_M1.88 1.6602 ○ PC 1.36 0.69
MPA1_B17.0_M1.90 1.6756 ○ PC 1.12 0.64

TABLE V. Same as Table III but for the H4 EOS.

Model name MADM (M⊙) Premerger φ Fate τH (ms) τS (ms)

H4_B15.0_M1.70 1.5413 × SL 3.69 � � �
H4_B15.0_M1.71 1.5494 × PC 1.37 � � �
H4_B15.5_M1.70 1.5413 × SL 2.59 � � �
H4_B15.5_M1.71 1.5494 × PC 1.37 � � �
H4_B16.0_M1.70 1.5413 × SL 2.68 � � �
H4_B16.0_M1.71 1.5494 × PC 1.37 � � �
H4_B16.5_M1.70 1.5413 × SL 2.84 � � �
H4_B16.5_M1.71 1.5494 × PC 1.36 � � �
H4_B17.0_M1.60 1.4593 × LL > 10 � � �
H4_B17.0_M1.62 1.4758 × SL 8.54 8.40
H4_B17.0_M1.64 1.4923 × SL 7.35 7.22
H4_B17.0_M1.66 1.5087 × SL 8.39 8.32
H4_B17.0_M1.68 1.5250 × SL 2.43 2.30
H4_B17.0_M1.70 1.5413 × SL 3.94 3.84
H4_B17.0_M1.72 1.5576 × SL 2.24 2.13
H4_B17.0_M1.74 1.5738 △ SL 1.52 1.56
H4_B17.0_M1.75 1.5819 △ PC 1.18 1.12
H4_B17.0_M1.76 1.5899 ○ PC 1.00 1.06
H4_B17.0_M1.78 1.6060 ○ PC 0.92 0.95
H4_B17.0_M1.80 1.6221 ○ PC 0.83 0.87

H4_B17.5_M1.60 1.4593 × LL > 10 � � �
(Table continued)
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