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We present SACRA-2D, a new message passing interface and OpenMP parallelized, fully general relativistic
hydrodynamics code in dynamical spacetime under axial symmetry with the cartoon method using the
finite-volume shock-capturing schemes for hydrodynamics. Specifically, we implemented the state-of-the-
art Harten-Lax–Van Leer contact Riemann solver and found better accuracy than the standard total
variation diminishing Lax-Friedrichs Riemann solver. The spacetime evolves under the Baumgarte-
Shapiro-Shibata-Nakamura formalism with Z4c constraint propagation. We demonstrate the accuracy of
the code with some benchmark tests and excellent agreement with other codes in the literature. A wide
variety of test simulations, including the head-on collision of black holes, the migration and collapse of
neutron stars, and the collapse of a rotating supermassive star to a massive black hole and a disk, is also
performed to show the robustness of our new code.
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I. INTRODUCTION

In hydro- and magnetohydrodynamics simulations, the
finite-volume method with the high-resolution shock-
capturing (HRSC) scheme is commonly used due to its
conservative nature and capability to resolve sharp dis-
continuities, such as shocks, that often appear in the fluid’s
motion. One popular HRSC scheme is the family of the
Harten-Lax–van Leer (HLL) based approximate Riemann
solver [1], which utilizes a subset of waves in the Riemann
fan. While most existing numerical relativity (magneto)
hydrodynamics codes (e.g., [2–10]) employ the Harten-
Lax–van Leer–Einfeldt solver [11] that includes only
shocks and rarefactions, it is known to be very diffusive
[12–15] and the accuracy for long-term simulation could
be deteriorated. This is relevant for modeling the long-term
evolution of postmerger remnant from neutron star merg-
ers [16], particularly important when considering the
magnetohydrodynamical processes [17]. The authors in
[17,18] have reported a new implementation of the HLL
contact (HLLC) solver, which is a more sophisticated

Riemann solver that restores the contact discontinuity in
the Riemann fan. A recent study also demonstrates its
significance even in the inspiral phase of the binary
neutron stars, where the dynamical tidal effect on the
gravitational waveform can only be manifested with the
HLLC solver [19]. Consequently, employing the HLLC
solver (or a more accurate solver) for astrophysical
simulations is crucial for accurate (magneto)hydrodynam-
ics and gravitational wave signals.
Despite many relativistic astrophysical systems requir-

ing spatially three-dimensional simulation to fully capture
the dynamics, such numerical studies are usually compu-
tationally expensive, prohibiting us from studying a wider
range of parameters. On the other hand, we could
approximate specific systems to be axisymmetric, reduc-
ing the problem’s size to two spatial dimensions and
drastically lowering the computation cost for numerical
simulation. This allows us to follow the physical system
for a much longer timescale beyond the current capability
of three-dimensional simulations. Indeed, an axisymmet-
ric general relativistic hydrodynamics (GRHD) code with
dynamical spacetime has been used extensively to study
various astrophysical systems, such as the dynamics
of isolated neutron stars [20–22] and hypermassive neu-
tron stars [23–28], stellar collapse [29–33] and collapsar
scenario [34–38], collapse of supermassive stars [39–45],
black hole–torus system [46–48], higher-dimensional
spacetime [49], and merger remnants from binary neutron
stars and black hole–neutron stars [50–55].
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In addition to astrophysical events, there has recently
been an increasing interest in numerical relativity simu-
lations of modified theories of gravity, aiming to search for
distinctive features in the strong field regime that may
provide shreds of evidence with current and future obser-
vations. In particular, a major effort has been put into
analyzing the properties of compact objects, including
black holes and neutron stars, as well as investigating the
gravitational wave signals from the coalescence of binary
compact objects in modified gravity theories such as the
scalar-tensor theory (STT) [56–60], the scalar Gauss-
Bonnet theory [61–66], the dynamical Chern-Simon grav-
ity [67–70], and the STT with kinetic screening [71,72].
However, the three-dimensional setups are computation-
ally too costly to perform numerical experiments to survey
new theories systematically, which is particularly impor-
tant in exploring a well-posed formulation for certain
theories. While one-dimensional simulation has been
vastly used to explore the effect of the modification in
gravity (e.g., [73–78]), an axisymmetric GRHD code can
act as a bedrock for an efficient alternative to implementing
various alternative theories of gravity and helping to gain
new intuition in the regime of nonzero angular momentum.
The cartoon method has been shown to be very useful for
studying long-term dynamics, for example, core-collapse
supernova in STT [79] and the superradiant instability of a
Proca field [80,81].
This paper reports the implementation SACRA-2D, a new

message passing interface (MPI) and OpenMP parallelized,
fully relativistic GRHD code in dynamical spacetime under
axial symmetry with the cartoon method. The code is
written in FORTRAN90 with the numerical algorithm and
technique closely resembling the three-dimensional moving
box numerical relativity code SACRA-MPI [82,83]. We
implemented the Baumgarte-Shapiro-Shibata-Nakamura
(BSSN) formalism [84,85] with Z4c constraint propagation
[86,87] to solve Einstein’s equations. The finite-volume
shock-capturing scheme is employed for GRHD. Specifi-
cally, we implemented the total variation diminishing Lax-
Friedrichs (TVDLF) solver and the state-of-the-art HLLC
solver for the approximate Riemann solver.
In the following, we first outline the grid structure of

SACRA-2D in Sec. II A. We then describe the implementa-
tion for dynamical spacetime in Sec. II B, specifically the
details of the cartoon method in Sec. II B 2, followed by the
formulation for GRHD in Sec. II C. In Sec. III, we validate
our code with several benchmark test problems, addressing
the accuracy and performance of SACRA-2D. The paralle-
lization efficiency is discussed in Sec. III D. Unless
specified otherwise, we adopt the geometric unit of G ¼
c ¼ 1 throughout this paper, where G and c are the
gravitational constant and speed of light, respectively.
The subscripts a; b; c;… denote the spacetime coordinates
while i; j; k;… the spatial coordinates, respectively.

II. FORMULATION

A. Grid structure

The grid setting of SACRA-2D is very similar to that of the
“box-in-box” simulation [82,88]. We employ the two-to-
one fixed mesh refinement (FMR) structure in the computa-
tional domain, which is composed of a hierarchy of nested
concentric grids overlaying on top of each other. It consists
of L levels of FMR domains, each of which contains an
even number of grids N in both x and z directions with the
grid spacing written as

Δxð0Þ ¼ xmax=N; Δzð0Þ ¼ zmax=N;

ΔxðlÞ ¼ Δxðl−1Þ=2; ΔzðlÞ ¼ Δzðl−1Þ=2; ð1Þ

for l ¼ 1; 2;…; L − 1, where xmax and zmax are the size of
computational domain, and levels 0 and (L − 1) represent
the coarsest and finest levels, respectively. The metric and
hydrodynamics variables are assigned at cell-centered
positions with coordinates

xðlÞj ¼
�
j −

1

2

�
ΔxðlÞ; zðlÞk ¼

�
k −

1

2

�
ΔzðlÞ; ð2Þ

for j; k∈ ½1; N� on the lth FMR level. The cell interfaces

xðlÞj�1=2 and zðlÞk�1=2 are located at xðlÞj � ΔxðlÞ=2 and

zðlÞk � ΔzðlÞ=2, respectively.
In addition to the local N grid cells, extra buffer cells are

necessary for calculating derivatives with finite different
schemes and reconstructing the hydrodynamics variables.
For sixth-order accuracy in spatial derivative, four buffer
zones are required to handle the lopsided finite difference
for the advection term (see Sec. II B) as well as the
prolongation scheme at the refinement boundary. We also
allocate an additional four buffer cells on top of the original
four buffer zones to facilitate the adaptive time update in
the time integration scheme (see Sec. II D for more details).
Therefore, in SACRA-2D, we set up a total of (4þ 4) buffer
cells in each direction for the purpose of time integration.
However, the number of buffer cells can be easily adjusted
if a higher-/lower-order scheme is used [e.g., (3þ 3) for
fourth-order accuracy].

B. Einstein’s equations

1. Basic equations

Einstein’s equations are first formulated under the
standard Arnowitt-Deser-Misner (ADM) (3þ 1) formu-
lation [89,90], in which the line element is written in the
form of

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð3Þ
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where α and βi are the lapse function and shift vector,
respectively, and spatial three-metric γij is defined from the
spacetime metric gab as

γab ≔ gab þ nanb; ð4Þ

with na being a timelike unit normal vector orthogonal to
the spacelike hypersurface.
Then, following the BSSN formalism [84,85] with Z4c

constraint propagation [86,87], we reformulate the field
equations defining the following set of geometric variables
in Cartesian coordinates:

γ̃ij ≔ ψ−4γij; hij ≔ γ̃ij − fij; W ≔ ψ−2; ð5aÞ

K ≔ γijKij; Ãij ≔ ψ−4
�
Kij −

1

3
γijK

�
; ð5bÞ

Γ̃i ≔ −∂jγ̃ij; K̂ ≔ K − 2Θ; ð5cÞ

where ψ is the conformal factor, γ̃ij is the conformal spatial
metric, hij is the residual of spatial metric, fij is the time-
independent flat background metric, Kij is the extrinsic
curvature,Θ ≔ −naZa is a constraint in Z4 system [91–93],
and K̂ is a variable used for the evolution equations.
The evolution equations for the geometric variables in

Cartesian coordinates are given by

ð∂t − βk∂kÞW ¼ 1

3
W

�
α
�
K̂ þ 2Θ

�
− ∂kβ

k

�
; ð6aÞ

ð∂t − βk∂kÞhij ¼ −2αÃij þ γ̃ik∂jβ
k þ γ̃jk∂iβ

k −
2

3
γ̃ij∂kβ

k;

ð6bÞ

ð∂t − βk∂kÞÃij ¼ W2½αRij −DiDjα − 8παSij�TF

þ α

��
K̂ þ 2Θ

�
Ãij − 2ÃikÃj

k

�

þ Ãkj∂iβ
k þ Ãki∂jβ

k −
2

3
Ãij∂kβ

k; ð6cÞ

ð∂t − βk∂kÞK̂ ¼ 4παðSii þ EÞ þ ακΘ

þ α

�
ÃijÃ

ij þ 1

3

�
K̂ þ 2Θ

�
2
�
−DiDiα;

ð6dÞ

ð∂t − βk∂kÞΓ̃i ¼ −2Ãij
∂jαþ 2α

�
Γ̃i
jkÃ

jk

−
1

3
γ̃ij∂jð2̂K þ ΘÞ − 3

W
Ãij

∂jW − 8πγ̃ijSj

�

þ 2

3
γ̃jkΓ̃i

jk∂lβ
l þ γ̃jk∂j∂kβ

i þ 1

3
γ̃ij∂j∂kβ

k

− γ̃klΓ̃j
kl∂jβ

i − 2ακ
�
Γ̃i − γ̃klΓ̃j

kl

�
; ð6eÞ

ð∂t − βk∂kÞΘ ¼ 1

2
α

�
R − ÃijÃ

ij þ 2

3

�
K̂ þ 2Θ

�
2
�

− 8απE − 2ακΘ; ð6fÞ

where Di and Rij are the covariant derivative and the Ricci
tensor associated with γij, respectively, TF corresponds to
the trace-free part of the tensor, and ðE; Si; SijÞ are the 3þ 1

decomposition of the stress-energy tensor Tab defined by

E ≔ nanbTab; ð7aÞ

Si ≔ −γianbTab; ð7bÞ

Sij ≔ γi
aγj

bTab: ð7cÞ

The constraint damping parameter κ is chosen to be
κ ¼ 5 × 10−3M−1 in this work with M being the total mass
of the system. We also enforce the following algebraic
constraints during the evolution:

detðγ̃ijÞ ¼ 1 and γ̃ijÃij ¼ 0; ð8Þ

as the numerical error could induce violation in these
constraints. Specifically, we reset the metric variables after
each time integration given by

γ̃newij ¼ detðγ̃ijÞ−1=3γ̃ij; ð9aÞ

Wnew ¼ detðγ̃ijÞ−1=6W; ð9bÞ

Ãnew
ij ¼ detðγ̃ijÞ−1=3

�
Ãij −

1

3
γ̃ijγ̃

klÃkl

�
; ð9cÞ

Knew ¼ K þ γ̃ijÃij; ð9dÞ

to satisfy the algebraic constraints.
We adopt the standard moving puncture gauge condition

[94–96] for the lapse function and shift vector as

ð∂t − βj∂jÞα ¼ −2αK; ð10aÞ

ð∂t − βj∂jÞβi ¼
3

4
Bi; ð10bÞ
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ð∂t − βj∂jÞBi ¼ ð∂t − βj∂jÞΓ̃i − ηBBi; ð10cÞ

where Bi is an auxiliary variable and ηB is a constant
damping factor typically chosen to be ≃1=M with M being
the total mass of the system. We employ the standard initial
gauge choice for the lapse function α ¼ ψ−2 and the shift
vector βi ¼ 0 ¼ Bi for all the tests in Sec. III unless stated
otherwise.
The spatial derivatives in the right-hand side of BSSN

equations (6) are evaluated with a sixth-order central finite
difference, while the sixth-order lopsided finite difference
is used for the advection terms in the left-hand side of
Eq. (6) to guarantee the stability. To reduce high-frequency
noise, we include eighth-order Kreiss-Oliger dissipation for
geometric variables Q in x and z directions as

ðε=256ÞðΔx8∂8x þ Δz8∂8zÞQ; ð11Þ

with the damping parameter ε set to be 0.5.

2. Cartoon method

We employ the cartoon method [97–99] to impose the
axial symmetry on the geometric variables defined in the
Cartesian coordinates. Three extra layers of the computa-
tional domain are constructed upon and below the x-z plane
with y ¼ �jΔy (j ¼ 1;…; 3) as required by the sixth-order
central finite difference. Einstein’s equations are solved
only on the y ¼ 0 plane while the geometric variables
Qðx;�jΔy; zÞ on the y ¼ �jΔy planes are obtained by
first interpolating the variables Qð0Þðϖ; 0; zÞ at the same
radial distance ϖ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðjΔyÞ2

p
on the y ¼ 0 plane

using Lagrange’s formula with nine nearby points ½xj −
4Δx; xj þ 4Δx� along the x direction and then apply
rotation using the assumption of axial symmetric as

Q ¼ Qð0Þ; Qz ¼ Qð0Þ
z ;

QA ¼ ΛA
BQð0Þ

B ; Qzz ¼ Qð0Þ
zz ;

QAz ¼ ΛA
BQð0Þ

Bz ; QAB ¼ ΛA
CΛB

DQð0Þ
CD; ð12Þ

where Q, Qi, and Qij denote, respectively, the scalar,
vector, and tensor types of geometric variables, in BSSN
formulation, and ΛA

B is the rotational matrix given by

ΛA
B ¼

�
cosϕ − sinϕ

sinϕ cosϕ

�
; ð13Þ

with tanϕ ≔ �jΔy=ϖ. Note that the subscripts A and B
run x or y. The interpolated values with eighth-order
accuracy result in an expected sixth-order accuracy in
the second derivative and allow us to compute the spatial
derivative in the y direction using the finite difference
scheme in the same manner as in 3D Cartesian coordinates.
In particular, we enforce the derivatives f∂y; ∂xy; ∂yzg on

fQ;Qz;Qzzg to be zero in all equations to avoid double
precision errors arising from the arithmetic operation of
finite difference. As we set ΔyðlÞ ¼ ΔxðlÞ for all FMR
levels, the interpolation coefficients remain the same across
all the FMR levels. Hence, the coefficients can be easily
precomputed and saved for later use to speed up the
calculation.
Since the neighboring nine points xj � 4Δx are required

for the interpolation, the geometric variables located on the
extra layers y ¼ �jΔy at the edge of the FMR level with
grid points x∈ ½N þ 5; N þ 8� cannot be determined, which
causes trouble in obtaining the xy derivative ∂xy for grid
points x∈ ½N þ 1; N þ 4�. To avoid this problem, we
instead adopt the following form:

∂xyQx ¼
Qy

x2
−
∂xQy

x
; ∂xyQy ¼ −

Qx

x2
þ ∂xQx

x
; ð14aÞ

∂xyQxz ¼
Qyz

x2
−
∂xQyz

x
;

∂xyQyz ¼ −
Qxz

x2
þ ∂xQxz

x
;

∂xyQxx ¼ 2

�
Qxy

x2
−
∂xQxy

x

�
;

∂xyQyy ¼ −2
�
Qxy

x2
−
∂xQxy

x

�
;

∂xyQxy ¼
Qyy −Qxx

x2
þ ∂xQxx − ∂xQyy

x
; ð14bÞ

for the vector Qi and tensor Qij quantities located at grid
points x∈ ½N þ 1; N þ 4�. Although the coordinate singu-
larity 1=x appears in the source term of Eq. (14), it is
justified since the grid points x∈ ½N þ 1; N þ 4� are located
at the edge of the refinement boundary far from the
symmetric axis with nonzero x.

3. Boundary condition

For the outer boundary, we impose the outgoing boun-
dary condition [84] for metric variables Q located at radial
distance r in the form

QnðrÞ ¼
�
1 −

Δt
r

�
Qn−1ðr − ΔtÞ; ð15Þ

in order to preserve rQ along the characteristic curves
r − t ¼ constant. Here, Qn and Qn−1 are variables in the
current t and previous t − Δt time step, respectively, and we
interpolate Qn−1 at r − Δt with second-order Lagrange
interpolation.
Since the Z4c prescription allows the propagation and

damping of constraints by introducing the auxiliary vari-
able Θ, constraint violation will be induced at the outer
boundary and propagate inward if the boundary condition
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above is used. While one could avoid this by implementing
a constraint preserving boundary condition [100], we
instead adopt a simple treatment for Θ following [101].
We set an effective radius rZ4, beyond which the damping
parameter κ and the source term for Θ are multiplied by an
additional factor exp½−ðx2 þ z2Þ=r2Z4� to suppress the
propagation of constraint violation terms exponentially.
We typically set as rZ4 ≲ Lmax=6 equivalent to a factor of
∼10−16 at the outer boundary, which corresponds to the
same order of error as double precision. We found that this
simple treatment is good enough to maintain a stable
evolution for the long term without any significant growth
in constraint violation.

C. General relativistic hydrodynamics

1. Basic equations

This section briefly summarizes the formulation for
GRHD under 3þ 1 decomposition. We refer readers to
[102,103] for more detailed derivation.
The evolution equations for GRHD are based on the

conservation of rest-mass and stress-energy momentum
tensors,

∇aðρuaÞ ¼ 0; ð16aÞ

∇bTab ¼ 0; ð16bÞ

where ρ, ua, and P are the rest-mass density, four-velocity,
and pressure of the fluid, respectively, and

Tab ≔ ρhuaub þ Pgab ð17Þ

is the stress-energy tensor for perfect fluid with h ≔ 1þ
ϵþ P=ρ being the specific enthalpy and ϵ being the specific
internal energy. ∇a denotes the covariant derivative with
respect to gab.
We adopt the finite-volume method using the formu-

lation of, e.g., [104] in the reference metric formalism
[105,106] to solve the hydrodynamical system in cylindri-
cal coordinates ðϖ;ϕ; zÞ at ϕ ¼ 0 plane. Under such
formulation, the GRHD equations can be written in the
following conservative form:

∂tqþ 1ffiffiffî
γ

p ∂i

� ffiffiffî
γ

p
fi
�
¼ s; ð18Þ

where γ̂ij is the time-independent reference metric chosen
to be flat metric in cylindrical coordinates; here
γ̂ij ≔ fij ¼ diagð1;ϖ; 1Þ, γ̂ ≔ detðγ̂ijÞ is the determinant,
q ≔ ðqD; qSi ; qEÞ are the conservative variables defined as

0
B@

qD
qSi
qE

1
CA ¼ ψ6

0
B@

D

Si
E

1
CA ¼ ψ6

0
B@

ρw

ρhwui
ρhw2 − P

1
CA; ð19Þ

fi are the flux terms written as

fi ¼

0
B@

ðfDÞi
ðfSjÞi
ðfEÞi

1
CA ¼ αψ6

0
B@

Dv̄i

Sjv̄i þ Pδji

Ev̄i þ Pðv̄i þ βi

αÞ

1
CA; ð20Þ

with w ≔ −naua ¼ αut being the Lorentz factor measure
by an Eulerian observer, and v̄i ≔ −βi þ γijuj=ut.
Since Einstein’s equations are solved in Cartesian coor-

dinates ðx; y; zÞ at y ¼ 0 plane, the hydrodynamic variables
can be rewritten in Cartesian coordinates as ϖ ¼ x and
uϕ ¼ xuy, which is essentially the same as the conversion to
orthonormal frame in the reference metric approach [107].
The source term s ≔ ðsD; sSi ; sEÞ in Eq. (18) can then be
evaluated in Cartesian coordinates in the forms

sD ¼ 0; ð21aÞ

sSϖ ¼ P∂xðαW−3Þ −W−3ρhw2

�
∂xα − v̄i∂xβi

þW2

2
αv̄iv̄j∂xγ̃ij þ

4

W
αv̄iv̄i∂xW

�
þ ðfSϕÞϕ

ϖ
; ð21bÞ

sSϕ ¼ 0; ð21cÞ

sSz ¼ P∂zðαW−3Þ −W−3ρhw2

�
∂zα − v̄i∂zβi

þW2

2
αv̄iv̄j∂zγ̃ij þ

4

W
αv̄iv̄i∂zW

�
; ð21dÞ

sE ¼ αKijSij −W−3ρhw2v̄i∂iα; ; ð21eÞ

where the final term
ðfSϕ Þϕ
ϖ in sSϖ comes from the cylindrical

geometry (see [106] for detailed derivation of geometrical
source term). Note that we have the conservation of angular
momentum in axial symmetry. In the conservative form of
Eq. (18) with sD ¼ 0 ¼ sSϕ , the conservation of mass and
angular momentum can be satisfied numerically with
machine precision.
Here, we write down the explicit discretized form of the

volume-averaged equations in cylindrical coordinates as
follows:
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∂thqij;k ¼ hsij;k −
1

ΔVj;k

×

	�
hfiϖ

jþ1
2
;k
ΔAϖ

jþ1
2
;k
− hfiϖ

j−1
2
;k
ΔAϖ

j−1
2
;k

�

þ
�
hfiz

j;kþ1
2

ΔAz
j;kþ1

2

− hfiz
j;k−1

2

ΔAz
j;k−1

2

�

; ð22Þ

where ΔVj;k and ΔAi
j;k are the volume and the surface area

of the cell ðj; kÞ, respectively, given by

ΔVj;k ¼ 2π

Z
xjþ1

2

xj−1
2

Z
zkþ1

2

zk−1
2

xdxdz ¼ 2πxjΔxΔz; ð23aÞ

ΔAϖ
j�1

2
;k
¼ 2π

Z
zkþ1

2

zk−1
2

xj�1
2
dz ¼ 2πxj�1

2
Δz; ð23bÞ

ΔAz
j;k�1

2

¼ 2π

Z
xjþ1

2

xj−1
2

xdx ¼ 2πxjΔx; ð23cÞ

hqij;k and hsij;k are the volume average of the correspond-
ing quantities, and hfii are the surface-averaged quantities
of the flux terms at the cell interfaces.

2. Riemann solver

We adopt the HRSC scheme to handle the flux term in
hydrodynamics equations. Both TVDLF [108–110] and
HLLC [12,13,111] approximate Riemann solvers are
implemented in SACRA-2D. To obtain the numerical flux,
we first reconstruct the left and right states of the primitive
variables p ¼ ðρ; ui; P; ϵÞ with third-order piecewise para-
bolic method (PPM) [112,113] at the cell interface. Since
the metric variables are smooth, we employ Lagrangian
interpolation to calculate the values at the interface. For the
HLLC solver, we perform the tetrad transformation [17,18]
at the cell interface after reconstruction to obtain the
numerical flux.
Here, we briefly outline the procedure of the HLLC

solver and refer readers to [17,18,114] for more details on
the implementation. To evaluate the numerical flux in the x
direction, we define a tetrad basis [17,18] on the surface of
xj�1=2 as

eaðt̂Þ ¼ na ¼ 1

α
ð1;−βiÞ; ð24aÞ

eaðx̂Þ ¼ WB̂ð0; γ̃xiÞ; ð24bÞ

eaðŷÞ ¼ WD̂ð0; 0; γ̃zz;−γ̃yzÞ; ð24cÞ

eaðẑÞ ¼ WĈð0; 0; 0; 1Þ; ð24dÞ

where

B̂¼ 1ffiffiffiffiffiffi
γ̃xx

p ; Ĉ¼ 1ffiffiffiffiffiffi
γ̃zz

p ; D̂¼ 1ffiffiffiffiffiffiffiffiffiffiffi
γ̃xxγ̃zz

p ¼ B̂ Ĉ; ð25Þ

with the corresponding covariant components written as

eðt̂Þa ¼ na ¼ −ðα; 0; 0; 0Þ; ð26aÞ

eðx̂Þa ¼ W−1B̂ðβx; 1; 0; 0Þ; ð26bÞ

eðŷÞa ¼ W−1D̂ð−γ̃xyβx þ γ̃xxβ
y;−γ̃xy; γ̃xx; 0Þ; ð26cÞ

eðẑÞa ¼ W−1Ĉðβz; γ̃izÞ: ð26dÞ

This allows us to transform the primitive variables from the
Eulerian frame p to the tetrad frame p̃ by

uðâÞ ¼ eðâÞbub; ð27Þ

w2 ¼ 1þ uðîÞuðîÞ; ð28Þ

vðîÞ ¼ uðîÞ=w: ð29Þ

We can then obtain the left (L) and right (R) states of the
conservative variables q̃L=R ≔ q̃ðp̃L=RÞ and the flux terms

f̃L=R ≔ f̃ðx̂Þðp̃L=RÞ in the tetrad frame from the correspond-
ing left/right states of the primitive variables p̃L=R as

q̃ðp̃Þ ¼

0
B@

D

SðĵÞ
E

1
CA ¼

0
B@

ρw

ρhwvðĵÞ
ρhw2 þ P

1
CA; ð30Þ

f̃ðx̂Þðp̃Þ ¼

0
BBBBB@

�
f̃D
�ðx̂Þ

�
f̃SðĵÞ

�ðx̂Þ
�
f̃E
�ðx̂Þ

1
CCCCCA ¼

0
B@

Dvðx̂Þ

SðĵÞv
ðx̂Þ þ Pδðx̂ÞðĵÞ

ðEþ PÞvðx̂Þ

1
CA; ð31Þ

which essentially have the same expression as in special
relativistic hydrodynamics. Now, we can employ the HLLC
solver in the local Minkowski spacetime [13] to calculate
the numerical flux as

f̃ðx̂Þ ¼

8>>>>>><
>>>>>>:

f̃ðx̂ÞL for λL > vðx̂Þinterface

f̃ðx̂ÞcL for λL < vðx̂Þinterface < λc

f̃ðx̂ÞcR for λc < vðx̂Þinterface < λR

f̃ðx̂ÞR for λR < vðx̂Þinterface;

ð32Þ

where λc is the characteristic speed of the contact dis-

continuity, vðx̂Þinterface ¼ βx=ðα ffiffiffiffiffiffi
γxx

p Þ is the interface velocity

[17,18], f̃ðx̂ÞcL=cR and q̃ðx̂Þ
cL=cR are the intermediate states
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obtained from the jump condition

f̃ðx̂ÞcL=cR ¼ f̃ðx̂ÞL=R þ λL=R

�
q̃ðx̂Þ
cL=cR − q̃ðx̂Þ

L=R

�
; ð33Þ

and λL=R are the left/right characteristic speed given by

λL ¼ minðλðp̃LÞ−; λðp̃RÞ−Þ; ð34Þ

λR ¼ maxðλðp̃LÞþ; λðp̃RÞþÞ; ð35Þ

λ�ðp̃Þ ¼ 1

1 − v2c2s

	
vðx̂Þð1 − c2sÞ

�cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − v2Þ½1 − v2c2s − ð1 − c2sÞvðx̂Þ2�

q 

; ð36Þ

with v2 ≔ vðîÞvðîÞ and cs being the sound speed. The
characteristic speed λc can be obtained by imposing the
continuity condition of the pressure across the contact
discontinuity as [13]

�
f̃HLLE

�ðx̂Þ
λ2c −

�
EHLL þ

�
f̃HLLSðx̂Þ

�ðx̂Þ�
λc þ SHLLðx̂Þ ¼ 0; ð37Þ

where q̃HLL and f̃ðx̂Þ;HLL represent the HLL state of the
conserved quantities and flux, respectively, given by

q̃HLL ¼ λRq̃R − λLq̃L þ f̃ðx̂ÞL − f̃ðx̂ÞR

λR − λL
; ð38Þ

f̃ðx̂Þ;HLL ¼ λRf̃
ðx̂Þ
L − λLf̃

ðx̂Þ
R þ λRλLðq̃R − q̃LÞ
λR − λL

: ð39Þ

The pressure Pc in the intermediate state can be therefore
determined by

Pc ¼ PcL ¼ PcR ¼ −λc
�
f̃HLLE

�ðx̂Þ
þ
�
f̃HLLSðx̂Þ

�ðx̂Þ
; ð40Þ

and the conserved quantities in the intermediate cL=cR
states can be obtained by

DcL=cR ¼ DL=R

λL=R − vðx̂ÞL=R

λL=R − λc
; ð41aÞ

SðĵÞ;cL=cR ¼ 1

λL=R − λc

×

�
SðĵÞ;L=R

�
λL=R − vðx̂ÞL=R

�
þ ðPc − PL=RÞδðx̂ÞðĵÞ

�
;

ð41bÞ

EcL=cR ¼
EL=R

�
λL=R − vðx̂ÞL=R

�
þ Pcλc − PL=Rv

ðx̂Þ
L=R

λL=R − λc
: ð41cÞ

Once the numerical flux in the tetrad frame is evaluated, we
can eventually transform it back to the Eulerian observer
frame given by

fx ¼ −
βx

α

0
B@

D

eðîÞjSðîÞ
E

1
CAþ

ffiffiffiffiffiffi
γxx

p
0
BBBBB@

�
f̃D
�ðx̂Þ

eðîÞj
�
f̃SðîÞ

�ðx̂Þ
�
f̃E
�ðx̂Þ

1
CCCCCA: ð42Þ

3. Equation of state

We implement a hybrid equation of state (EOS) in the
current version of SACRA-2D where the pressure P and the
specific internal energy ϵ are split into the cold part
Pcold=ϵcold and thermal part Pth=ϵth as

P ¼ Pcold þ Pth; ϵ ¼ ϵcold þ ϵth: ð43Þ

The cold part is described by a phenomenological piece-
wise polytropic EOS [115] where the realistic EOS is
approximated by n pieces of polytrope depending on the
transitional density ρi. The pressure Pcold and the specific
internal energy ϵcold are parametrized by the rest-mass
density ρ as

Pcold ¼ Kiρ
Γi

ϵcold ¼ Ki
Γi−1

ρΓi−1 þ Δϵi;
for ρi−1 ≤ ρ < ρi; ð44Þ

where i runs from 1 to n with ρ0 ≔ 0, Ki and Γi are the
polytropic constant and index, respectively, and Δϵi is
determined by imposing the continuity condition on the
specific internal energy.
In addition to the cold part, we add the thermal part

adopting the Γ-law EOS given by

Pth ¼ ρðΓth − 1Þϵth; ð45Þ

where Γth is a constant typically set to 5=3 in the
present work.

4. Recovery of primitive variables

The recovery of primitive variables ðρ; ui; P; ϵÞ from
conserved variables q is nontrivial and can only be done
numerically. We implement the primitive recovery pro-
cedure for GRHDmentioned in Appendix C of [116]. Here,
we briefly outline the implementation of the recovery
procedure:
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(1) Evaluate the rescaled quantities that are fixed in the
iterations

r ≔
ffiffiffiffiffiffiffiffi
SiSi

p
D

; q ≔
E
D
− 1; k ≔

r
1þ q

: ð46Þ

(2) Set the bounds ½z−; zþ� for the root defined as

z− ≔
k=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − k2=4
p ; zþ ≔

kffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p : ð47Þ

(3) Within the interval ½z−; zþ�, we find the root of
fðzÞ ¼ 0 with the master function fðzÞ defined as

fðzÞ ≔ z −
r

ĥðzÞ ; ð48Þ

where

ĥðzÞ ≔ ð1þ ϵ̂Þð1þ âðzÞÞ;
P̂ðzÞ ≔ Pðρ̂ðzÞ; ϵ̂ðzÞÞ;

âðzÞ ≔ P̂ðzÞ
ρ̂ðzÞð1þ ϵ̂ðzÞÞ ;

ρ̂ðzÞ ≔ D
ŵðzÞ ;

ϵ̂ðzÞ ≔ ŵðzÞq − zrþ z2

1þ ŵðzÞ ;

ŵðzÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
: ð49Þ

In SACRA-2D, we numerically solve Eq. (48) using the
Illinois method for bracketing root finding. We also set an
upper limit for Lorentz factor wmax (typically set to be
wmax ¼ 100) and rescale Si whenever k exceeds a certain
upper bound following [116]. While this method is robust
and always converges to a solution, it does not guarantee
that the converged solution satisfies the physical condition.
In particular, when the obtained specific internal energy falls
below the minimum allowed values of EOS (ϵ < ϵEOSmin ), we
employ an additional primitive recovery using only the
conversed density and momentum ðD; SiÞ together with the
zero temperature EOS h ¼ hcoldðρÞ following a similar
procedure.
(1) Set the bounds ½z−; zþ� for the root defined as

z− ≔ 0; zþ ≔ r: ð50Þ

(2) Within the interval ½z−; zþ�, we find the root of
f̃ðzÞ ¼ 0 with the master function f̃ðzÞ defined as

f̃ðzÞ ≔ z −
r

hcoldðρ̂ðzÞÞ
; ð51Þ

where

ρ̂ðzÞ ≔ D
ŵðzÞ ŵðzÞ ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

p
: ð52Þ

(3) Reset the conversed energy E from primitive var-
iables.

In addition, we impose an artificial atmosphere by
defining a lower bound ρatm and reset the rest-mass density
ρ after the primitive recovery whenever it falls below the
bound ρ ¼ maxðρ; ρatmÞ to maintain stable evolution in the
low-density region. The cutoff density ρatm ≔ ρmaxfatm
depends on the initial maximum density ρmax where the
auxiliary factor fatm is typically set to be ≤ 10−15.

D. FMR setting

We adopt the fourth-order explicit Runge-Kutta scheme
(RK4) in order to evolve the metric function stably [103].
Following the time update scheme in [88], the adaptive time
step is employed using the Berger-Oliger algorithm [117].
We allow subcycling of time integration starting from level
lfix with a time step for each FMR level set to be

ΔtðlÞ ¼
	
Δtðl−1Þ; for 1 ≤ l ≤ lfix;

Δtðl−1Þ=2; for l > lfix:
ð53Þ

The parameter lfix limits the time step in the coarse levels to
avoid error induced by overlarge Δt and reduce the effect
from the outer boundary. However, it usually makes no
difference practically. The time step in the finest level
ΔtðL−1Þ is related to the grid size as

ΔtðL−1Þ ¼ cCFL minðΔxðL−1Þ;ΔzðL−1ÞÞ; ð54Þ

where the Courant-Friedrichs-Lewy (CFL) factor cCFL is
set to be 0.5 unless stated otherwise. In SACRA-2D, the
buffer zone’s (4þ 4) structure is employed, where the outer
four buffer cells ½N þ 5; N þ 8� are used for time inter-
polation between different time slices, while the inner four
buffer cells ½N þ 1; N þ 4� act as a buffer zone to dissipate
any oscillatory behavior in the time-interpolated values.
This corresponds to the ½1; N þ 4� domain for the first three
stages of RK4 time integration and ½1; N� for the last stage.
To obtain the buffer zone at the child level from its

parent, we employ the eighth-order Lagrange interpolation
for geometric variables and minmod limiter to reconstruct
the primitive hydrodynamics variables p for the prolonga-
tion in space. For the time interpolation in grid
½N þ 5; N þ 8�, we employ a second-order Lagrange inter-
polation of three time slices ftn−1; tn; tnþ1g of its parent
level for time tn < t < tnþ1. Since the buffer zone does not
affect the conservation of the hydrodynamics quantities in
the FMR setting, we interpolate the primitive variables p
and construct the conserved variables directly following
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[118] to avoid additional primitive recovery in the buffer
zone. A limiter procedure is also introduced for fluid
variables p following [82] to maintain numerical stability,
where we modify the time interpolation to first order with
time levels ftn; tnþ1g if the following relation holds:

ðpnþ1 − pnÞðpn − pn−1Þ < 0: ð55Þ

After each time matching step between the child
and parent levels, the grid values are transferred from
the child level (fine grid) to the parent level (coarse grid)
in the overlap region. More specifically, the grids
ðx; zÞ∈ ð½1; N�; ½1; N�Þ in the child level is mapped to
ðx; zÞ∈ ð½1; N=2�; ½1; N=2�Þ in the parent level. In this
restriction procedure, we employ an eighth-order
Lagrange interpolation for the geometric variables, and
the following conservative scheme [118]:

qðl−1Þ
j;k ¼ 1

ΔVðl−1Þ
j;k

X2j
m¼2j−1

X2k
n¼2k−1

qðlÞ
m;nΔVðlÞ

m;n; ð56Þ

for the conserved variables q with j; k ¼ 1;…; N=2. The
primitive recovery procedure is carried out afterward to
obtain the updated primitive variables p.
As the parent and child levels evolve in a different time

step, the numerical flux across the refinement boundary
becomes inconsistent and introduce violation of conserva-
tion in mass and angular momentum. To solve this, we store
the numerical flux of all conserved variables at the same
refinement boundary for both fine and coarse levels during
the time integration. After each level finishes the sub-
cycling and matches time with its parent level, we correct
the conserved variables next to the refinement boundary in
the coarse grid by adding the difference of numerical fluxes
between the coarse and fine interface [119–121].

E. Hybrid parallelization

SACRA-2D is hybrid parallelized by MPI and OpenMP. We
employ a simple domain-based decomposition for MPI
parallelization. Each level is divided into MMPI ×MMPI
blocks of subdomains (MMPI × 2MMPI in the absence of the
mirror symmetry with respect to the z ¼ 0 plane), where
MMPI is the number of blocks in x and z directions. The
choices of MMPI are limited by the number of grids N,
which requires N=MMPI to be an even number. OpenMP

further parallelizes the subdomains, with Nthr being the
number of OpenMP threads in each MPI rank. The total
number of cores required for the simulation is then
determined by MMPI ×MMPI × Nthr.

F. Diagnostics

1. Constraints, mass, and angular momentum

We monitor the overall constraint violations by comput-
ing the corresponding L2 norm every time step as

jjHjj2 ¼
Z

ðRþ K2 − KijKij − 16πEÞdV; ð57aÞ

jjMijj2 ¼
Z

ðDjKj
i −DiK − 8πJiÞdV; ð57bÞ

where H and Mi are the Hamiltonian and momentum
constraints, respectively. Under axisymmetry, the momen-
tum constraintsMx andMy evaluated are effectively Mϖ

and Mϕ in cylindrical coordinates, respectively.
We also compute the total baryon mass and angular

momentum as

Mb ¼
Z

D
ffiffiffi
γ

p
dV ¼

Z
W−3ρwdV; ð58aÞ

J ¼
Z

Sϕ
ffiffiffi
γ

p
dV ¼

Z
W−3ρhwuyxdV; ð58bÞ

which should be conserved. The gravitational mass and
angular momentum of the system are also obtained by
analyzing the asymptotic behavior of the geometric
quantities.

2. Extraction of gravitational wave

We extract gravitational waves from the numerical data
using the outgoing component of Newman-Penrose quantity
Ψ4 [122], which can be expressed by the electric part Eac ≔
Cabcdnbnd and magnetic part Bac ≔ 1

2
Cabefϵ

ef
cdnbnd of

Weyl tensor Cabcd as [82,123]

Ψ4 ¼ −ðEac − iBacÞm̄am̄c; ð59Þ

where ϵabcd is the covariant Levi-Civita tensor and m̄a is
part of the null tetrad ðka; la; ma; m̄aÞ. Here, ka and la are
out- and ingoing null vectors, respectively, where ma is a
complex null vector satisfying

−kala ¼ 1 ¼ mam̄a: ð60Þ

We construct a set of spherical shells at different
radii composed of Nθ cell-centered grids for θ∈ ½0; π�
(θ∈ ½0; π=2� in mirror symmetry) with grid points
defined by

θj ¼
π

Nθ

�
j −

1

2

�
; for j ¼ 1; 2 � � � ; Nθ; ð61Þ
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and extract Ψ4 on the surfaces by Lagrange interpolation.
We further decompose Ψ4 into tensor spherical harmonic
modes ðl; mÞ [88]

Ψðl;mÞ
4 ¼

Z
Ψ4Ȳ−2

l;mðθ;ϕÞdΩ; ð62Þ

where Y−2
l;m is the spin-weighted spherical harmonic func-

tion with s ¼ −2. Because of the axial symmetry, only the
m ¼ 0 modes are extracted with no ϕ dependence. We
adopt the accurate Gauss quadrature scheme for the
integration following [123].

3. Apparent horizon finder

To identify the presence of a black hole and to diagnose
its properties, we implement an apparent horizon finder in
SACRA-2D. Assuming that the apparent horizon contains the
coordinate center ðx; zÞ ¼ ð0; 0Þ, the horizon radius H can
be represented as a function of polar angle θ as r ¼ HðθÞ.
Under an axisymmetric configuration, the elliptic equation
for the radius of the apparent horizon is reduced to one
dimensional. We essentially employ the same method in
[82] to solve the equation. We note that, even if a black hole
is located along the z axis different from z ¼ 0, the finder
can find the apparent horizon by simply changing the
definition of θ.
Once the radius of the apparent horizon is determined,

we then evaluate its area AH and obtain the irreducible mass
Mirr and the angular momentum J of the black hole as

Mirr ¼
ffiffiffiffiffiffiffiffi
AH

16π

r
; J ¼ 1

8π

I
H
Kabϕ

asbdA; ð63Þ

where H corresponds to the surface of the apparent
horizon, ϕa ≔ ð∂=∂ϕÞa, and sb is the unit radial vector
normal to H. As a result, the mass of the black hole can be
determined by

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

irr þ
J2

4M2
irr

s
: ð64Þ

Once the black hole is formed, we excise the fluid
quantities by setting ui ¼ 0 and the rest-mass density to
zero for r ≤ HðθÞ=2 to avoid any potential numerical
instability that may be caused by extreme values of
hydrodynamics quantities inside the black hole.

III. NUMERICAL TEST

This section presents representative examples of the
benchmark test problems with SACRA-2D. We first examine
the metric and GRHD sectors separately with tests con-
sidering vacuum spacetime in Sec. III A and fixed back-
ground metric in Sec. III B, respectively. The code is then

fully tested in Sec. III C considering problems that co-
operate GRHD in dynamic spacetime.

A. Vacuum spacetime

1. Trumpet black hole

We first test our metric solver on a stationary spacetime.
Specifically, we consider a nonrotating black hole in the so-
called maximal trumpet coordinate, which is time inde-
pendent under BSSN formalism with the puncture gauge.
The analytic solution of the trumpet puncture black hole is
given by [124,125]

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2M
R

þ 27M4

16R4

s
; ð65aÞ

βi ¼ 3
ffiffiffi
3

p
M2

4R3
xi; ð65bÞ

W ¼ r
R
; ð65cÞ

hij ¼ 0 ¼ K; ð65dÞ

Ãij ¼
3
ffiffiffi
3

p
M2

4R3

�
δij − 3

xixj

r2

�
; ð65eÞ

where M is the mass of the black hole, r is the radial
coordinate, and R is the areal radius in Schwarzschild
metric, which is a function of r written as

r ¼
 
2RþM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2 þ 4MRþ 3M2

p

4

!

×

� ð4þ 3
ffiffiffi
2

p Þð2R − 3MÞ
8Rþ 6M þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8R2 þ 8MRþ 6M2

p
�1= ffiffi2p

: ð66Þ

In this coordinate, r ¼ 0 corresponds to an areal radius
of R ¼ 3M=2, and the event horizon radius is located
at r ≈ 0.78M. To evolve the trumpet data, we use a
gauge condition consistent with the staticity of the solution
[126] as

∂tα ¼ −αð1 − αÞK; ð67aÞ

∂tβ
i ¼ 3

4
Bi; ð67bÞ

∂tBi ¼ ∂tΓ̃i − ηBBi; ð67cÞ

with a damping parameter ηB ¼ 1=M. The slicing condition
in Eq. (67), compared to the standard 1+log gauge without
advection, gives a lower propagation speed of gauge waves.
We found that the numerical result is closer to the analytical
trumpet solution under Eq. (67) due to a smaller effect from
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the gauge dynamics. We perform numerical evolution of
the trumpet data on a computation domain of Lmax ¼
1600M and 11 FMR boxes with different grid resolutions
with N ¼ 64, 128, and 256, which corresponds to the grid
spacing of Δx ¼ Δz ¼ 0.0244M; 0.0122M, and 0.0061M,
respectively, on the finest level with L ¼ 1.56M.
Although the metric variables should remain unchanged

analytically under this gauge condition in the trumpet
solution, numerical errors from the finite difference scheme
and interpolation across the refinement boundaries will
induce deviations from the initial values during the evo-
lution. We evolve the trumpet data up to t ¼ 195M and
extract the relative error of W, α, and βr as well as the
Hamiltonian constraint violation on the x axis at z ¼ 0 as
shown in Fig. 1. Regardless of the resolutions, a spike in
relative errors appears at x ≈ 30M, possibly caused by an
outgoing gauge wave. This could introduce additional noise

and induce a loss of convergence [127]. We can recover an
expected sixth-order convergence for metric variables, in
general, while a roughly fourth-order convergence is found
for region x≲ 30M where the gauge wave has passed
through. Since we start from time-independent initial data
that minimize gauge dynamics, the Hamiltonian constraint
violations do not contain nonconvergent spikes induced by
the gauge evolution that appeared in [127], and convergent
results are obtained. In addition, the relative errors and
constraint violation show regularly spaced spikes on a
logarithmic space scale in between x ≈ 100M and 1000M,
which is a common feature for mesh refinement structure as
the metric variables experience the sudden change in grid
spacing across the refinement boundary.

2. Spinning black hole

To further test our metric solver in a system with nonzero
angular momentum, we evolve a near-extreme-spin black
hole with the dimensionless spin parameter χ ¼ 0.95. We
adopt the spinning black hole in quasi-isotropic coordinates
under a new radial coordinate r introduced in [128] defined
by

rBL ¼ r

�
1þ rþ

4r

�
2

; ð68Þ

where rBL is the radial coordinate in Boyer-Lindquist
coordinates, r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the Boyer-Lindquist

radii of inner (−) and outer (þ) horizons of the black hole,
andM and a are the black hole mass and spin, respectively.
The event horizon in this radial coordinate is given by

rh ¼
1

4
ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
Þ; ð69Þ

which goes to a finite radius M=4 when the black hole
approaches the maximum spin a ¼ M. This gives better
initial data for near-extreme-spin black holes compared to
quasi-isotropic coordinates in [129], in which the coordi-
nate radius of the event horizon drops to zero for a → M.
The corresponding metric components are written as

ð3Þds2 ¼ Σðrþ rþ
4
Þ2

r3ðrBL − r−Þ
dr2 þ Σdθ2 þ Ξ

Σ
sin2 θdϕ2; ð70aÞ

Krϕ ¼ Kϕr ¼
Ma sin2 θ

Σ
ffiffiffiffiffiffiffi
ΞΣ

p
�
1þ rþ

4r

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rðrBL − r−Þ
p

½3r4BL þ 2a2r2BL − a4 − a2ðr2BL − a2Þ sin2 θ�; ð70bÞ

Kθϕ ¼ Kϕθ ¼ −
2a3MrBL cos θ sin3 θ

Σ
ffiffiffiffiffiffiffi
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FIG. 1. The top three panels show the relativity error of
W ≔ ψ−2, lapse function α, and shift vector βr along the x axis
extracted at t ¼ 195M for three different grid resolutionsN ¼ 64,
128, and 256. The green dashed lines indicate the error of N ¼
128 scaled up by 26 times. The bottom panel shows the
corresponding absolute violation of Hamiltonian constraints on
the same slice. The black dotted vertical lines indicate the
location of the refinement boundaries.
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where Σ ¼ r2BL þ a2 cos2 θ, Δ ¼ r2BL − 2MrBL þ a2, Ξ ¼
ðrBL − a2Þ2 − Δa2 sin2 θ, and ð3Þds2 is the spatial line
element.
We transform the metric variables to the Cartesian

coordinates on the y ¼ 0 plane and simulate with
a ¼ 0.95M. The computational domain is set to be xmax ¼
zmax ¼ 2048M with ten FMR levels and three grid reso-
lutions N ¼ 200, 300, and 400, which correspond to
Δx=M ¼ 0.02, 0.0133, and 0.01, respectively, with the
box size L ¼ 4M at the finest level. We evolve the initial
data using the moving puncture gauge of Eq. (10) with the
gauge parameter ηB ¼ 1=M. In this configuration, while the
black hole spacetime remains stationary, the spatial hyper-
surface will still evolve under the dynamical gauge con-
ditions and eventually approaches the trumpet puncture
[130–134].
The upper panel of Fig. 2 shows the relative error of the

mass M and the spin a of the black hole measured for the
apparent horizon. As we increase the resolution, the relative
error drops and reaches ∼10−4 for the highest resolution
with convergence approximately at sixth order. On the
other hand, the coordinate equatorial req and polar rp radii
of the apparent horizon evolve under the moving puncture
gauge and eventually approach constant values of req ¼
0.428M and rp ¼ 0.281M as shown in the bottom panel of
Fig. 2. Although both req and rp are gauge-dependent
quantities, the values of req and rp drop as a result of the
hypersurface approaches the trumpet slice of the near-
extreme-spin black hole.

3. Black hole head-on collision

To explore the convergence of gravitational waves
numerically extracted, we perform a test simulation of
the head-on collision of two nonspinning black holes.
Under axial symmetry, we can set up the Brill-Lindquist
initial data [135] which consist of two equal-mass black
holes in isotropic coordinates located on the rotational axis
(z axis) separated by a distance of 2b in the form of

ψ ¼ 1þ M0

2rþ
þ M0

2r−
; ð71Þ

where M0 is constant and

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðz� bÞ2

q
: ð72Þ

is the radial coordinate distances from the black hole
punctures (with y ¼ 0).
We pick b ¼ M=2 ¼ M0 following [126] and start the

simulation under mirror symmetry. Here, M is the total
ADM mass of the system, which also defines the unit of
length. In this setup, two black holes are not initially
enclosed by the common horizon [136] but merge during
the time evolution. The computational domain is set as
xmax ¼ zmax ¼ 1024M with 11 FMR levels, which corre-
sponds to the size L ¼ 1M in the finest box. We perform
the simulations with three grid different resolutions N ¼
64 (low), 128 (med), and 192 (high) with corresponding
resolutions of Δx=M ¼ 0.015625, 0.0078125, and
0.005208, respectively, in the finest level. The nonspinning
black holes are released from rest, accelerating toward
each other along the polar axis, and then collide head-on at
the origin, forming a perturbed black hole that promptly
rings down to a stationary state by emitting gravita-
tional waves.
Figure 3 shows the accompanying gravitational waves

signals extracted at rex ¼ 30M as a function of retarded
time tret defined by [83,137]

tret ¼ t −
�
Dþ 2M ln

�
D
2M

− 1

��
; ð73Þ

where D ≈ r½1þM=ð2rÞ�2 is the areal radius of the
extraction sphere. The resultant ringdown waveform emit-
ted after the merger forms an exponentially damped
oscillation with frequency Mω ≈ 0.3737 − 0.0890i
[126,138] in the dominant ðl; mÞ ¼ ð2; 0Þ mode. The top
panel shows the ðl; mÞ ¼ ð2; 0Þ mode of Ψ4 in three
different grid resolutions, which are all consistent with
the analytical frequency. In addition, the bottom panel of
Fig. 3 indicates the absolute errors between the low
(Δx ¼ 0.015625M) and high (Δx ¼ 0.005208M) resolu-
tions as well as the medium (Δx ¼ 0.0078125M) and high
(Δx ¼ 0.005208M) resolutions as blue and orange solid

FIG. 2. Upper: the relative error of black hole mass (solid) and
dimensionless spin (dashed) as functions of time with the initial
value of χ ¼ 0.95. Lower: the evolution of equatorial (solid) and
polar (dashed) radii of the apparent horizon in the coordinate
radius. The initial radius of the apparent horizon is located at
r ¼ 0.328M. The blue, green, red, and cyan lines indicate the
result from N ¼ 200, 300, and 400, respectively.
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lines, respectively. To examine the order of convergence,
we scale up the absolute difference between the medium
and high resolutions by a factor of ð0.0156256 −
0.0052086Þ=ð0.00781256 − 0.0052086Þ ¼ 70.06 as shown
in the orange dashed line, which agrees approximately
with the blue solid line, suggesting the sixth-order con-
vergence in the waveform. Note that the absolute error of
Ψ4 rises, and the convergence is lost for tret ≳ 40M. This is
likely caused by the reflection of the outgoing gravitational
wave at the refinement boundaries in the coarse domains
for which the wavelength of gravitational waves are not
well resolved.

B. GRHD with fixed spacetime

In this section, we consider test problems with a fixed
background metric in both flat Minkowski spacetime and
curved spacetime (so-called Cowling approximation),
focusing on the hydrodynamics sector to validate our
Riemann solver and reconstruction scheme, as well as
examining the convergence of the hydrodynamics solver
(see also the Appendix for the discussion of the carbuncle
phenomenon in the HLLC solver).

1. One-dimensional shock-tube test

We carry out a one-dimensional shock-tube test problem
following [139], which is commonly used to test the
performance of the Riemann solver and reconstruction
scheme. For this test, the cylindrical coordinates in SACRA-

2D are converted to the Cartesian coordinates. Under this
setup, the background metric is reduced to the Minkowski

flat spacetime with coordinate vector acting as the tetrad
basis, thus allowing us to validate our HLLC solver. We
consider ideal gas law P ¼ ρðΓ − 1Þϵ with Γ ¼ 5=3 giving
the initial left and right states by

ðρ; P; vÞ ¼
	 ð10; 40=3; 0Þ for x < 0.5;

ð1; 0; 0Þ for x > 0.5;
ð74Þ

where v is the velocity in the x direction, i.e., v ¼ ux=ut.
The computational domain is set to be x∈ ½0; 1� with the
grid resolution of N ¼ 800 (Δx ¼ 0.00125) and no grid
refinement. A third-order PPM scheme is used for
reconstruction.
Figure 4 shows the profile of the rest-mass density ρ,

pressure P, and velocity v at t ¼ 0.4 compared to
the analytical solutions generated by RIEMANN

1 [139].
The initial discontinuity at x ¼ 0.5 creates left and right
propagating shock waves and forms a contact discontinuity
in between, which is located at x ¼ 0.786 for t ¼ 0.4. Both
TVDLF and HLLC solvers (shown as the blue and orange
dots in Fig. 4, respectively) can satisfactorily resolve the
shocks and contact discontinuity with similar performance,
which is consistent with the result in [17] when a third-order
reconstruction scheme is employed.

2. Bondi accretion

In this test, we simulate the Bondi accretion [140]
consisting of a smooth stationary fluid flow into the black
hole that allows us to examine the convergence of hydro-
dynamics and the tetrad formulation for the HLLC solver
under a nontrivial spacetime without shocks. To fit it in the
puncture formalism of our code, we consider the Bondi
solution in the maximal trumpet coordinate of a nonrotating
black hole spacetime [141], which does not exhibit

FIG. 3. ðl; mÞ ¼ ð2; 0Þ mode of DMΨ4 gravitational waves
(top) emitted by the head-on collision of two black holes with
extraction radius rex ¼ 30M in three different grid resolutions.
The grid spacing Δx=M in the finest level from low to high are
0.015625, 0.0078125, and 0.005208, respectively. The black
dashed line shows the fitted waveform of the analytical ringdown
frequencyMω ≈ 0.3737 − 0.0890i. Bottom: the absolute error of
the resultant waveform between different resolutions.

FIG. 4. The density (solid), pressure (dashed), and velocity
(dotted) profile of one-dimensional shock-tube problem at t ¼
0.4 obtained by TVDLF (blue) and HLLC (orange) Riemann
solvers. The black solid curve indicates the analytical solution.

1The open-source program RIEMANN is available at https://
www.emis.de/journals/LRG/Articles/lrr-2003-7/fulltext.html.
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coordinate pathology across the event horizon [see Eq. (65)
for the background metric]. We adopt the same parameters
following [18] for our setup with an adiabatic index of
Γ ¼ 4=3, an adiabat of K ¼ 1, and a critical radius of rc ¼
8M with a mass accretion rate Ṁacc ¼ 0.0848 where M is
the black hole mass. The hydrodynamics quantities within
r ¼ 0.4M are fixed as an inner boundary condition. Six
different grid resolutions withN ¼ 32, 64, 128, and 256 are
considered for the convergence test. The computational
domain is xmax ¼ zmax ¼ 16M without mesh refinement. In
addition, we carry out another set of simulations with three
refinement levels under the same parameters to test our
FMR setting, which corresponds to a box size L ¼ 4M and
in the finest box. Specifically, we examine the convergence
of the profile of the rest-mass density ρ by evaluating the L1

norm ϵL1 defined by [18]

ϵL1ðρÞ ¼
R jρinitial − ρfinalj ffiffiffiffiffiffi−gp

dVR jρinitialj ffiffiffiffiffiffi−gp
dV

: ð75Þ

The upper and bottom panels Fig. 5 show the radial
profiles of the rest-mass density ρ and the radial velocity
−vr of the Bondi flow, respectively. The markers show the
profiles extracted at t ¼ 20M in the resolution of N ¼ 128
with the TVDLF solver labeled in blue and the HLLC
solver labeled in orange, which agrees approximately with
the analytical solution indicated by the black dashed
curves. The bottom panel of Fig. 5 plots the L1 norm of
the error of the rest-mass density ρ concerning the different
grid spacing. The TVDLF and HLLC solvers have the same
performance due to the smoothness of the accretion flow, as
many other studies have shown (e.g., Refs. [2,17,113]). The
result demonstrates an approximate second-order conver-
gence in both solvers regardless of our FMR setting, which
is consistent with the accuracy of our implementation of the
Riemann solvers.

3. Rayleigh-Taylor instability from the modified
Bondi flow

To further validate our HLLC solver and demonstrate its
improvement over the TVDLF solver, we modify the
configuration of the Bondi flow to induce Rayleigh-
Taylor instability. Following [114], we change the initial
setup within a radius r < 3M½1þ 0.05ðcosð80θÞ þ 1Þ� as

ρ ¼ 0.1ρBondi; P ¼ 50PBondi; ur ¼ 0; ð76Þ

where ρBondi and PBondi are the density and pressure profiles
of the Bondi flow in Sec. III B 2, respectively. This
introduces a hot, low-density bubble in the inner region
with the perturbed interface. The hot bubble rises and
pushes through the infalling high-density Bondi flow that
later on develops the Rayleigh-Taylor-like instability

(sometimes referred to as the Richtmyer-Meshkov insta-
bility). We employ the same grid setup as in Sec. III B 2 with
a grid resolution of N ¼ 512 (Δx ¼ 0.03125M).
Figure 6 shows the snapshots of the rest-mass density

profile extracted at t=M ¼ 0 (top row), 25 (middle row),
and 50 (bottom row). The left and right columns corre-
spond to the results of the TVDLF solver and the HLLC
solver, respectively. When the hot, low-density gas expands
and compresses the infalling flow, instability fingers
develop at t ¼ 5M and eventually spread inward at
t ¼ 50M. The HLLC solver can resolve the Richtmyer-
Meshkov instability better than the TVDLF solver, with the
instability finger’s fine structure more sharply captured as
illustrated in Fig. 6. This demonstrates that the HLLC
solver performs better than the TVDLF solver, effectively
improving spatial resolution.

FIG. 5. Radial profiles of rest-mass density ρ (top) and radial
velocity −vr (middle) extracted at t ¼ 20M with the grid
resolution of N ¼ 128 using TVDLF (blue) and HLLC (orange)
Riemann solvers. Bottom: the L1 norm of the error in rest-mass
density ϵL1ðρÞ with respect to different grid resolutions in the
finest box. The solid and dotted lines show the results in the
uniform grid setting and the three-level FMR setting, respec-
tively. The numerical results are consistent with the second-order
convergence (dashed line).
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C. GRHD with dynamical spacetime

In this section, we perform test simulations that solve
both hydrodynamics and metric sectors to confirm the full
capacity of the code.

1. Stable rotating neutron star

We first evolve a stable rotating neutron star in equilib-
rium configuration with initial data constructed by the
open-source code RNS [142] using the MPA1 EOS [143].
Specifically, a uniformly rotating neutron star with baryon
mass Mb ¼ 1.80M⊙ and angular momentum J ¼ 1.80M2

⊙
is considered with the ADM mass MADM ¼ 1.65M⊙ and
the ratio of rotational kinetic energy to gravitational
potential energy β ¼ 0.11. At such a high angular fre-
quency Ω ¼ 6.28 × 103 rad=s, the neutron star is close to
its mass shredding limit. Its shape is flattened to become an
oblate spheroid with the ratio between the coordinate radius
at pole rp and equator req as rp=req ¼ 0.63. While such a
rapidly rotating neutron star may be subjected to non-
axisymmetric m ¼ 2 bar mode instability [144], it is stable
against axial symmetric perturbation. Hence, maintaining

the system as stable for a long time in the simulation poses
a test problem.
We set the computational domain as xmax ¼ zmax ¼

4726 km with ten FMR levels and grid resolution with
N ¼ 192, which correspond to the size L ¼ 9.23 km and
the resolution Δx ¼ Δz ¼ 48 m in the finest box. We also
carried out the test with a lower resolution N ¼ 96 as a
comparison. Since the polar and equatorial radii of the
neutron star are rp ¼ 8.34 and req ¼ 13.25 km, respec-
tively, the refinement boundary of the finest box in this
setup cuts through a part of the neutron star as illustrated in
the upper panels of Fig. 8. This allows us to test the
treatment of fluxes and the reconstruction scheme across
the refinement boundary with the adaptive time update
scheme. The MPA1 EOS for the cold EOS part and Γ
thermal law with Γth ¼ 5=3 are employed. We perform two
sets of simulations using different Riemann solvers and
evolve the neutron star up to t ¼ 250 ms, about ∼250 times
the rotational period, which is long enough to examine the

FIG. 6. Rest-mass density ρ in the modified Bondi flow with
TVDLF (left) and HLLC (right) Riemann solvers. The snapshots
are extracted at t=M ¼ 0 (top), 25 (middle), and 50 (bottom).

FIG. 7. From top to bottom, the panels show, respectively, the
evolution of central rest-mass density ρc, the relative difference of
total baryon mass and angular momentum, and the L2 norm of
Hamiltonian constraint violation for the evolution of a rotating
neutron star. The solid and dotted lines show the results of N ¼
192 and 96, respectively.
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quality of the simulation. In both runs, the mirror symmetry
with respect to the equatorial plane is imposed, and the
atmosphere factor fatm is set to be 10−20 and lfix ¼ 4.
The top panel of Fig. 7 shows the evolution of the rest-

mass density at the center ρc, which is maintained through-
out the simulation with initial oscillation amplitude ∼0.1%
and ≲0.2% shift after 250 ms for both TVDLF and HLLC
Riemann solvers for N ¼ 192. The shift converges approx-
imately at the second order. The oscillation amplitude of ρc
is noticeably damped out faster for the TVDLF solver than
the HLLC solver. This indicates that the diffusive nature of
the TVDLF solver numerically dissipates the oscillation
energy, as another study [17] also has a similar finding.
The conservation of baryon mass and angular momentum

is achieved remarkably well, as shown in the second and
third panels of Fig. 7, with an error of machine precision at
∼10 ms, which validates our treatment of numerical flux
across the refinement boundary. Shortly after that, the
relative difference raised to ≲10−11 irrespective of the grid
resolution as the matter on the neutron star surface expanded
to the atmosphere due to the artificial heating at the surface.
Because of the inability of the TVDLF solver to resolve the
contact discontinuity, the effect of the surface heating is
much stronger, creating an artificial outflow and an atmos-
phere with density ρ ∼ 109 g=cm3 as shown in the bottom
left panel of Fig. 8. This outflow eventually escapes from
the computational domain after ∼100 ms and continuously

increases the relative differences of the rest mass and
angular momentum to ∼10−7 at the end of the simulation.
On the other hand, these relative differences in the HLLC
solver remain ≲10−10 at the end of the simulation irre-
spective of the grid resolution. This is because the HLLC
solver resolves the surface of the neutron star (i.e., the
contact discontinuity) much better than the TVDLF solver,
as shown in the profiles of the rest-mass density ρ in Fig. 8.
At the end of the simulation (t ¼ 250 ms), the rest-mass
density in the atmosphere outside the stellar surface is about
104–105 g=cm3 for the HLLC solver, which is 5 orders of
magnitude lower than the TVDLF solver, demonstrating a
significant improvement in reducing the artificial surface
heating. Note that the structure of the neutron star remains
intact across the refinement boundary as shown by the green
solid line in Fig. 10 without any noticeable numerical
artifact despite the adaptive time step treatment. This
validates our implementation of the FMR scheme.

2. Migration of an unstable neutron star

To further test the nonlinear dynamics of matter and
spacetime, we perform one standard test problem that
simulates the migration of an unstable neutron star
[86,106,145–148]. We construct a Tolman-Oppenheimer-
Volkoff neutron star in the unstable branch of the mass-
radius curve with polytropic EOS K ¼ 100, Γ ¼ 2, and
central rest-mass density ρc ¼ 8 × 10−3 (in the unit of
c ¼ G ¼ M⊙ ¼ 1). Since the unstable branch has a smaller
absolute value of the binding energy than its stable
companion for this EOS, the unstable neutron star would
migrate to the corresponding stable state with the same
baryon mass in the simulation. The computational domain is
set to be xmax ¼ zmax ¼ 2215 km in the grid resolution of
N ¼ 128 with nine FMR levels, which corresponds to the
box size L ¼ 8.65 km with the grid spacing Δx ¼ 67.6 m
in the finest level. We carry out two sets of simulations for
this system under the mirror symmetry, one using the Γ
thermal law with Γth ¼ 2 and another adopting the “adia-
batic” EOS [145] which neglects the thermal part and
enforces zero temperature by discarding the energy equation
for E. For both runs, the HLLC Riemann solver is employed
with atmosphere factor fatm ¼ 10−15 and lfix ¼ 4.
The top panel of Fig. 9 shows the evolution of the central

rest-mass density ρc as a function of time for the Γ thermal
law EOS and adiabatic EOS shown in blue solid and dotted
lines, respectively. The red markers indicate the time
extracted for the profiles of rest-mass density shown in
Fig. 10, and the horizontal magenta dashed line denotes the
central rest-mass density ρs ¼ 1.346 × 10−3 of the neutron
star model on the stable branch with the same baryon mass.
Here, we first focus on the result from the Γ thermal law
model. At the start, the neutron star with an initial radius of
6.31 km immediately swells and tries to migrate to the
corresponding stable state. The central rest-mass density ρc
rapidly declines and drops below ρs to reach its first

FIG. 8. Snapshot of the rest-mass density of the rapidly rotating
neutron star with TVDLF (left) and HLLC (right) Riemann
solvers for N ¼ 192. The top and bottom rows are extracted at
t ¼ 0 s and t ¼ 250 ms, respectively. The green solid lines
indicate the boundaries of the FMR levels.
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minimum at t ¼ 758 μs, with the stellar radius stretching to
almost 4 times larger. The neutron star compresses and
shrinks subsequently until ρc reaches its maximum at
t ¼ 1.26 ms, then expands again and hits the infalling
matter, forming a shock wave that propagates outward and
ejects a small amount of matter with a high velocity from
the stellar surface to the atmosphere. We find that the
highest velocity of the ejecta is 0.98c (Lorentz factor of
∼5), and our code can follow the motion of such a high-
velocity component. The matter ejected by this ejection
process eventually leaves the computation domain, which
accounts for the sudden rise in the relative difference of
total baryon mass, as shown in the middle panel of Fig. 9.
Nonetheless, the oscillations of ρc are gradually damped

out in the Γ thermal law EOS since the kinetic energy is
dissipated to thermal energy through shock heating. After
t ≈ 50 ms, the neutron star approximately settles to a new
stable state with ρc slightly below ρs. In contrast, the
neutron star under the adiabatic EOS oscillates with a
nearly constant amplitude in the absence of thermal
dissipation as the energy converts back and forth between
gravitational binding energy and kinetic energy, which is
consistent with the result in [145]. This also explains the
lower relative difference of total baryon mass since less
matter is ejected without shock heating.

We also monitor the L2 norm of the constraint violation
of the system as shown in the bottom panel of Fig. 9. The
Hamiltonian and momentum constraints are well under
control, with violations damped out and stabilized under
the Z4c prescription.

3. Migration of an unstable rotating neutron star

In this test, we simulate the rotating neutron stars that are
very close to the turning point of the mass versus energy-
density (MADM − ec) curve to examine the performance of
SACRA-2D. We consider uniformly rotating neutron stars in
both the stable and unstable branches indicated as the red
crosses in Fig. 11 with the same baryon mass Mb ¼
3.050M⊙ and angular momentum J ¼ 1.800M2

⊙ con-
structed by RNS using the MPA1 EOS. The parameters
of the stable and unstable models are listed in Table I. Note
that the ADM mass at the turning point MADM ¼
2.5113M⊙ is only ≈0.04% higher than the models we
selected, which poses a challenge for numerical codes in
resolving the model accurately.
Since the unstable model has a higher ADM mass and,

hence, a smaller absolute value of binding energy than the
stable one, the unstable neutron star can migrate to the
stable configuration similar to the nonrotating case in
Sec. III C 2, given that the initial numerical perturbation
is tiny. On the other hand, to examine the performance of

FIG. 9. Top and middle: respectively, the evolution of the
central rest-mass density ρc and the relative difference of the total
baryon massMb as a function of time with the Γ thermal law EOS
(solid) and adiabatic EOS (dotted). The magenta dashed line on
the top panel indicates central rest-mass density ρs ¼ 1.346 ×
10−3 of the neutron star model that lies on the stable branch of the
mass-radius curve with the same baryon mass. The red star
markers specify the time extracted for the snapshots shown in
Fig. 10. Bottom: the L2 norm of constraint violations for the Γ
thermal law EOS model.

FIG. 10. Profiles of the rest-mass density ρ of the unstable
neutron star in the migration test extracted at t ¼ 0 s (top left),
758 μs (top right), 1.26 ms (bottom left), and 50.0 ms (bottom
right) with the Γ thermal law EOS employed. The green solid
lines indicate the boundaries of the FMR levels.
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SACRA-2D for the black hole formation, we consider an
additional run by introducing a small ingoing radial
velocity inside the unstable neutron star in forms

ux ¼ −5 × 10−3x=Req; uz ¼ −5 × 10−3z=Req; ð77Þ

as an initial perturbation to initiate the collapse, where Req

is the star’s equatorial coordinate radius. The computational
domain is set to be xmax ¼ zmax ¼ 4431 km in the grid
resolution of N ¼ 256 with ten FMR levels, which corre-
sponds to the box size L ¼ 8.65 km with the grid spacing
Δx ¼ 33.8 m in the finest level. We carry out three sets of
simulations in total under the mirror symmetry, including
one for stable neutron star, one for unstable neutron star
without initial perturbation, and one for unstable neutron
star with initial perturbation. We employ the Γ thermal law
EOS with Γth ¼ 5=3 and the HLLC Riemann solver for all
runs with atmosphere factor fatm ¼ 10−20 and lfix ¼ 4. We
perform the simulations up to 70 ms, about ∼50 cycles of
rotation, for models that do not undergo gravitational
collapse. If the neutron star collapses, we end the run at
30 ms after the black hole is formed.

Figure 12, from top to bottom, shows the evolution of the
central rest-mass density ρc, the relative differences of total
baryon massMb and angular momentum J, and theL2 norm
of the Hamiltonian constraint violation jjHjj2 as functions
of time. The rotating neutron star on the stable branch
remains stable throughout the simulation with oscillation
amplitude ∼0.5% of the central rest-mass density ρc, which
agrees with the turning point theorem [149]. In contrast, the
central rest-mass density ρc of the unstable model (green
solid lines) quickly drops and oscillates around the value of
its stable counterpart, eventually damped and settling down
to the stable state. Despite the central rest-mass density of
the unstable neutron star being only 6.6% larger than the
stable model, the code can still resolve the migration of the
unstable model remarkably well. Since the oscillation is
comparably small, no matter is ejected essentially during the
migration. As a result, the baryon mass Mb and angular
momentum J are well conserved with a relative differ-
ence ≲10−12.
Nonetheless, if an initial perturbation is introduced in the

unstable model (blue lines in Fig. 12), the rotating neutron
star immediately undergoes gravitational collapse due to the
perturbation with an increasing central rest-mass density ρc.
After a short time, the neutron star compactness becomes so

FIG. 11. The mass versus energy-density (MADM − ec) curve
of the uniformly rotating neutron star of J ¼ 1.800M2

⊙ with the
MPA1 EOS. The red crosses indicate the models selected for
the simulations. The left marker lies on the stable branch, while
the right is on the unstable branch. The turning point is located
at ec ¼ 2.0695 × 1015 [centimeter-gram-second (cgs) system]
with MADM ¼ 2.5113M⊙.

TABLE I. The parameters of the stable and unstable models
used in the simulations.

Models Stable Unstable

Central energy density ec × 1015ðcgsÞ 1.9691 2.1798
Central rest-mass density ρc × 1015ðcgsÞ 1.4219 1.5151
ADM mass MADMðM⊙Þ 2.510220 2.510248
Baryon mass MbðM⊙Þ 3.0500 3.0500
Angular frequency Ω × 103ðrad=sÞ 4.6795 4.7925
Equatorial radius req (km) 7.425 7.215
Axial ratio rp=req 0.940 0.937

FIG. 12. The panels show the evolution of central rest-mass
density ρc (top), the relative difference of total baryon mass Mb
and angular momentum J (middle), and the L2 norm of
Hamiltonian constraint violation jjHjj2 (bottom) as functions
of time. The green, blue, and red solid curves illustrate the results
from the unstable model, unstable plus initial perturbation model,
and stable model, respectively. The blue vertical dashed line
indicates the black hole formation time tAH ¼ 0.931 ms for the
unstable plus initial perturbation model.
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high that, ultimately, a black hole is formed at tAH ¼
0.931 ms and swallows the whole star within the black
hole, leaving basically nothing outside the apparent horizon
at the end, which agrees with the finding in [21] (see the top
right and bottom left panels in Fig. 14 for the profiles of
the rest-mass density ρ before and after the formation of the
black hole). The resultant black hole essentially inherits the
initial neutron star’s ADM mass and angular momentum
with negligible loss. The massMBH and angular momentum
JBH of the black hole extracted from the apparent horizon
indeed show excellent agreement with derivation ≲0.03%
as shown in Fig. 13. This demonstrates the robustness and
the accuracy of both the metric solver and the apparent
horizon finder. During the collapsing phase, the baryon
mass Mb and angular momentum J are conserved down to
machine precision until the black hole is formed and the
fluid excision is activated. The Hamiltonian constraint
violation jjHjj2 also experiences a sudden jump at tAH
due to the appearance of irregularity at the origin when the
puncture is formed and then quickly damped out and
stabilized afterward.
In addition, we examine the gravitational wave signal

from the collapse scenario of the perturbed unstable model.
Since the collapse happens promptly after the start of the
simulation, the initial junk radiation will contaminate the
subsequent gravitational wave signal that immediately
follows under the Z4c constraint propagating description.
Therefore, for this particular result shown in Fig. 15, we
perform the simulation with the BSSN formulation to obtain
a cleaner numerical waveform, and we confirm that the
overall dynamics of the BSSN run are the same as in the Z4c
run shown above. The ðl; mÞ ¼ ð2; 0Þ mode of DΨ4 black
hole ringdown gravitational waves after the collapse is

extracted in various radii as a function of tret − tAH shown in
Fig. 15, where tret is the retarded time and tAH is the black
hole formation time. The waveforms agree with each other
regardless the extraction radii rex ¼ 591, 517, and 443 km.
We also compare our numerical waveform with the ana-
lytical black hole quasinormal modes frequency MBHω ¼
0.3767 − 0.0884i [138] considering the final black hole

FIG. 13. The mass MBH (top) and angular momentum JBH
(bottom) of the remnant black hole after collapse for unstable plus
initial perturbation model. The blue vertical dashed line indicates
the black hole formation time tAH ¼ 0.931 ms. The magenta
horizontal dotted lines denote the ADM mass MADM ¼
2.510248M⊙ and the angular momentum J ¼ 1.800M2

⊙ of the
rotating neutron star obtained from RNS.

FIG. 14. The profiles of the rest-mass density ρ of the collapse
of an unstable rotating neutron star extracted at t ¼ 0 s (top left),
0.90 ms (top right), 1.08 ms (bottom left), and 36.1 ms (bottom
right). The green solid lines indicate the boundaries of the FMR
levels, and the magenta dashed curves in the bottom panels
denote the apparent horizon surface of the black hole.

FIG. 15. ðl; mÞ ¼ ð2; 0Þ mode of DMADMΨ4 gravitational
waves extracted at rex ¼ 591 km (blue), 517 km (red), and
443 km (green) of the gravitational collapse of the unstable
rotating neutron star as a function of retarded time tret.
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mass MBH ¼ 2.51M⊙ and the dimensionless spin para-
meter χ ¼ 0.2857. The fitted analytical ringdown waveform
shown as the black dashed line in Fig. 15 matches our result.
We found the total radiated energy to be∼1.8 × 10−9MADM.

4. Gravitational collapse of a supermassive star

For the final test, we simulate the gravitational collapse
of a rotating supermassive star (SMS) to a black hole. In
this problem, the SMS with a radius of ≈450M collapses to
a black hole and a disk, and hence, we have to follow a
much larger dynamical range than that of neutron star
collapses. For this problem, our FMR algorithm becomes,
in particular, the robust tool.
We consider a uniformly rotating supermassive star

constructed by the polytropic EOS P ¼ KρΓ with the
polytropic index Γ ¼ 1.3347, which approximates the
SMS core in the helium-burning phase close to the margin-
ally stable state [150] and is approximately the same as the
model He4 of [45]. The parameters of the model employed
are listed in Table II.
The computational domain is set to be xmax ¼ zmax ¼

1101M with N ¼ 128 and ten refinement levels in total,
which corresponds to the size of L ¼ 2.15M and the grid
resolution Δx ¼ Δz ¼ 0.0168M in the finest box. The Γ
law EOS P ¼ ρðΓ − 1Þϵ is employed for the simulation
with the HLLC solve and the atmospheric factor fatm ¼
10−20. To initiate the collapse, we reduce the pressure by
20% uniformly within the star. With our FMR setup, the
computational cost for this simulation is relatively cheap,
with the simulation time t ≈ 10800M costing about
600 CPU hours in total under the parallelization set-
ting ½MMPI ×MMPI × Nthr� ¼ ½4 × 4 × 5�.
Once the pressure is depleted, the matter starts to fall in,

resulting in an exponential growth in the central rest-mass
density ρc as shown in Fig. 16. As in [45], about 95% of the
SMS collapses into a black hole, and the remaining matter
forms a torus around the black hole and ejecta, which is
driven by a shock formed around the surface of the torus as
shown in the bottom row of the snapshots in Fig. 17. The
final dimensionless spin of the black hole is ≈0.70, which is
appreciably smaller than the dimensionless spin of the
system (see Table II and also Fig. 18 for the evolution of

TABLE II. The parameters of the SMS and the remnant black
hole in the simulations. Γ is the adiabatic index, M is the
gravitational mass of the system, β is the ratio of rotational kinetic
energy to gravitational potential energy, J is the angular mo-
mentum, Req is the equatorial circumferential radius, and MBH
and χ are the mass and dimensionless spin of the remnant black
hole, respectively.

Γ MðM⊙Þ β J=M2 Req=M MBH=M χ

1.3347 1.54 × 105 0.00895 0.826 452.6 0.952 0.701

FIG. 16. The evolution of the central rest-mass density ρc (top),
relative differences in baryon massMb and angular momentum J
(middle), and the L2 norm of the Hamiltonian constraint violation
jjHjj2 as a function of time t in M. The blue vertical dashed line
indicates the black hole formation time tAH ¼ 3373M.

FIG. 17. The snapshot of the rest-mass density ρ extracted at
different times, t ¼ 0.0M (top left), t ¼ 3361M (top right), t ¼
3374M (bottom left), and t ¼ 10216M (bottom right). The green
solid lines indicate the boundaries of the FMR levels.
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remnant black hole). The ejecta mass is ∼1% of the total
mass, and this result agrees with that of [45].
Figure 19 plots gravitational waveform [the ðl; mÞ ¼

ð2; 0Þ mode of Ψ4] during the formation of the black hole.
As found in [42], the waveform is composed of a precursor,
which is emitted before the formation of the black hole, a
burst wave, which is emitted near the formation time of the
black hole, and a ringdown. The total radiated energy is
≈1.08 × 10−6M, which agrees with the result in [42].

D. Performance and scaling

This section presents a test to assess the weak and strong
scaling of SACRA-2D. The simulations were performed on
the cluster Sakura at the Max Planck Computing and Data
Facility, which comprises Intel(R) Xeon(R) Gold 6248
CPU with a clock rate of 2.50 GHz.

In the weak scaling test, we conducted a series of
simulations in different parallelization settings using the
same configuration as described in Sec. III C 1 except
that nine FMR levels were adopted here, which corre-
sponds to 35 cycles of RK4 integration in each time
iteration. We varied the total number of MPI ranks with
MMPI ∈ f2; 4; 6;…; 18g in each direction. To ensure
consistent workload distribution for each MPI rank,
we scaled the problem size proportionally, setting N ¼
f100; 200; 300;…; 900g correspondingly for each MMPI
(see Sec. II E for definition of MMPI and Nthr). In
particular, we perform the weak scaling test with two
OpenMP settings Nthr ¼ 1 and 10 for each set of MPI ranks,
which is illustrated by the blue solid and orange dashed
lines, respectively, in the top panel of Fig. 20. Here, the
efficiency is defined as the ratio TMPI=T0, where TMPI is
the computational wall time for MMPI ×MMPI MPI ranks
and T0 corresponds to the lowest setting ofMMPI ¼ 2 (i.e.,

FIG. 18. The evolution of remnant black hole mass MBH (top)
and dimensionless spin parameter χ (bottom) after collapse. The
black hole is formed at tAH ¼ 3373M.

FIG. 19. ðl; mÞ ¼ ð2; 0Þ mode of DMΨ4 gravitational waves
extracted at rex ¼ 115M (blue), 92M (red), and 69M (green) of
the gravitational collapse of the SMS as a function of retarded
time tret − tAH.

FIG. 20. The result of the weak scaling (top) and the strong
scaling (bottom) tests. Top: the blue solid and orange dashed lines
show the efficiency as a function of the number of MPI ranks
using single and ten OpenMP threads, respectively. Bottom: the
legend represents the MPI setting ½MMPI ×MMPI� for the models.
The star markers indicate the result using a single OpenMP thread
Nthr ¼ 1, while we employed Nthr > 1 for the dot markers.
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the efficiency starts at 1 by definition). We found excellent
scaling in the case of Nthr ¼ 1 with efficiency ≳97% up to
324 MPI ranks. On the other hand, for Nthr ¼ 10, the
efficiency decreased to ≳80%.
For the strong scaling test, we performed a series of

simulations with the same grid setting as the weak scaling,
except for the resolution fixed to N ¼ 960, and measured
the average computational time required per iteration. A
wide range of MPI setting with the number of MPI ranks
in each direction MMPI ∈ f2; 4; 8; 16; 24; 32g, covering
4–5120 cores in total. The bottom panel in Fig. 20 shows
the average computational time per iteration in seconds as a
function of the number of cores used. The solid line with
the same colors denotes models with the same MPI setting
but in different numbers of OpenMP threadsNthr, and the star
markers represent the models with Nthr ¼ 1. The black
dashed line indicates the ideal scaling considering 2 × 2
MPI setting with a single OpenMP thread Nthr ¼ 1 (i.e., four
cores in total). The result shows an efficiency of about 70%
for a small number of Nthr, and the performance worsens
for an excessive number of OpenMP threads. This suggests
the optimal setting to be N=MMPI ≳ 30 for the MPI setting
and Nthr ≲ N=MMPI=10 for the OpenMP threads.

IV. SUMMARY

We present SACRA-2D, a new MPI and OpenMP paral-
lelized, fully relativistic hydrodynamics code in dynamical
spacetime under axial symmetry with the cartoon method.
The code employs a cell-centered grid with FMR and an
adaptive time step scheme.We implement the finite-volume
method with the state-of-the-art HLLC approximate
Riemann solver for hydrodynamics and the Baumgarte-
Shapiro-Shibata-Nakamura formalism with Z4c constraint
transport for spacetime evolution.
We examined SACRA-2D with several benchmark tests,

including problems in the vacuum spacetime or the
Cowling approximation and simulations of GRHD under
dynamics spacetime. We showed a sixth-order convergence
of the metric solver and the gravitational waveform in the
trumpet black hole and head-on collision tests, respectively.
We also demonstrated the power of the HLLC Riemann
solver, which effectively improves spatial resolution in the
modified Bondi flow test and reduces the artificial shock
heating at the stellar surface in the simulation of a stable
rotating neutron star. In particular, we show the outstanding
robustness and efficiency of SACRA-2D in problems like
examining the stability of rotating neutron stars adjoining
the turning point and resolving the supermassive star
collapse. In addition, we performed a strong scaling test
and showed an efficiency of about 70%.
In the future, we plan to implement magnetohydrody-

namics with the HLL discontinuities Riemann solver and
the constrained transport scheme [17], as well as imple-
menting radiation hydrodynamics for neutrino physics. We

will also use SACRA-2D to explore systems in the alternative
theories of gravity.
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APPENDIX: CARBUNCLE PHENOMENON

Despite the HLLC solver’s robustness and low numerical
dissipation, it is susceptible to the carbuncle phenomenon
[151,152], which is a numerical instability that can
adversely affect the capturing of shock waves in a multi-
dimensional computational mesh, especially when the
shock wavefront aligns with the mesh interfaces. Here,
we demonstrate the carbuncle instability through a 2D test
problem based on Appendix C of [153]. In this simulation,
we initialize a uniform flow in the þx direction with a
velocity ux=ut ≔ V within a uniform computational domain
of size L ¼ 1M under flat spacetime. We apply an inflow
boundary condition at x ¼ 0 and a reflective boundary
condition at all other boundaries. The initial rest-mass
density is set to ρ0 ¼ 10−10M−2 and the initial pressure
to P0 ¼ 6 × 10−15M−2 (in the unit of c ¼ G ¼ 1). We
employ the ideal gas law EOS with Γ ¼ 5=3, corresponding
to the fluid’s initial sound speed of cs ¼ 0.01c. We consider
three different velocities V ¼ 0.1c; 0.01c, and 0.001c,
which correspond to high, medium, and low Mach numbers
M ≔ V=cs ofM ¼ 10, 1, and 0.1, respectively. A range of
grid resolutions N ¼ 256, 512, 1024, and 2048 is employed
to investigate the instability with a time step of Δt ¼
50Δx=c. To trigger the carbuncle instability, we add a
small random perturbation to the rest-mass density of
jδρj=ρ0 ≤ 10−4 that remains consistent across all the reso-
lutions (cf. top row of Fig. 21).
Figure 21 illustrates the resultant flow at t ¼ 15M for the

model with a high Mach number of M ¼ 10, using both
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the TVDLF and the HLLC solvers as shown in the left and
right columns, respectively. In the HLLC solver, as the
reflected shock propagates to the left, the small perturbation
in the transverse direction begins to grow. This phenome-
non arises from the low dissipation nature of the solver,
leading to the development of the carbuncle instability,
which results in numerical oscillation appearing at the grid

scale (i.e., higher frequency oscillation in finer grid
resolution). In contrast, the TVDLF solver is more dis-
sipative, preventing the occurrence of the carbuncle insta-
bility. Despite this instability, the HLLC solver produces an
undistorted shock front with the same shock velocity
observed in the TVDLF solver. For the cases involving
medium and low Mach numbers ofM ¼ 1 and 0.1, neither
solver exhibits signs of the carbuncle instability, as shown
in Figs. 22 and 23. This is further illustrated in Fig. 24,
which plots the range of density profile along the z axis as a
function of x. At M ¼ 10, using the HLLC solver leads to
large oscillation amplitudes, although these oscillations
appear to diminish gradually with higher resolution. On the
other hand, the results for M ¼ 1 and M ¼ 0.1 using the
HLLC solver show no significant deviation in the trans-
verse direction of the shock, yielding results similar to
those of the TVDLF solver and indicating no signs of the
carbuncle phenomenon. Therefore, the HLLC solver
appears to be robust and free from the carbuncle phenome-
non for Mach numbers of M≲ 1.

FIG. 21. The left and right columns show the results of M ¼
10 model from the TVDLF and HLLC solvers, respectively. The
top row shows the profile of the initial random perturbation of the
rest-mass density ρ=ρ0 − 1 in the range ½−10−4; 104�, which is
kept the same throughout different solvers, resolutions, and
models. The bottom panels show the resultant flow extracted
at t ¼ 15M, with each row corresponding to different grid
resolutions of N ¼ 256, 512, 1024, and 2048 from top to bottom.

FIG. 22. Results of M ¼ 1 model extracted at t ¼ 60M with
figure configuration the same as the bottom panel of Fig. 21.
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