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We systematically perform long-term (millions of Schwarzschild time) axisymmetric viscous hydro-
dynamics simulations for tori around black holes in general relativity supposing the super-Eddington
accretion flow. The initial condition for the tori is modeled simply by the Fishbone-Moncrief torus with a
constant specific angular momentum j but with a wide variety of j. Such a torus may be a remnant after
tidal disruption of ordinary stars near a relatively low-mass supermassive black hole or an outcome of an
inflow of the matter with a low specific angular momentum. We find that, for a given density profile, the
fraction of the mass infall onto the black hole is approximately proportional to j−1, indicating that only a
minor fraction of the matter in the torus formed far from the black hole falls into the black hole, while the
majority is ejected with the typical average velocity of a few percent of the speed of light. We also find that
the mass ejection is driven only outside ≈2rISCO, where rISCO is the areal radius of the innermost stable
circular orbit around black holes, which depends strongly on the black hole spin. We derive an approximate
fitting formula for the spin dependence on the mass infall fraction as ∝ r0.7ISCO, which suggests that the rapid
growth of supermassive black holes proceeded primarily by the accretion of the matter with the angular
momentum counterrotating with the black hole spin.
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I. INTRODUCTION

The presence of supermassive black holes (SMBHs)
with high estimated mass ∼107M⊙–10

10M⊙ in the high-
redshift universe is one of the unsolved problems in
astrophysics (see, e.g., Refs. [1–5]). It is natural to consider
that these SMBHs were produced through a rapid mass
accretion from a seed black hole of a smaller mass [6,7].
There are a wide variety of possibilities for the rapid growth
of SMBHs [8]. However, we still do not understand the
major processes for this. In the following, we explore the
growth of black holes by mass accretion from a torus
surrounding the central black hole. Such a torus may be a
remnant after tidal disruption of ordinary stars near a
relatively low-mass SMBH or an outcome of an inflow
of the matter with a low specific angular momentum.
Here, we pay attention to the viscous evolution of a

torus of stellar-size mass M⋆ ∼M⊙ orbiting an SMBH of

relatively low mass MBH ¼ 105M⊙–10
6M⊙ ≫ M⋆ as an

example. Such a system may be formed for a high-mass
accretion of low-angular momentum matter or after tidal
disruption of an ordinary star, which can happen near the
tidal radius defined by [9]
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; ð1Þ

where rg ≔ GMBH=c2, and c and G are the speed of light
and gravitational constant, respectively. As Eq. (1) indi-
cates the radius of the tidal disruption is far from the radius
of the innermost stable circular orbit rISCOð≤ 9rgÞ for
MBH ≲ 106M⊙, and thus we focus on the case of rt ≫
rISCO in this paper.
In reality, the torus is not formed soon after the tidal

disruption since the tidal debris that eventually forms the
torus is likely to have highly eccentric (nearly parabolic)
orbits (see, e.g., Ref. [10] for a review). The typical radius
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of the apocenter is [10,11]
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: ð2Þ

Thus, the debris should orbit the central SMBH with an
orbital radius of ≲104rg interacting with each other. This
suggests that the resulting torus is wide in the orbital radius
with 10rg–104rg; thus, we suppose such a wide torus in the
following.
Assuming the shear viscosity in the formof ν ¼ αvisc2sΩ−1

[12], where αvis is a dimensionless parameter of order 10−2,
cs is the sound velocity, and Ω is the angular velocity, the
viscous timescale of a disk/torus is evaluated by

tvis ¼
R2
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where R is the cylindrical radius and we set Ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMBH=R3

p
. We employ cs ¼ 109 cm=s because we find

it a typical value in the numerical computation of this paper
(but near the black hole horizon, cs can be∼1010 cm=s). We
also note that GMBH=c3 ≈ 4.926 sðMBH=106M⊙Þ; thus, for
small values of αvis ∼ 0.01, the viscous timescale exceeds
106ðGMBH=c3Þ, requiring a long-term simulation.
On the other hand, the diffusion timescale of photons

may be estimated by
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where λ ≔ ðρκÞ−1 is the mean free path of photons, with ρ
the rest-mass density and κ the opacity by the Thomson
scattering for an ionized fluid, and we used ρ ∼
M⋆=ð4πR3=3Þ for simplicity. This shows that the diffusion
timescale of photons is much longer than the viscous
timescale for R≲ 103rg; hence, photons are essentially
trapped, and the flow is adiabatic in the inner region.
Furthermore, the accretion rate onto the SMBH is

broadly estimated by

ṀBH ∼
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which is much larger than the Eddington rate

ṀEdd ≈ 1.4 × 1024 g=s

�
MBH

106M⊙

�
; ð6Þ

where we assumed LEdd ≔ 0.1ṀEddc2, and therefore, the
accretion flow is super-Eddington. This analysis indicates
that, while the radiation pressure plays an important role for
the evolution of the system, the effects of radiation transport
are minor when we consider the growth of SMBHs with
MBH ≲ 107M⊙ after a tidal disruption event. This is also the
case for a substantial infall of mass∼M⊙ to an SMBHwith a
low specific angular momentum with ≲100GMBH=c.
Motivated by these facts, we study a flow in the black

hole spacetime using viscous hydrodynamics without
considering the radiative transport effect. Since the radia-
tion pressure is likely to dominate over the gas pressure, we
simply employ the Γ-law equation of state with Γ ¼ 4=3.
Although the thermodynamics is highly simplified, we
fully take into account the effects of general relativistic
gravity. Furthermore, we follow the evolution of the system
in the timescale of ≳106GMBH=c3 because Eq. (3) shows
that the viscous timescale is of order 106GMBH=c3 for the
plausible viscous parameter and plausible remnants of tidal
disruption for ordinary stars; hence, to fully understand the
entire evolution of the system, i.e., the mass infall and mass
ejection, such a long-term simulation is essential.
We here should note that, for the accretion disk/torus, the

(effectively) viscous effect is caused by the magnetorota-
tional instability (MRI) and associated dynamo effects
(e.g., Refs. [13–15]). In viscous hydrodynamics, we believe
that such an effectively viscous effect is well captured.
However, other purely magnetohydrodynamics effects such
as the magnetocentrifugal effect [16] and magnetic tower
effect [17] are not taken into account. We have to keep in
mind that, in the presence of these effects, mass ejection
may be enhanced, reducing the mass infall onto the
black hole.
The paper is organized as follows. In Sec. II, we describe

the simulation setup in this paper. After describing the
diagnostics in Sec. III, numerical results are presented in
Sec. IV, paying particular attention to the fraction of mass
infall onto the black hole, for which we develop a simple
fitting formula. We show that the general relativistic effect
near the black hole is key in quantifying the mass infall
fraction. Sections V and VI are devoted to discussions and
summary, respectively. In the following, unless otherwise
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stated, we use the units of c ¼ 1 for simplicity. rg always
denotes GMBH=c2.

II. SIMULATION SETUP

We perform axisymmetric shear-viscous hydrodynamics
simulations using a formalism shown in Ref. [18] on a
fixed background of the black hole spacetime. Following
Refs. [19–21], the simulation is performed employing the
Kerr-Schild metric. The formalism for viscous hydrody-
namics is a simplified version of Ref. [22], in which the
causality is guaranteed.
In the numerical simulation, we give the kinematic shear-

viscous parameter ν by [12]

ν ¼ αvisc2sΩ−1fðxiÞ; ð7Þ

where fðxiÞ denotes a function of the coordinates. In this
paper, we set

Ω−1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R3

GMBH

s
; ð8Þ

fðxiÞ ¼ R2

r2
; ð9Þ

where r denotes the radial coordinate (in Kerr-Schild
coordinates). With this setting, we can give a weight for
the viscosity around the equatorial region. αvis is chosen to
be 0.01, 0.02, 0.05, and 0.1 (with 0.05 fiducial), assuming
that the viscosity is caused by the magnetorotational
instability and resultant dynamo in the hypothetical pres-
ence of the magnetic-field effect [13–15]. We tried other
choices for the function f but found that the conclusion in
this paper is essentially unchanged.
We have to be careful in performing viscous hydro-

dynamics simulations about whether the viscous hydro-
dynamics is an appropriate choice because the viscosity is
believed to be effectively generated by magnetohydrody-
namical turbulence in astrophysics. The turbulence in the
accretion disks in magnetohydrodynamics is likely to be
triggered by the MRI [13]. The timescale for the growth of
this instability until the nonlinear saturation is achieved is
approximately written as

tMRI ¼
B
Ω
; ð10Þ

where B is a dimensionless constant of order 10. This
timescale has to be shorter than the viscous timescale tvis
[cf. Eq. (3)]. Hence, when employing the viscous hydro-
dynamics, the condition of tMRI < tvis has to be satisfied.
This is written as

R
rg

< 1.8 × 103
�
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�
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�

cs
109 cm=s

�
−2
�
B
10

�
−1
: ð11Þ

We find that, for the outer region R≳ 103rg, the sound
velocity cs decreases below 109 cm=s, and thus the con-
dition is a bit relaxed. However, this estimate still indicates
that the viscous coefficient given by Eq. (7) is valid only for
R≲ 104rg. For this reason, we set that for R ≥ 5000rg, ν in
Eq. (7) is adjusted by changingΩ−1 to be a constant of Ω−1

at R ¼ 5000rg.
We employ the equation of state in the form

P ¼ Kρ4=3 þ ðΓ − 1Þρðε − εpÞ; ð12Þ

where P, ρ, ε, K, and Γ are the pressure, rest-mass density,
specific internal energy, polytropic constant, and adiabatic
index, respectively. εp is the so-called polytropic part of
the specific internal energy, written as 3Kρ1=3. Thus, for
Γ ¼ 4=3, the equation of state reduces to the Γ-law
equation of state, P ¼ ðΓ − 1Þρε. We here suppose that
the gas is optically thick and the pressure is determined by
the radiation pressure. Throughout this paper, we basically
assume that the radiation is trapped by the gas, i.e., the
viscous timescale is shorter than the diffusion timescale of
the radiation because our purpose in this paper is to explore
the mass accretion onto the black hole in the super-
Eddington regime. However, to phenomenologically inves-
tigate the effect of cooling on the efficiency of the mass
infall, several simulations are performed for Γ < 4=3
(cf. Sec. IV E).
As the initial condition, we give the Fishbone-Moncrief

torus [23], for which the specific angular momentum and
specific energy of the torus matter are constant; l ¼
−uφ=ut and E ¼ −hut are constant. Here, h is the specific
enthalpy, and uμ is the lower component of the four-
velocity. The specific angular momentum in the ordinary
mean is defined by j ¼ El ¼ huφ. For constructing the
initial data, the polytropic equation of state, P ¼ Kρ4=3, is
employed.
It is well known that such a torus is unstable to non-

axisymmetric deformation and subsequent angular momen-
tum transport [24,25], but we here assume that the viscous
effect could phenomenologically incorporate this effect.
We also note that the tori we choose have a large width so
that the nonaxisymmetric instability is likely to be mild.
Because E ≈ 1 for the wide torus considered in this paper,
j ≈ l. Thus, in the following, each model will be specified
in terms of bl ¼ l=rg (not j).

In this paper, we choose bl ¼ 4, 5, 6, 8, 10, 12, and 15.
The outer edge of the torus on the equatorial plane is chosen
to be r̂out ¼ rout=rg ¼ 103 or 104; we consider widely

spread and fat tori. For bl ≥ 6 the location of the inner edge
rin and density maximum rc of the tori are approximately
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written as l2=ð2rgÞ and l2=rg, respectively. Thus, forbl ≥ 10, the density maximum is located far from the black
hole, r≳ 100rg.
We perform simulations for a wide range of the dimen-

sionless spin parameter of black holes, χ ¼ −0.8, −0.4, 0,
0.4, 0.8, 0.9, and 0.95. Here, for χ < 0, the torus is
counterrotating with respect to the black hole spin.
The simulation is performed on a two-dimensional

domain of R and z. For theR and z directions, a nonuniform
grid is employed: For x≲ 2.4rg (x ¼ R or z), a uniform
grid is used, while outside this uniform region, the grid
spacing Δxi is increased uniformly as Δxiþ1 ¼ 1.02Δxi,
where the subscript i denotes the ith grid. Simulations are
performed with the grid number of (481, 481) or (521, 521)
for ðR; zÞ; for the former and latter cases, Δx in the
innermost region is chosen as 0.06rg and 0.04rg, respec-
tively. The black hole horizon, for which the coordinate
radius is written as rH ¼ rgð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ, is always

located in the uniform grid zone, and the outer boundaries
along the R and z axes are located at ≈1.85 × 104rg. We
excise the region of r < rgχð< rg < rHÞ from the computa-
tional domain. We confirm that the mass of the matter
swallowed into the black hole depends only weakly on the
grid resolution unless the value of αvis is as large as 0.1.
In this paper, we employ the code developed in Ref. [18].

Some of the simulations were also performed using a new
fixed-mesh refinement code developed independently by
one of the authors (Lam et al., in preparation; see also
Ref. [26]). We confirmed that the results from the two
independent codes agree well.

III. DIAGNOSTICS

During each run, we monitor the rates of the rest mass
that falls into the black hole and is ejected from the system,
respectively, by

ṀBH ¼ −
I
r¼rH

ρ
ffiffiffiffiffiffi
−g

p
urdS; ð13Þ

Ṁeje ¼
I
r¼ro

ρ
ffiffiffiffiffiffi
−g

p
urdS; ð14Þ

where g denotes the determinant of the spacetime metric,
dS ¼ dθdφ, and we choose the extraction radius of the
ejected matter as ro ¼ 5000rg. We integrate these quan-
tities in time to get the total mass swallowed by the black
hole and that of the ejecta as

ΔM� ¼
Z

dt ṀBH; ð15Þ

Meje ¼
Z

dt Ṁeje: ð16Þ

In the same way, the quantities associated with the angular
momentum and energy can be calculated by replacing
ρ

ffiffiffiffiffiffi−gp
ur to ρhuφ

ffiffiffiffiffiffi−gp
ur and −ρhut

ffiffiffiffiffiffi−gp
ur, respectively.

We denote the infall rates of the angular momentum and
energy into the black hole by J̇BH and ĖBH, respectively,
and the ejection rate of the energy by Ėeje. From Ėeje and
Ṁeje, we define the average velocity of the ejecta as

veje ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

��
Ėeje

Ṁeje

�
− 1 −Wo

�s
; ð17Þ

where Wo denotes the specific gravitational potential
energy for which we simply set Wo ¼ GMBH=ro. Time
averaging is denoted by h� � �i, which is taken because
Ėeje=Ṁeje varies in a short timescale. In the above defi-
nition, we supposed that the internal energy of the ejecta is
much smaller than the kinetic energy at large radii. In
our present setup, we find Ėeje=Ṁeje > 1þWo for most
cases; hence, the ejecta velocity is measured. However,
for αvis ¼ 0.01 or χ < 0, Ėeje=Ṁeje can be close to or less
than 1þWo in a late stage of the evolution, although for
most stages, we can still measure the ejecta velocity
(cf. Sec. IV C).
We analyze the mass of the inflowing matter at each

radius r by defining

Ṁ�ðrÞ ¼ −
I
r
ρ

ffiffiffiffiffiffi
−g

p
urdS; ð18Þ

ΔM�ðrÞ ¼
Z

dtṀ�ðrÞ: ð19Þ

These quantities are considered as the “net” inflow mass [if
Ṁ�ðrÞ is positive]. We also define the “gross” mass infall
rate of the inflowed matter, i.e., only with ur < 0, by

Ṁin� ðrÞ ¼ −
I
r;ur<0

ρ
ffiffiffiffiffiffi
−g

p
urdS: ð20Þ

From Ṁ�ðrÞ and Ṁin� ðrÞ we can evaluate the outflow rate at
r by Ṁout� ðrÞ ¼ Ṁin� ðrÞ − Ṁ�ðrÞ. In the following, we pay
particular attention to the normalized quantities such as
ΔM�=M� and ΔM�ðrÞ=M�, where M� denotes the initial
total baryon mass.
Using the quantities at the black hole horizon, we can

determine the evolution of the dimensionless spin of the
black hole by [27]

Δχ ¼ GM2
BHχ þ ΔJBH

GðMBH þ ΔEBHÞ2
− χ

≈
ΔJBH − 2χΔEBHGMBH

GM2
BH

; ð21Þ

SHIBATA, KAWAGUCHI, and LAM PHYS. REV. D 111, 083042 (2025)

083042-4



where ΔJBH and ΔEBH are obtained by the time integral of
J̇BH and ĖBH, respectively, and we supposed that
ΔEBH ≪ MBH. Equation (21) is written in the form of
the time evolution of the dimensionless spin χ̇ as

χ̇ ≈
J̇BH − 2χĖBHGMBH

GM2
BH

; ð22Þ

and thus, we monitor a dimensionless quantity defined by

ζ ≔
J̇BH − 2χĖBHGMBH

GMBHṀBH
ð23Þ

to analyze whether the black hole spins up (ζ > 0) or
down (ζ < 0).
We note that, if the matter falls into a black hole

adiabatically from the innermost stable circular orbit,
ζ is written as ζ ¼ ζISCO ¼ lISCO=rg − 2χeISCO, where

lISCOð≥ 2rg=
ffiffiffi
3

p Þ and eISCOð≥ 1=
ffiffiffi
3

p Þ are the specific
angular momentum and specific energy, respectively, of
a test particle at the innermost stable circular orbits. ζISCO
depends on χ [28,29] but it is always positive for −1 ≤
χ < 1 (ζBH ¼ 0 for χ ¼ 1).

IV. RESULTS

A. General feature

Irrespective of the torus configuration and black hole
spin, the torus universally evolves by the viscous effect
broadly in the following manner if l is not extremely small
as l≲ 5rg: A substantial fraction of the matter initially
located for R≲ rc ≈ l2=rg falls into the black hole, while a
fraction of the matter in the outer region of R > rc falls
toward the black hole and another substantial fraction
simply spreads outward, eventually becoming ejecta.1

Here, the mass ejection is driven by the viscous heating
of the matter located in the vicinity of the black hole for
which the viscous heating is most efficient, as we found in
our previous work [30]: The generated heat near the black
hole produces a hot bubble at the inner region of the torus.
Subsequently, the hot bubble is moved outward as the
convective motion pushes the matter in the outer part of
the torus with R > rc outward. This pushing induces the
expansion of the torus, and the matter in the outer part of
the torus eventually becomes the ejecta. The mass ejection
timescale is approximately described by Eq. (3), which may
be written as

tvis
GMBH

≈ 1.8 × 105
�
αvis
0.05

�
−1

×

�
rc=rg
102

�
1=2

�
cs

109 cm=s

�
−2
: ð24Þ

We note that the mass ejection is driven by viscous
heating, which is strongest in the vicinity of the black hole.
This implies that accurately resolving the viscous matter
motion near the black hole is key to obtaining a reliable
result in this problem. We find that our results on ΔM�
depend only weakly on the grid resolution which we
employ, in particular, for αvis ≤ 0.05.
Figure 1 shows the initial mass distribution of the torus

for χ ¼ 0 as a function of r defined by

M�ðrÞ ¼
Z
r0<r

ρ
ffiffiffiffiffiffi
−g

p
utd3x0: ð25Þ

Each curve shows the results for the different values ofblð¼ 4; 6; 8; 10; 12; 15Þ, and the solid and dashed curves
denote the cases of r̂out ¼ 104 and 103, respectively. The
circles and triangles show the total mass swallowed into the
black hole, ΔM�, obtained by the numerical simulations
with αvis ¼ 0.05. This figure shows that the circles and
triangles are located at r ¼ rc–2rc for bl ≥ 6, indicating that
only the matter located within rc is swallowed into the
black hole. On the other hand, for the small values of bl such
as bl ¼ 4, a substantial amount of the matter with ≳0.2M�
falls into the black hole even from far outside of the radius
of rc. This is reasonable because bl ¼ 4 is close to the value

10-2

10-1

100

101 102 103

M
*(

r)
 / 

M
*

r / MBH

l=4MBH
l=6MBHl=8MBHl=10MBHl=12MBHl=15MBH

FIG. 1. The profile ofM�ðrÞ in units of the entire massM� as a
function of r=rg for a variety of bl with χ ¼ 0 and r̂out ¼ 104

(solid curves) and 103 (dashed curves). We note that the curves
are not modified significantly even if we change the dimension-
less spin. The circles and triangles show the numerical results for
the mass fraction of the matter that is swallowed into the black
hole, obtained in this paper for αvis ¼ 0.05, and are located at
rc–2rc for bl≳ 6. Here, rc denotes the radius of the density
maximum on the equatorial plane.

1See the animations for the evolution of the rest-mass density:
https://www2.yukawa.kyoto-u.ac.jp/∼Emasaru.shibata/05t08.gif
and https://www2.yukawa.kyoto-u.ac.jp/∼Emasaru.shibata/
05t08l.gif (wider region) for the models with χ ¼ 0.8, bl ¼ 10,
and αvis ¼ 0.05.
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at the innermost stable circular orbit (blICSO ¼ lISCO=rg,

which is 2
ffiffiffi
3

p
for χ ¼ 0), and hence, a small fraction of the

angular momentum transport for the matter can induce the
matter infall into the black hole.
Figure 2 plots the evolution of the mass that falls inside

a radius of r, ΔM�ðrÞ, as a function of time [t5 ≔
t=ð105GMBHÞ] for a variety of r for the models with
χ ¼ 0, r̂out ¼ 104, αvis ¼ 0.05, and bl ¼ 6 (left) and bl ¼ 10
(right). We note that ΔM�ðrÞ is obtained by the sum of
both the inflow and outflow components. Both the left
and right panels show that, for r≲ rc, which is, respec-
tively, ∼30rg (left) and ∼100rg (right), the values of
ΔM�ðrÞ are approximately identical for each case. This
appears to indicate that once the matter falls inside rc, it
might eventually fall into the black hole, but, actually, this
interpretation is not correct (see below). Figure 2 also
shows that, for large values of r with r > rc, ΔM�ðrÞ is
negative, implying that most of the matter located initially
in the outer region is ejected from the system (this is indeed
the case; see below). These features are universally seen
irrespective of the values of χ, bl, r̂out, and αvis. For bl≳ 10,
we always find that ΔM�ðrÞ < 0 for r≳ rc; the matter
located in such an outer region is simply ejected from
the system.
The top and middle rows of Fig. 3 show snapshots of

Ṁ�ðrÞ at selected time slices for ðbl; χÞ ¼ ð10; 0Þ (top left),
(10, 0.95) (top right), (15, 0) (middle left), and (15, 0.95)
(middle right). For all the cases, r̂out ¼ 104 and αvis ¼ 0.05.
We note again that Ṁ�ðrÞ is obtained by the sum of both the
inflow and outflow components. The solid and dashed
curves are plotted when Ṁ�ðrÞ is positive and negative,
respectively. Since Ṁ�ðrÞ varies with time, we take the
simple average for the time interval of ½t − Δt; t�, where
Δt ≈ 3000GMBH. It is found that, irrespective of l and χ,
Ṁ�ðrÞ is approximately constant at given time in an inner
region of ≲30–80rg [31–37], although the mass accretion

rate decreases with time in our present setting. Again, this
appears to indicate that the mass ejection from the inner
region might be minor, but this is not the case (see below).
Ṁ�ðrÞ is smaller for larger values of χ at given time,
reflecting the fact that the mass accretion is suppressed by
the corotating spin effect because the innermost stable orbit
is closer to the black hole for the larger values of χ
(cf. Sec. IV B).
For the majority of the outer region with r > rc≈

100rg–200rg, Ṁ�ðrÞ is always negative, showing that a
substantial fraction of the matter initially located in such
outer regions is ejected from the system. The peak value of
Ṁ�ðrÞ for the ejecta component decreases with the ejecta
going outward. This implies that a faction of the matter falls
back toward the central region. However, the majority of
such matter is ejected from the central region again by the
viscous heating. These ejecta components are seen as the
second and third peaks of the dashed curves at later stages
of the evolution in Fig. 3.
To clarify how the matter is actually outflowed from the

torus, we compare Ṁ�ðrÞ (net inflow rate) and Ṁin� ðrÞ
(gross inflow rate) for ðbl; χÞ ¼ ð15; 0Þ (left) and (15, 0.95)
(right) in the bottom two panels of Fig. 3. The difference,
Ṁin� ðrÞ − Ṁ�ðrÞ, is considered as the outflow rate. It is
found that Ṁ�ðrÞ is approximately equal to Ṁin� ðrÞ only in
an innermost region of r ≤ rcap, where rcap ≈ 2rICSO ¼
12rg and ≈3.9rg for χ ¼ 0 and 0.95, respectively. Here
r̂ISCO ≔ rISCO=rg depends strongly on χ (see also Figs. 7
and 8 for χ ¼ �0.8). This shows that only the matter
captured in the innermost region of ≲rcap is swallowed by
the black hole without outflow. This implies that a sub-
stantial fraction of the matter moves inward inside r ¼ rc,
but the majority is ejected from the system for r≳ rcap.
This result is essentially the same as in a Newtonian
simulation [38]. rcap does not depend on the equations
of state and αvis; i.e., it is determined purely by the general
relativistic gravity (see subsequent subsections).
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Outside the capture radii rcap, Min� ðrÞ is a slowly
increasing function of r; compare with the dashed slope
of ∝ r1=2 which indicates that the flow is convective
dominant [37–42]. We will discuss the dependence of
Min� on r in more detail in Sec. IV B. For r≳ 3rcap, Ṁ�ðrÞ is
much smaller than Ṁin� ðrÞ; thus, the inflowed rate is
comparable to the outflowed rate; i.e., a majority of the
inflowed matter is eventually ejected for r≳ 3rcap. For

r≳ rc, Ṁ�ðrÞ ≤ 0. This implies that most of the matter
initially located in the outer region is eventually ejected
from the system.
The captured region is smaller for the larger values of χ

(see Sec. IV B), for which the radius of the innermost stable
circular orbit is smaller and the viscous heating rate can be
higher. As a result of these effects, the mass ejection rate
becomes higher.
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FIG. 3. Mass infall (outflow) rates Ṁ�ðrÞ as functions of r=rg at selected time slices for ðbl; χÞ ¼ ð10; 0Þ (top left), (10, 0.95) (top
right), (15, 0) (middle left), and (15, 0.95) (middle right). The solid and dashed curves are plotted when Ṁ�ðrÞ is positive and negative,
respectively. The bottom two panels show the comparison of the net mass infall rate, Ṁ�ðrÞ (dashed curve), and gross one, Ṁin� ðrÞ (solid
curve), for ðbl; χÞ ¼ ð15; 0Þ (left) and (15, 0.95) (right). For all the cases, r̂out ¼ 104 and αvis ¼ 0.05. t5 denotes t=ð105GMBHÞ. The
vertical dashed lines and dashed slopes in the bottom two panels denote r ¼ 2rISCO and ∝ r1=2, respectively.
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In an intermediate region around r ∼ rc, the variability of
the mass accretion (and ejection) rates is high. This reflects
the fact that for such a region both mass inflow and ejection
occur in an irregular manner. In the late stage of the
evolution, the mass inflow is caused by the fallback of
the matter.
The local viscous heating rate is approximately propor-

tional to GMBHṀin� ðrÞ=r. Since Ṁin� ðrÞ is approximately
constant for r≲ rcap, the viscous heating rate is propor-
tional to r−1 and is higher for smaller values of r. This is the
reason that the convective motion is induced from the
innermost region of the torus. It is also worth noting that it
is essential to resolve the matter motion and viscous heating
in the vicinity of the black hole in this problem. Newtonian
and pseudo-Newtonian simulations often excise the inner
region far from the black hole radius and impose an
artificial boundary condition on the excised radius (e.g.,
Refs. [37,42]). In such simulations, the viscous heating is
likely to be underestimated; thus, the mass accretion
fraction may be overestimated.

B. Dependence of ΔM� on l, χ , and αvis

Figure 4 plots the total mass fraction of the matter

swallowed into the black hole, ΔM�=M�, as a function of bl
with αvis ¼ 0.05. We find that the mass fraction depends
appreciably on the dimensionless spin of the black hole; it
increases by a factor of several if we change it from χ ¼ 0.9
to −0.8. This factor is, in particular, large for small values

of bl. We find that the corotating spin significantly sup-
presses the matter infall into the black hole.
We also find that the mass infall fraction decreases

systematically with the increase of bl. For r̂out ¼ 104 and
103 the dependence is approximately described by l−1 and
l−0.9, respectively. This shows that, for a swarm of matter
with larger specific angular momentum, the mass infall into

the black hole is suppressed. An implication of this result
will be discussed in Sec. V.
Our results for the mass fraction that falls into the black

hole, Oð0.1Þ, agree broadly with the results by radiation
magnetohydrodynamics simulations in general relativity
[33,34], which also find that only a small fraction of the
torus matter falls into the black hole, while a substantial
fraction is ejected from the system. Our results are also
consistent with viscous radiation hydrodynamics results for
the high-mass accretion cases [35], which shows that the
mass infall fraction decreases below 0.1 with the increase of
the mass injection rate, i.e., with the decrease of the
radiation cooling efficiency.
To quantify a strong dependence of the mass fraction of

the matter swallowed into the black hole on the dimension-
less spin χ, we plot ΔM�=M� for bl ¼ 10 with r̂out ¼ 103

and 104 as functions of χ as an example in Fig. 5. This
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shows that ΔM�=M� indeed depends significantly on the
dimensionless spin; high dimensionless spins corotating
with the torus suppress the fraction of the matter that falls
into the black hole. This suggests that the growth of the
black hole would be achieved predominantly by the infall
of the matter for which the direction of the angular
momentum is opposite to the black hole spin.
Together with the numerical data, we plot the curves that

approximately reproduce the numerical data in Fig. 5.
These curves are derived based on the numerical results
of Fig. 3 (see also the discussion below), which indicate
that Ṁ�ðrÞ at the event horizon is determined by Ṁin� at
r ¼ rcap ≈ 2rISCO. Since Ṁin� ∝ rb, where b ≈ 0.5–0.7 (see
below), we may expect that ΔM�=M� is also proportional
to rbISCO under the condition that the mass injection at large
radii is approximately identical (irrespective of the value of
χ). In Fig. 5 we plot Ar̂0.7ISCO, where A ¼ 0.0325 and 0.0162
for r̂out ¼ 103 and 104, respectively. It is found that these
curves work very well as a fitting formula. Therefore, for a
given density profile, we can say that ΔM�=M� is approx-
imately proportional to l−1r0.7ISCO (unless bl is very small).

Note that the power of 0.7 is slightly larger than b. The
reason for this is that (i) the value of b is slightly larger for
higher values of χ and (ii) the capture radius is not exactly
2rISCO but it is slightly smaller and larger for higher and
lower values of χ, respectively; e.g., for χ ¼ 0.95, rcap ≲
2rISCO but for χ ¼ 0, rcap ≳ 2rISCO (cf. also Figs. 7 and 8).
Figures 4 and 5 also indicate that ΔM�=M� depends on

r̂out for a given value of bl. For the change from r̂out ¼ 103

to 104, it becomes about half. Thus, ΔM�=M� may be
written approximately as Âbl−1r̂ISCO with Â being a factor
of order 0.1 that depends on the initial density distribution
of the torus (for the tori studied in this paper Â ≈ 0.33 and
0.16 for r̂out ¼ 103 and 104).
Next, we discuss the dependence of ΔM�=M� on the

viscous parameter αvis. The upper panels of Fig. 6 plot
ΔM�=M� as a function of time for bl ¼ 10 and r̂out ¼ 104

with αvis ¼ 0.01, 0.02, 0.05, 0.10, and χ ¼ 0.8 (left, solid),
with αvis ¼ 0.01, 0.02, 0.05, and χ ¼ 0 (left, dashed) and
for bl ¼ 6 and χ ¼ 0.8 with αvis ¼ 0.01, 0.02, 0.05, and
r̂out ¼ 104 (right, solid) and 103 (right, dashed). For
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αvis ¼ 0.1, the value is typically about twice as large as that
for αvis ≤ 0.05. A high-mass infall rate for the high value of
αvis is found in the early stage of the torus evolution, i.e., by
an initial impact of the viscous effect; thus, it may be an
artifact due to the initial setting. By contrast, for
αvis ≤ 0.05, the total mass swallowed into the black hole
depends only weakly on the viscous parameter, irrespective

of bl and r̂out, although the infalling timescale depends on it.
Thus, for αvis ≤ 0.05, the results do not appear to be
affected by the initial artificial setting, but they are
determined by the initial configuration of the torus.
For smaller values of αvis, the matter falls into the black

hole spending a longer timescale. This is simply because
the viscous timescale is longer for smaller values of αvis.
The lower panels of Fig. 6 plot the ejecta mass Meje as a
function of time for the same models of the upper panels.
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FIG. 7. The same as the bottom panels of Fig. 3 but for bl ¼ 10,
χ ¼ 0.8, r̂out ¼ 104, and αvis ¼ 0.01 (top), 0.02 (middle), and
0.05 (bottom). The dashed slope is ∝ r0.7 (top) and r1=2 (middle
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note that for αvis ¼ 0.01 the evolution is still in the middle of a
relaxation at t5 ¼ 0.5.

10−9

10−8

10−7

10−6

100 101 102 103 104

(d
M

*(
r)

/d
t)

 / 
M

*

r / M
BH

t5=1.0
t5=1.5
t5=2.0
t5=2.5
t5=3.0
t5=3.5

r0.6

10-9

10-8

10-7

10-6

100 101 102 103 104

(d
M

*(
r)

/d
t)

 / 
M

*

r / MBH

t5=1.0
t5=1.5
t5=2.0
t5=2.5
t5=3.0
t5=3.5

r0.6

10−9

10−8

10−7

10−6

100 101 102 103 104

(d
M

*(r
)/

dt
) 

/ M
*

r / MBH

t5=1.0
t5=1.5
t5=2.0
t5=2.5
t5=3.0
t5=3.5

r0.7

FIG. 8. The same as the top panels of Fig. 7 (i.e., bl ¼ 10,
r̂out ¼ 104, and αvis ¼ 0.01) but for χ ¼ −0.8 (top), 0 (middle),
and 0.95 (bottom) with t5 ≥ 1. For the top, middle, and bottom,
the dashed slope is 0.6, 0.6, and 0.7, respectively.

SHIBATA, KAWAGUCHI, and LAM PHYS. REV. D 111, 083042 (2025)

083042-10



These plots clearly show that, for smaller values of αvis, the
mass ejection timescale (i.e., viscous timescale) is longer,
although the final ejecta mass depends only weakly on αvis.
Figure 7 shows the same as the bottom panels of Fig. 3

but for bl ¼ 10, χ ¼ 0.8, r̂out ¼ 104, and αvis ¼ 0.01 (top),
0.02 (middle), and 0.05 (bottom). The dashed slope is ∝
r0.7 for the top panel and r1=2 for the middle and bottom
panels. Again, we find that Ṁ�ðrÞ and Ṁin� ðrÞ agree with
each other (i.e., no outflow) inside the capture radius
of r≲ rcap ≈ 2rISCO ≈ 5.8rg, and for r≳ rcap, Ṁin� ðrÞ
increases with r. We can clearly identify that for rcap ≲
r≲ 100rg with αvis ¼ 0.01 or 0.02, Ṁin� is approximately
proportional to rb, where b ≈ 0.7 and 1=2 for αvis ¼ 0.01
and 0.02, respectively. This behavior is consistent with the
previous finding [37,42]. For αvis ¼ 0.05, the dependence
of Ṁin� is not well described by a power law, although the
average increase rate is roughly proportional to r1=2.
Figure 8 plots the same figure as the top panel of Fig. 7

(i.e., αvis ¼ 0.01, bl ¼ 10, and r̂out ¼ 104) but with χ ¼
−0.8 (top), 0 (middle), and 0.95 (bottom). Again the slope
of Ṁin� for rcap ≲ r≲ 100rg is approximately written as rb

with b ¼ 0.6–0.7 for t ≥ 105GMBH. Because rISCO is
smaller, the mass accretion rate on the horizon is lower
for the larger values of χ (note also that the mass injection
rate at r ∼ 200rg depends only weakly on χ). As we already
discussed, this fact primarily determines the strong depend-
ence of ΔM�=M�ð∝ r0.7ISCOÞ on χ.

C. Ejecta velocity

Figure 9 shows the average ejecta velocity veje as a

function of time for bl ¼ 10 and r̂out ¼ 104 with αvis ¼
0.01, 0.02, 0.05, and 0.10 (top), for bl ¼ 6 and r̂out ¼ 103

with αvis ¼ 0.01, 0.02, and 0.05 (middle), and for χ ¼ 0,
0.8, and 0.95 with αvis ¼ 0.05, bl ¼ 10, and r̂out ¼ 104

(bottom). For the top and middle panels, χ ¼ 0.8. The
ejecta velocity veje is initially high ∼0.1–0.2c and then
relaxes approximately to 0.01 − 0.05c. The early high
velocity is associated with the initial infall of a substantial
fraction of matter and a small amount of surrounding matter
around the torus. A part of the high-velocity matter is
ejected toward the polar region and the magnitude of
∼0.2c is in good agreement with the x-ray observational
result [43]. The relaxed velocity depends on the value of
αvis, and broadly speaking, it is higher for larger values of
αvis. The resultant typical kinetic energy of the ejecta is
∼0.05%–0.1% of the rest-mass energy of the initial mass
M�c2, unless bl is very small; forM� ¼ M⊙, it is ∼1051 erg.
Here, for larger values of χ and for the larger values of αvis,
the kinetic energy of the ejecta is slightly larger.
As discussed in Sec. IVA the mass ejection is driven

primarily for the region of r≳ rc, although the energy
injection resulting from the viscous heating is most efficient

for r≲ rcap ≈ 2rISCO. This provides a schematic picture that
the total viscous heating energy of ∼GMBHΔM�=ð2rcapÞ is
converted to the kinetic energy of the ejecta, Mejev2eje=2.
This leads to

veje ∼ ðGMBH=rcapÞ1=2ðΔM�=MejeÞ1=2: ð26Þ
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Here, ðGMBH=rcapÞ1=2 ¼ Oð0.1cÞ and ðΔM�=MejeÞ1=2 ¼
Oð0.1Þ for bl≳ 6, and hence, the expected average ejecta
velocity is of order 0.01c. We note that, for higher values of
χ, ðGMBH=rcapÞ1=2 can be larger, while ðΔM�=MejeÞ1=2 is
smaller as we found in this paper. This estimate for the
average velocity agrees broadly with the results shown in
Fig. 9. In reality, the viscous heating energy is also used to
overcome the gravitational potential energy of the matter to
be ejected; thus, the velocity should be smaller than that
obtained by the simple formula employed here.
For αvis ¼ 0.01 the ejecta velocity becomes lower than

0.01c or cannot be defined for some time span because the
matter is bound in such a stage. This reflects the fact that a
fraction of the matter, which initially moves outward, falls
toward the black hole. However, after the continuous
viscous heating near the black hole, such matter is
eventually ejected as Fig. 6 indicates.
In the late stage, the ejecta velocity tends to increase. The

reason for this is that (i) the viscous heating, which is
always more efficient near the black hole, is induced
primarily by a blob of the infalling matter, and (ii) the
matter density around the black hole becomes smaller in
the late stage; hence, the impact of the viscous heating is
strong enough to accelerate the matter to a high velocity
[cf. Eq. (26)]. Since the mass of the late-stage ejecta
component is small, this does not contribute a lot to the
total kinetic energy of the ejecta. However, such a high-
velocity component may generate a shock at a collision
with the preejected matter, modifying the overall profile of
the ejecta.
The bottom panel of Fig. 9 compares the average ejecta

velocity for χ ¼ −0.8, 0, 0.8, and 0.95 with αvis ¼ 0.05 and
r̂out ¼ 104. We note that for χ ¼ −0.8 the ejecta component
is absent around t ≈ 6 × 105GMBH; thus, veje is not defined.
This figure shows that the velocity is slightly higher for the
higher values of χ reflecting the fact that the mass ejection
is dominantly induced around r ¼ 2rcap, which is smaller
for larger values of χ. However, the effect by the black hole
spin is not as appreciable as that of the viscous coeffi-
cient, αvis.

D. Spin-up of black holes

Figure 10 shows the ζ parameter as a function of time for
χ ¼ 0.8, 0.9, and 0.95 with bl ¼ 10 and r̂out ¼ 104. The
dashed horizontal lines show the values expected for the
case that the matter adiabatically falls into the black holes
from the innermost stable circular orbit, i.e., ζ ¼ ζISCO. We
find that, for αvis ¼ 0.02, the curves are quite close to the
dashed lines, indicating that the matter falls into the black
hole from the vicinity of the innermost stable circular
orbits, approximately preserving the specific energy and
angular momentum there. For the higher value of αvis such
as 0.05, the ζ values are smaller than those for αvis ¼ 0.02,
indicating that the angular momentum transport process is

more efficient near the innermost stable circular orbits.
However, even with αvis ¼ 0.05 and χ ¼ 0.95, the ζ value
is positive; i.e., the black hole spins up by the matter
accretion. This result is in contrast to those in magneto-
hydrodynamics simulations [27,44], in which not the spin-
up but the spin-down is concluded for highly spinning
black holes. The reason for this is that, in magnetohydro-
dynamics simulations, not only the matter infall by the
(effectively) viscous effect but also by the additional
magnetohydrodynamics processes such as the Blandford-
Znajek one [45], which plays a role in extracting angular
momentum of black holes, determine the evolution of the
black hole spin.

E. Dependence of ΔM� on Γ
Figure 11 shows the evolution of ΔM�=M� for χ ¼ 0.8,bl ¼ 10, and r̂out ¼ 104 with Γ ¼ 4=3, 1.2, 1.1, and 1.05.

The solid and dashed curves denote the results with high
and standard grid resolutions, respectively. It is found that,
for the smaller values of Γ, the fraction of the matter
swallowed into the black hole increases because the viscous
and subsequent shock heating efficiency are lower for
the lower values of Γ, and as a result, mass ejection is
suppressed. This tendency is, in particular, remarkable for
Γ → 1. This result clearly reflects that the mass ejection is
driven by the viscous and subsequent shock heating effects.
We performed the simulations also for χ ¼ 0 and found
essentially the same tendency (ΔM�=M� slightly shifts
upward systematically).
We also analyze Ṁ�ðrÞ and Ṁin� ðrÞ for Γ < 4=3 and find

that irrespective of Γ the capture radius is located at
≈2rISCO. This indicates that the capture radius is
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FIG. 10. The evolution of the ζ parameter for χ ¼ 0.8, 0.9, and
0.95 with bl ¼ 10, r̂out ¼ 104, and αvis ¼ 0.02 (dashed curves)
and 0.05 (solid curves). We note that smoothing is operated for
plotting the ζ parameter because the raw curves are very
oscillatory. The dotted horizontal lines denote ζ ¼ ζISCO for
each spin.
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determined purely by the spacetime structure but not the
heating (and cooling) efficiency. By contrast, the slope of
Min� for rcap ≲ r≲ rc becomes gentler for Γ < 4=3. This is
as expected, because ΔM�=M� is larger for smaller values
of Γ while the value of rcap is fixed. The comparison
between the results with the two grid resolutions (shown in
Fig. 11) illustrates a good convergence of the numerical
results for the employed grid resolutions.

V. DISCUSSION

A. Increase of supermassive black hole mass

Here, we consider a very simple toy model for the growth
of an SMBH by the accretion of matter, which comes from
a tidal disruption of ordinary stars. For simplicity, we
employ the mass and radius of the solar-type star as an
example. The tidal disruption can happen if the periastron is
smaller than the tidal radius rt, defined in Eq. (1). Since rt
has to be larger than the horizon radius rH, we here suppose
that the black hole mass is smaller than ∼108M⊙.
Assuming that the tidal disruption typically happens at

r ¼ rt and the resulting tidal debris eventually forms an
accretion disk of a nearly circular orbit, the specific angular
momentum of the disk may be approximately written as
l ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMBHrt

p
. In this paper, we found that for such a disk/

torus, the fraction ξ ¼ ΔM�=M� ¼ Âbl−1r̂ISCO can fall into
the black hole. For χ ¼ 0, we find ξ ¼ ξ0bl−1 with
ξ0 ∼ 0.6–1.1, and in the following, we employ the value
for χ ¼ 0 as ξ0 ∼ 1.
Let N be the tidal disruption rate. Then the evolution

equation of the black hole mass may be written as

ṀBH ¼ NξM⋆: ð27Þ

Here N should depend on the mass of the SMBHs [46,47];
for lower-mass black holes, N could be higher in the

present-day galaxies. For simplicity, we bravely analyze
Eq. (27) assuming the form of N ¼ N0ðMBH=MBH;0Þ−α,
where N0 and α are constants, andMBH;0 denotes the initial
value of MBH.
Using Eq. (1), Eq. (27) is written as

ṁBH ¼ ξ0N0mα
BH;0m

1=3−α
BH

�
GM⋆

R⋆

�
1=2

; ð28Þ

where mBH ¼ MBH=M⋆, i.e., a dimensionless quantity,
with mBH;0 its initial value, and then we obtain

mBH ¼ mBH;0

�
1þ t

tN

�
3=ð2þ3αÞ

; ð29Þ

where

tN ¼ 3

ð2þ 3αÞξ0N0

m2=3
BH;0

�
R⋆

GM⋆

�
1=2

: ð30Þ

For α ¼ 0, M⋆ ¼ M⊙, and R⋆ ¼ R⊙, tN is written as

tN ≈ 2.2 × 108 yrξ−10

�
N0

10−2 yr−1

�
−1
�
mBH;0

105

�
2=3

; ð31Þ

and with larger values of α > 0, the timescale becomes
shorter. Equation (31) suggests that, for a relatively less
massive SMBH, the growth timescale can be shorter than
5 × 108 yr, which is approximately equal to the age of the
Universe at the cosmological redshift z ¼ 10 if the infall
rate of stars that can be tidally disrupted is high enough,
≳10−2=yr (i.e., the mass infall rate is 10−2M⋆=yr). The
required rate is much higher than the tidal disruption rate in
the present-day galaxies with an SMBH of mass ∼106M⊙
[46,47], but such a mass accretion rate is often assumed for
the formation of supermassive stars leading to a massive
seed of SMBHs in the early Universe [48].
If the tidal disruption rate depends only weakly on the

black hole mass and α is less than 1=3, the growth of the
black hole mass can be accelerated for t > tN as Eq. (29)
indicates. By contrast, if the infall rate of the stars decreases
with the increase of the black hole mass, the mass increase
by the tidal disruption events would be saturated. If so,
other mechanisms, such as rapid gas accretion, are neces-
sary to increase the mass of the SMBH beyond ∼106M⊙.
Equation (31) also indicates that, for SMBHs with mass
≳107M⊙, the tidal disruption and subsequent mass accre-
tion might not be an efficient mechanism for the rapid mass
growth in the early Universe because tN is likely to be
longer than the age of the Universe at high redshifts (unless
N0 is extraordinarily high).
For the present-day Universe, the tidal disruption rate is

typically smaller than 10−4=yr [46,47]. Equation (31) then
suggests that the growth timescale of the SMBH associated
with the tidal disruption is longer than the Hubble time
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FIG. 11. Evolution ofΔM�=M� for bl ¼ 10, r̂out ¼ 104, χ ¼ 0.8,
and Γ ¼ 4=3, 1.2, 1.1, and 1.05. The results with two grid
resolutions (solid curves are better resolution results) are shown.

VISCOUS ACCRETION AND EJECTION FROM TORI AROUND … PHYS. REV. D 111, 083042 (2025)

083042-13



≈1.38 × 1010 yr for MBH ≤ 2 × 105MBH. Thus, the tidal
disruption events might not contribute to the recent growth
of low-mass SMBHs.

B. Energy injection from ejecta

In this subsection, we do not always focus on torus
formation by tidal disruption, but simply assume that an
SMBH grows via mass accretion from tori. In this paper, we
find that most of the torus matter is ejected from the system
with an average ejecta velocity of a few percent of the speed
of light. The typical ejecta mass is about 1 order of
magnitude larger than the mass of the matter swallowed
into the black hole. This implies that, if the black hole of
mass MBH has grown from a seed of mass MBH;0 ≪ MBH,
the total ejecta mass would be∼10MBH with the total kinetic
energy of 10−2MBHc2; e.g., for MBH ¼ 107M⊙, the kinetic
energy is of order 1059 erg. The ejecta would subsequently
interact with the interstellar gas in the corresponding
galaxies and dissipate the kinetic energy, heating up the
interstellar matter. Thus, in the early stage of the galaxy
formation in which an SMBH grows rapidly, a significant
kinetic energy injection to the surrounding environment
should accompany it.
If the temperature of the interstellar gas exceeds ∼104 K,

cooling by the bremsstrahlung will proceed (e.g., Ref. [49]).
Assuming that the hydrogen gas number density is higher
than 1 cm−3, the cooling timescale is shorter than the age of
the Universe at the redshift 10 (∼5 × 108 yr). This implies
that the cooling is efficient. Then, assuming that matter
accretion continues for the entire phase of the SMBH
growth, the average luminosity by this cooling may be
estimated byL ∼ 10−2MBH=τ, where τ denotes the age of the
Universe at the time that the SMBH mass is MBH; thus,

L ∼ 1043 erg=s

�
MBH

107M⊙

��
τ

5 × 108 yr

�
−1
: ð32Þ

This is the average value, and in the enhanced growth epoch
of an SMBH for which τ is short (i.e., the mass accretion
rates are intermittently high), the luminosity may be much
higher. Equation (32) shows that the average luminosity by
this process is lower than the Eddington luminosity,
LEdd ≈ 1.4 × 1045 erg=sðMBH=107M⊙Þ, with which the
super-Eddington accretion disk is likely to radiate in the
accretion phase, butL is still comparable to the luminosity of
the present-day galaxies.
We note that our present results on the ejecta mass are

based strongly on the assumption of the absence of cooling
effects via photon emission during the accretion and mass
ejection processes. In the presence of radiative cooling, the
mass ejection is suppressed because the thermal energy
generated by the viscous effects should be consumed by the
photon emission. However, the result of this paper indicates
that before such a stage comes, a majority of the matter of

the torus initially present is likely to be ejected if the initial
state of the torus is dense. Thus, the estimate of L here
would be a reasonable order of the magnitude of the
luminosity resulting from the kinetic energy.

VI. SUMMARY

We performed viscous hydrodynamics simulations for
tori orbiting spinning black holes with large typical radii in
general relativity. The simulations were performed for a
long timescale of order 106GMBH, which is 1 order of
magnitude longer than the typical timescales for cutting-
edge radiation magnetohydrodynamics simulations for
accretion flows (e.g., Refs. [31,34,44,50]) and for a variety
of the specific angular momentum of the tori and dimen-
sionless spin of the black hole. In this work, we did not take
into account the cooling effects via photon emission
because we paid attention to a photon-trapped dense torus,
which is likely to be formed after tidal disruption of
ordinary stars by SMBHs or a rapid mass inflow.
We made the following findings:
(i) The fraction of the rest mass of a torus that falls into

the black hole, ΔM�=M�, is approximately propor-
tional to l−1 irrespective of the black hole spin
for bl≳ 6.

(ii) Irrespective of the initial setting, the majority of the
torus matter is ejected from the system, unless the
specific angular momentum of the torus is close
to lISCO.

(iii) For high dimensionless spins with χ ≥ 0.8, the
fraction of the mass that falls into the black hole
is often less than 10%, while more than 90% of the
mass is ejected from the system. Depending on the
dimensionless spin, the fraction of the mass infall
into the black hole changes by a factor of several.

(iv) The mass outflow is driven from a region of r≳ rcap,
where the capture radius rcap is ∼2rISCO. rcap is
determined purely by the general relativistic gravity.
For r≲ rcap, the mass outflow is absent, i.e., the
matter inside the capture radius rcap falls into the
black hole. This implies that the general relativistic
effect is essential in this problem.

(v) The gross mass infall rate Ṁin� is approximately pro-
portional to rbwith b¼ 0.5–0.7 for rcap ≤ r≲ rc. The
value of b can depend on the equation of state and
cooling efficiency (e.g., Ref. [51]).

(vi) Associated with the presence of the capture radius
and the relation of Ṁin� ∝ rb, the spin dependence of
the fraction of the mass infall, ΔM�=M�, is approx-
imately proportional to r0.7ISCO. Therefore, ΔM�=M�
is approximately written as Âbl−1r̂0.7ISCO for a given

density profile of the torus with bl≳ 6. Here Â is a
constant of order 0.1, which depends on the initial
profile of the torus.
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(vii) The velocity of the ejecta is typically a few percent
of the speed of light in the present setting which
gives ðΔM�=MejeÞ1=2 ∼ 0.1–0.3. For the larger val-
ues of αvis, the velocity is slightly higher. The
resultant typical kinetic energy of the ejecta is
∼0.1% of the rest-mass energy of the initial mass.

(viii) Black holes do not spin down in viscous hydro-
dynamics at least for χ ≤ 0.95. This result is in clear
contrast to those in magnetohydrodynamics [27,44],
in which the Blandford-Znajek mechanism [45] can
significantly contribute to the spin-down at χ ∼ 0.95.

Among these findings, the approximate fitting formula,
ΔM�=M� ∝ bl−1r̂0.7ISCO, will be useful for modeling the
growth of the SMBH mass.
In this paper, we did not take into account the radiation

transfer effects. In the late phase of the accretion, the
density of the torus becomes low enough to shorten the
diffusion timescale of photons, which will be shorter than
the viscous timescale. In such a phase, the cooling by the
photon emission plays an important role. In the presence of
efficient cooling, the thermal energy generated by the
viscous heating is consumed by the cooling, and as a

result, the mass ejection would be suppressed, and the
matter accretion onto the black hole would be enhanced.
However, the result of this paper indicates that, before such
a stage comes, a majority of the initial torus matter in which
photons are trapped is likely to be ejected with the ejection
velocity of a few percent of the speed of light.
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