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Gravitational waves by compact stars
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To investigate the orbital evolution of compact stars moving around a supermassive black hole
(SMBH) we have calculated the energy and angular momentum tiuxes of gravitational waves induced

by a test particle of mass p orbiting on the equatorial plane of a rotating black hole of mass M && p,

with eccentric orbits. First we analytically derive the post-Newtonian (PN) formula of the energy
Bux, and then, to see the relativistic sects correctly, we perform numerical calculations of the
perturbation around a Kerr black hole. It is found that for highly relativistic orbits, the PN formula
underestimates the energy Buxes by a factor & 10. We have also found that, in the case of highly
relativistic and highly eccentric orbits, due to the spin (a) of the black hole, the energy Sux changes
by a factor of 10a/M. Hence the orbital evolution of a compact star in the vicinity of a SMBH,
which will exist in galactic nuclei, is largely afFected by the spin angular momentum of the SMBH as
well as other relativistic sects. The detection rate of gravitational waves kom a SMBH by means of
the proposed laser interferometric gravitational wave detector in space, such as LISA, also depends
on these relativistic efFects. A possibility of extracting the parameters of the SMBH &om a signal
of gravitational waves is also considered.

PACS number(s): 04.30.Db, 04.25.Nx, 97.60.Lf

I. INTRODUCTION

Gravitational waves induced by compact stars orbiting
very closely around or plunging in a supermassive black
hole (SMBH) of mass 10s —10sMD, which will exist in
galactic nuclei [1], are the most promising candidates of
low &equency gravitational waves with a &equency of
10 s to 10 i Hz [2,3]. Such gravitational waves have a
wide variety of information of galactic nuclei, such as the
mass and spin of the SMBH, the characteristic orbit of
the star, and so on. Thus the detection of gravitational
waves has a possibility of seeing galactic nuclei.

Recently, the laser interferometric gravitational wave
detector in space, such as the Laser Interferometer Space
Antenna (LISA), has been proposed [4]. Such a detector
has the ability to detect gravitational waves of amplitude
h 10 —10 for burst sources with a &equency
f 10 i—10 4 Hz and h 10 2s for periodic sources
with f 10 i—10 s Hz for one year integration [4,5]. If
a compact star, such as black hole, neutron star, or white
dwarf, orbits around a SMBH of 10 Mo circularly, it does
not suer the tidal disruption and emits gravitational
waves of the amplitude and &equency

„1Gpc) f p ) (5M&
h 10 B ) ilMD) i r

(1 1)

1 M s (10 Mo 5M'6x 10 Hz
z rs i M

where R, r, M, and p are the distances &om the SMBH
to Earth, the orbital radius of the compact star, the mass
of the SMBH, and the mass of the compact star, respec-
tively. Also, if a compact object plunges into a SMBH,
the amplitude and frequency will become [6]

10 Mpci ph-10 "
R ) (1Mo)

'

f ' —= (1.3x10 2Hz)

Hence, the burst gravitational waves which are radiated
when a compact star plunges into a SMBH within 10
Mpc or the periodic gravitational waves which are emit-
ted by a compact object with an eccentric orbit around
a SMBH within 1 Gpc, mill be detected by LISA. The
subject of the present paper is about the features of such
gravitational waves.

Compact stars as well as normal stars are consumed
into the galactic nuclei due to the two-body relaxation
process, in particular, due to the loss cone effect [7,8]: In
the system of a star cluster around a SMBH, the stars
are scattered by the many two-body encounters. There,
their angular momentums are exchanged and in some
cases they reduce to less than Jm;n, which is the minimum
angular momentum of the star around the SMBH (i.e.,
below J~, the star is removed &om the system due to
the tidal disruption and/or plunge into the SMBH). The
rate of the consumption in the normal galaxy has been
estimated [8] as
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where v, r&, r „and n, denote the rms velocity of
the stars in the isothermal core, the consumption radiusJ,. /M inside which the star is consumed, the accretion
radius M/v2, and stellar density at r „respectively.
The regions for r(r, and r)r, are often called the stellar
cusp and the isothermal core [8], respectively. Since only

10 galaxies exist within 10 Mpc, the burst gravitational
waves emitted by the star plunging into the SMBH will
not be detected frequently. (But, M87 may be a strong
burst source [2].) On the other hand, gravitational waves

by a star with a highly eccentric orbit around a SMBH
supplied in the case that the star reduces its angular mo-
mentum to J & J;„and it escapes the tidal disruption
(i.e. , the star is a compact object) may be detected fre-

quently because the event rate seems to be signi6cant.
Let us consider the evolution of such a star in the galac-
tic nuclei.

According to the theory of stellar consumption [7] in
normal galactic nuclei, the consumption rate is deter-
mined by the physical feature of the star cluster around

[

T t 1—10 pc. Here, r„;t is de6ned as a radius at which
the change rate of the angular momentum j during one
orbital period equals J; . That is [7],

j = J..tl—
&'-)

1j2
2x(r„,,/M)'~

~crit)

—Jmin i

where tg and t„are the dynamical time scale of a star
at r„;q and the relaxation time scale of the clusters [8],
respectively. Thus, we consider the evolution of stars
around r«,.t. If a star around rc»t happens to reduce
its angular moment»m to J & J;„,the star comes to
a highly eccentric orbit, e 1. Such a star passes very
close to the SMBH and loses the energy and angular mo-
mentum by means of gravitational radiation sufficiently.
The time scales of the energy and angular momentum dis-
sipations due to gravitational radiation for e 1 orbits
are crudely estimated by the quadrupole formula and,
respectively, become

and

Mp/2ap
dE/dt (32/5)M p a (r r ) ~ (1+73e2/24+ 37e4/96)

( r„&"'( r. ~'"/' M &'"( M )
4&10 g~l

~4M) ~10 pc) ~losMo) ~losp)

J p(2Mrp) I~2
tGWJ =

d1/dt (32/5) Ms~ p2az (rzr~) 2 (1 + 7e /8)

(1.4)

(1.5)
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where p, r„, r are the mass of the star, periastron, apastron, respectively, and ao is the semimajor axis, (r„+r )/2.
On the other hand, the time scale of the two body encounter [7] is approximately

( v 'l f Mo ) (ln(los) l 10s pct~~ 2xlo yr
(200km/s)) ( p, ) (1 (N) ) ( )'

forr) r, and
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~
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ln(N) ) (0.1 pc) (n, rs, )

' (1.7)

for r ( r, . Here v, n, and N are the velocity disper-
sion, the number density, and the total number of stars,
respectively. Also, we assume that the stellar density be-
haves as oc r r~4 for r ( r, [7,8]. The above time scales

]

mean that energy is lost by gravitational radiation on
a time scale much faster than the relaxation time scale,
while angular momentum is not lost by gravitational ra-
diation as fast; only in the case r is it small enough
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(if M = 10 Mo, r ( 0.5 pc), tQw J ( t„. Hence, the
evolution of the star is affected by the two-body scatter-
ing before the orbit shrinks sufficiently. In such a case,
we cannot expect the rigid capture rate of stars because
their eccentric orbits will be changed to the noneccentric
orbits by the two-body encounters. However, we can ex-
pect a rigid capture rate for the following reason. The
energy dissipation during a round trip near the SMBH is
approximately

dE Mp 10sp) t 4M)
t~ 25

dt ~ r i M ) i r„ )
r \ (losMoi

(10 pc) ( M (1.8)

where we define t„as 2m(ass/M) ii2. This equation means
that once the star passes in the vicinity of the SMBH,
r~ 4M, it loses its energy much larger than the original
one. For M = 10 Mo, even if the apastron of the star is
initially at 10 pc, it changes to 0.4 pc after one orbital
period. Then tQ~J becomes & t„, so that the effects
of the two-body process to the orbital evolution become
weak and subsequent orbital evolutions are determined
by the emission of gravitational radiation. It should be
noted that only in the case rz ~ 4M is the sufficient
energy dissipated by gravitational radiation. Hence, we
xnay expect a rigid capture rate for compact stars, which
is essentially the same as the consumption rate for rq

r„4M. The capture rate of a compact star with a high
eccentricity is expected as

M
Fg~p ~ 3 x 10 E'

(10sMo ) ( M ) (01 pc)

) (
~10s pc s) i200 km/s

(1.9)

where r~B is the radius of the marginally bound orbit;
i.e., inside r~B the star with E 0 must plunge into the
SMBH. e denotes a fraction of the compact stars in the
cluster in units of 10%%uo. e is expected to be ( 1 because
the main sequence stars with p & 0.9Mo have already
become compact stars [9].

To evaluate the event rate of periodic sources, we must
obtain the number of host galaxies and the duration time
of a typical event. Extrapolating the number of the
galaxies to the cosmological scale [10], there will exist
about Nz 10 galaxies within 1 Gpc. To accumulate
sufficient phases of gravitational waves, the period of the
compact star xnust be less than 1 yr. If we impose
that the period should be less than 10 yr to accuxnu-
late about 10 cycles of gravitational waves (i.e., effective
signal h,s 10 h [2]), the condition becomes

From Eq. (1.4), we can calculate the duration time for
such a star emitting gravitational waves with an axnpli-
tude high enough and. it becomes

20 yr (1.11)
4M) i10sMo) i 10sp, )

Gathering the above results, we may expect the event
rate for a one-year search by LISA as

M i'"(M i
Fevent = F~zPNg 6e

0 M 10 ~)

&.„& "& „- ~n& &
X

(4M) ( M ) I
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(
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Therefore, a few events per year may be expected.
Froxn the above arguments, we can 6nd that the emis-

sion of gravitational waves in the vicinity of the SMBH,
i.e., highly relativistic region, plays several important
roles. (1) The number of stars captured by the SMBH
(i.e., tQw J ( t„), which initially have a high eccentricity
in the vicinity of r„;t, are determined by the time scale of
the angular momentum dissipation [Eq. (1.5)] as well as
the energy dissipation of gravitational waves [Eq. (1.7)].
In particular, the energy Qux is important because it de-
termines the upper lixnit of r„which corresponds to rq

in this situation, and the event rate is proportional to
(r„—r s)r„. (2) The duration time in which a star
keeps an eccentric orbit in the vicinity of a SMBH before
it plunges into the SMBH is also determined by the en-

ergy fiux of gravitational waves [Eq. (1.11)]. Hence, to
obtain the event rate strictly, i.e., to calculate the orbital
evolution of a compact star around a SMBH, we need
the general relativistic formula of the energy and angu-
lar momentum Buxes. The purpose of the present paper
is to evaluate these quantities correctly. Thus, the rest
of the paper is organized as follows. In Sec. II, we de-
rive the post-Newtonian (PN) formula of the energy fiux
induced by a particle orbiting on the equatorial plane
of a spinning xnassive body and indicate the importance
of the spin effect of the massive body. To see the spin
effects as well as the relativistic Suxes of gravitational
waves correctly, in Sec. III we perform the perturbation
study around a Kerr black hole and calculate the energy
and angular momentum iuxes. To see the possibility of
extracting various paraxneters &om a signal of gravita-
tional waves, we also consider the Fourier spectrum of
gravitational waves. Section IV gives the discussion.

Throughout this paper, we use the»~its of c = G = 1
and Mo denotes the solar mass.

(
&o &2x10 pc=40M

( 10sMo ) (10sMo )
(1.10)

II. POST-NEW'TONIAN FORMULA
OF THE ENERGY PLUX

In this section, we analytically derive the energy Bux
of gravitational waves induced by a test particle of mass
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2
d2r f dry) M 2S dp= r ——+
dt2

I dt) r2 r2 dt' (2.1)

p orbiting around a rotating body of spin S and mass
M )) p by the PN analysis. Throughout this paper, we
fix the orbital plane of a test particle perpendicular to
the spin axis (i.e. , if we determine that the spin axis is
parallel to the z axis, 0 = vr/2). Of course, there is no
physical reason why the test particle stays on the equato-
rial plane, and to see the orbital evolution of the particle
around a Kerr black hole we should take into account
general orbits. However in the case in which the particle
has both an eccentricity and an orbital inclination with
respect to the equatorial plane, the motion of the test
particle becomes nonperiodic. We do not know how to
evalute the energy flux of the gravitational waves locally
in time and only in the averaged sense can we evaluate
it. Therefore, to evaluate the energy flux of gravitational
waves in the case that the test particle moves with a
nonperiodic motion, we must integrate the orbit for the
infinite time interval. Fortunately, the spin effects to the
energy flux become maximum when the particle moves
on the equatorial plane because the spin coupling terms
appear in the form of S L [11]. Hence, this is a good
example to see the spin effects to the orbital evolution.
For that reason, in this paper, we only consider the case
in which the particle stays on the equatorial plane as a
first step.

In the following, we treat the PN terms up to (post)
s~2-Newtonian (Ps~2N) order, i.e., up to the linear order
in S. If higher terms in S appears in the equation of mo-

tion, we will neglect them. Since the first PN terms are
treated previously [12,13], we here consider N + Ps~2N
equation of motion. Since M )) p is assumed, we set
y/M = 0 in the equation of motion. Then the equation
of motion [11]becomes

r r—
L

(2.5)

Then Eq. (2.4) becomes

p+ 2+—2jdt) 2r r (2.6)

M
r = —g coslL) (2.7)

(2.8)

where q = M /4E2 —P/2~E~, and u is an eccentric
anomaly [15] which covers the interval 0 to 27r. The pe-
riastron r„and apastron r become

M M2

4E2
L2

2S/ M I

+ 1+
L, ( QM2 —2~E~L2)

'

(2.9)

M M2

2 fE/ 4E2
L

2iE[

2S( M

+M2 —2]E]L2)

where P = L, + 4SM/L, . In Eq. (2.6), we have ignored
the terms of O(S"), n & 2, because we only consider
the linear terms in S. Since Eq. (2.6) is the same form
as that of the Kepler problem, the solution is obtained
immediately as

d2y dy dr 2S dr

dt dt dt r dt

2 dP"
dt

L,—= const = L„
P

Equation (2.2) can be integrated immediately as

(2.2)

(2.3)

Hence if the energy and angular momentum of the test
particle are the same, the periastron for S & 0 (retro-
grade orbit) is always smaller than that for S & 0 (pro-
grade orbit) and the apastron for S ( 0 is larger than
that for S ) 0.

Using u as an independent variable, Eq. (2.3) becomes

where L, is regarded as the z component of the angular
momentum of the test particle. Subsituting Eq. (2.3) into
Eq. (2.1), Eq. (2.1) can be also integrated as

I„.&2S &—
1+

du g2~E] r
~
2r L, )

(2.10)

1 ~dry L2 2SL, M E+ '2 + s
———————const = E, (2.4)

2 ddt) 2r r r p

where E is the total energy of the system.
To obtain an orbital motion of a test particle, we must

solve Eq. (2.4), in which, however, the elliptical integral
appears if we try to solve Eq. (2.4) itself. To avoid treat-
ing such a complicated function, we use a technique de-
veloped by Damour and Deruelle [14). First, we change
the radial variable as

S
r r + (2.11)

Then Eq. (2.10) becomes

L r
(2.12)

We introduce the parameters

To solve Eq. (2.10), we use the same technique described
before. We change the radial variable as
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dy L,ap 1 —e cosu

/2~E~a' (1 —e'cosu)
(2.14)

Since the relation

(1 —e cosu)(1 —e,cosu) = (1 —e'cosu) + O(S~),

(2.i5)

where e, = 2e' —e, holds, Eq. (2.14) becomes the familiar
form

M M S, q q

2IEI
'

2IEI
=as, + =a', —=e, —,=e'. (2.13)

Then Eq. (2.12) becomes

derived by Kidder et al. [11]. In the present case, it be-
comes

dE S 12v~ 11 f dr t

dt 15 r4 r4
I dt)

S dy dr 2 12M
Mr' dt

I ~dt)
(2.24)

We define the averaged energy fiux which is just the phys-
ically meaningful quantity, i.e., gauge invariant quantity,

dy L ap 1

/2~E~a'& 1 —e,cosu
(2.i6)

dE 1 + dE
(2.25)

The solution of Eq. (2.16) is

2L,ap i+ e. u&
arctan tan — . (2.17)

/2~E~(1 —e, )a'
~

1 —e, 2)

where T = 2m'M/(2~ E~) s~~ is the orbital period. Since
the relations

(
v =2 E+—

xL,ap xL,ap

/2~E)(1 —es)a's /2(E)(1 —es)a's
(2.is)

Hence the charge (hy) in p during one orbit is

Here let us consider a trajectory of a test particle. When
the particle moves &om the apastron to the apastron, u
changes —m -+ x and y changes

(dr M 2SL, Ls

(dt) I
r rs 2rs)

hold, the averaged energy Bux becomes

(2.26)

b,p = ' = 2x(1 —h) + O(S ), (2.19)
/2~E)(1 —es)a's

dE SM~ I 2E 2M 11L~ 20ESL,
dt 1ST p r r re Mr

dtj + +

where b = 4MS/Ls. Equation (2.19) means that the
spin-orbit coupling force causes the periastron shift, and
in the case of the prograde (retrograde) orbits it is neg-
ative (positive). Eq. (2.17) is rewritten as

12SL, 27SL, ~
+ Mr

Hence aQ we have to do is evaluate

(2.27)

1+e, u
tan —= tan —,

2 1 —e, 2
(2.2o) T

dtr " for4&n&8.
T 0

(2.2s)

where y' = p(1 + b) and moves 0 to 2m when u moves 0
to 2x. Then the relation between r and y' becomes Using the equation dt = dp'r~(1 —b)(L, —2S/r), the

average of r " becomes
1 —e~

2

r=a, I 01+e,cosy'
(2.21)

where

M 2S
2iEi L (2.22) tI — ' In 2L (1

—
&)

n —1 (2.29)

and the explicit form of e, is where

2(E(Ls 16S)E[ 16SEsL,

)M2 ML M3

2'
I = dp(1+ e,cosy)".

0
(2.3o)

Next, we consider the energy Bux. The general PN
formula of the energy Bux &om a spinning binary was

After straightforward calculations, we obtain the aver-
aged energy aux as
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(
dE 32M@ Q 732 374
dt 5 (1 —e2)&~2 24 ' 96

(2.31)

because it is derived under the PN approximation, i.e.,
e && 1. Thus, to investigate whether spin effects are
large or not even in the case v & 1, we will perform the
numerical calculation of the perturbation study around
a Kerr black hole in the next section.

Ms ( 1313, 297 ~ 249 61

I
193+12313 2 ' 8 ' 16

where Q = 2~E~/M and can be written as

(2.32)

dE 32M3@2 1 73 2 37 4

a, (1 —e2)~&2 24 ' 96

MS f 823 2 2253 4 989 s

Using Eq. (2.32), Eq. (2.31) is rewritten as

III. PERTURBATION STUDY
AND NUMERICAL RESULTS

A. Basic equation

In this section, we perform numerical calculations of
the perturbation study of gravitational waves induced
by a particle of mass p moving with an eccentric orbit
around a Kerr black hole of mass M and spin parame-
ter a. Basic formulas to perform the perturbation study
around a Kerr black hole are described in previous papers
[18—20,6], so we only describe points of the method. We
use the Sasaki-Nakamura equation [20], which is trans-
formed from the Teukolsky equation [21], and its radial
wave equation is

(2.33)

The first line of Eq. (2.33) was previously obtained by Pe-
ters and Mathews [16],and, in the case e, = 0, Eq. (2.33)
reduces to the formula derived by Kidder et al [11].

Since L, (2Mr„) ~2 oc (a, (1—e, )) ~2, the spin terms
become large when the orbit becomes highly eccentric.
I et us discuss the effects of the spin terms fixing the en-

ergy and angular momentum as E 0, r„4M, e, 1,
which corresponds to the most eccentric bound orbit in
the Schwarzschild spacetime. In this case, the second
terms of Eq. (2.32) become 8S/M2. Therefore, even
if the energy and angular momentum of the test particle
are the same, a large difference of the energy Qux will

occur depending on the spin of the black hole. This ef-

fect is also expected &om the location of the periastron
of the test particle orbiting around black holes with dif-
ferent spins. As shown above, the periastron of the test
particle is smaller for S & 0 and, as shown in a previous
paper [17], the energy flux induced by a particle with an
eccentric orbit is almost determined by the periastron of
the particle; for a smaller periastron, the energy Qux be-
comes larger. Hence the energy Bux for S & 0 becomes
larger than that for S & 0 even if the energy and angular
momentum of a test particle are the same.

This feature is important when we consider the event
rate of gravitational waves from galactic nuclei. The rea-
son is as follows: The event rate is determined by the
amplitude of gravitational waves 6, the duration time of
the event, E/E, and the sensitivity of a detector. The
number of events which can be detected by a detector
with a sensitivity is proportional to 6 . Thus, the event
rate is roughly proportional to h E/E. Where the test
particle with E 0 and e, 1 is concerned, the energy
Hux highly depends on the spin of the SMBH, so that the
event rate will also depend on it.

The formula of the energy Hux derived above may be
used only for the large orbital radius of the test particle

where r* is a tortoise coordinate defined by dr'/dr
(r2+a )/(r2 —2Mr+a2) and potentials F(r) and U(r) are
well-behaved functions at r' ~ +oo. S~ (r) is a source
term in the case of an eccentric orbit it is nonvanishing
only at r & r, where r is the radius of the apastron.
The solution of the radial wave function at infinity is
obtained by the Green function method:

"- sx"'
2i mA;„

(3.2)

where co and p are a complex constant and a function of

r, respectively [14]. X,„ is a homogeneous function of
Eq. (3.1) with the boundary conditions

X. M A~~ e +Aine ) r M OO)

(3.3)

mA(p + 2am

At
(3.4)

where At and Ap denote the orbital period and rotation
angle during bt, respectively. [i.e., (b,p —2x) is the
periastron shift. ] Then, using X~, the wave form at
infinity, the energy and angular moment»m Quxes are,
respectively, written as

where k = (u —m(M —QM2 —a2)/(2Ma).
In the case of eccentric ogbits) the angular &equency of

gravitational waves becomes discrete [17] and is written
as
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h+ —ihx =
oo oo l Savu~) ) ) &~&ra 2 lrn iv (r' —i)+imrp

RAt cpn= —oo l=2 m= —l

(3.5)

oo oo ldE 167K ) w ) w ) 2 Xi~~
dt At2. . . "

cpn= —oo l=2 m= —1

(3.6)
let the numerical code compute the auxes for n modes
so as to obey the order such as n = 0, 1,2, . . . and n =
—1,—2, . . . , and truncate the sum for higher ~n~ modes if
the following conditions are satisfied:

(")=
oo oo l

167I ) W ) 4 ) I Xifgg
At2 n= —oo l—2 m= —l

(3.7) (dEI . (dE~(3x10 ) for n) 0,
&

"' I.+i
where 2S&

" is a spheroidal harmonics function. Note
that to perform the sum in Eqs. (3.5)—(3.7), we can make
use of symmetry relations as

(dE& , ". &dE)(3x10 ) for m(0.
&"') .=- &"') ~

(3.11)

—2Sl—m —2Slm

Xl—m —n = Xlmn.

d(p

d7.
—(aE —L, ) + —E (r + a ) —aL,=1

r2

dt 1 —(aE' —L,)ad7. P2

a2 + p2
+ E'(B +a ) —aL,

The equations of motion of a test particle are

(3.8)

(3.9)

To check the accuracy of the numerical code, we com-
pare numerical results for a = 0 with those previously
calculated by us in the case of a Schwarzschild black hole
[17], in which we claimed that relative error is less than
10 4. It is found that the present results agree with them
within the accuracy & 2 x 10 4. To check the accuracy
of the numerical results for a g 0, we also compare our
results for the limit of the circular orbit with previous
results [18]. We also find that the accuracy is less than

10 4. Hence, we believe that the numerical error in
total is at most ~ 10 for rp 5M and 10 for
rp & 10M.

—= +/V(r),
dr
d7.

where 6 = r —2Mr+ a and

()= N '('+ ') — )'
—b, ((E'a —L,)'+ r2)]r 4. (3.10)

B. The energy and angular momentum fluxes

To clarify orbital bounds, which a test particle can
travel, first of all, we show the allowed regions of (E', L,)

We consider the case in which there are three real roots
for V(r) = 0, rq ( r2 ( rs. Here, the periastron rz and
apastron r correspond to r~ and r3, respectively. Note
that E' used in Eq. (3.9) is the energy of the test particle
including the rest mass energy. Hence, E in Sec. II can
be regarded as E' —1.

Since me consider bound orbits, E' must be less thanV, which is the local maxim~~~ of V between rq and
r2. In the case E' = V = 1, L and r„become 2M+
2/M —aM:—LMn and 2M —a+ 2/M —aM—:rMB,
respectively, which is the so-called radius of marginally
bound orbit (see also Fig. 1).

As for n»clerical methods to solve X~ „and 2S&
we use the same methods as those described in [19],and
omit them here. We describe only strategy of n»clerical
calculations brie8y. In the s»~ for l modes, we consider
up to l = 6 to save the computational time. This mill
not cause the large error because the contribution &om
l & 7 mas at most & 5 x 10 for r„& 10M and 10
for r„5M in the case where a test particle moves with
a circular orbit [18]. As for the sum for n modes, we

0.85 0.9
I I I I I I I

0.95
E'

FIG. 1. The allo+red region of E' and L for bound orbits
of the test particle for u/M = 0.9, 0.5, 0, —0.9. The dot-
ted, dashed, solid, and long dashed lines are for a/M = 0.9,
0.5, 0, —0.9, respectively. The vertical and horizontal lines
denote L /M and E', respectively. In the figure, the upper
line corresponds to the series of the circular orbit and another
line corresponds to the series of the most eccentric orbit. The
allo@red region for a bound orbit is between taro lines.
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for bound orbits of the test particle for a/M = 0.9, 0.5, 0,
—0.9 in Fig. 1. (Note that a & 0 means that the particle
has a retrograde orbit around a black hole). In this fig-
ure, we describe two lines; the upper line corresponds to
the series of the circular orbit (i.e., e = 0 or the minimum
value of E' for a given L,) and another line corresponds
to the series of the most eccentric orbit (i.e. , the maxi-
mum value of E' for a given L,). That is, both lines are
described by

r3/2 2Mr + aM1/2
@I

r3/4(r3/2 3Mri/2 + 2aM1/2) 1/2 '

(3.i2)

i
/

i i

Zn~

I I I I I I I I I I I I

(p)

0.6 ~+ ~n
0

C3

0.4 —
@

AAA

QC3Q

i I i i0 i i

i0 20 30
r p

Mi/&(r& 2aMi/&ri/2 + a2)
r3/4(r3/2 3Mr / + 2aMi/3)i/2 '

and the lower and upper lines, respectively, correspond
to r~s & r & r, and r, & r, where r, denotes the
radius of the last stable circular orbit for a given a. The
allowed region for a bound orbit is between two lines.
Clearly we can see that the allowed region is wider for
larger a. This is due to the repulsive nature of the spin-
orbit coupling such as S L [11].

We have calculated the energy and angular momentum
fluxes for a variety of parameters a, E', L, in the above
allowed region. First, to see the relativistic effect, we
compare the energy and. angular momentum Buxes with
those by the quadrupole formula as [16]

0
LLj

0.2:
0

10

Cl 0
I I I I I I I

20 30
t' p

i i

/

i

(b)

A

AAAg A

asap $—
I I I I I

40

(dE'r

( dt )
82)2E(' ( p &'/', VS, 37 4l

5 (M) I
24 96 )

x (I —e2)
—7/2

FIG. 2. Relative errors of (a) the energy and (b) the an-
gular momentum fiuxes defined as 1 —Qo/Q, where Qo and
Q are the Hux by the quadrupole formula and the result by
perturbative calculation, respectively. The horizontal line de-
notes r„/M Open squ. are, open triangle, and Riled triangle
are for a/M = 0.9, 0, and —0.9, respectively.

32(2E~'/ ~ ) 1', 7 ,
(dt) 5 (M) ( 8 )

where e = 1+ 2I,,E/M . In comparing the relativistic
Quxes with those by the quadrupole formula, we must
specify two parameters [17,22,23]. Here, we specify the
energy E = E' —1 and the angular momentum I, as two
parameters. This is in a sense a natural parametriza-
tion because E and L are the gauge independent quan-
tities, and in the Newtonian limit, the relativistic for-
mula will agree with the quadrupole formula using this
parametrization. In Fig. 2(a) and 2(b), we show the rel-
ative errors

(dE/dt) p

dE/dt '

(dJ,/dt) p

dJ,/dt

where dE/dt and dJ,/dt denote the fluxes by nnnieri-
cal calculations. Open triangle, open square, and Glled
triangle denote the relative errors for a/M = 0, 0.9,
—0.9, respectively. From Fig. 2, we can see that the

quadrupole formula underestimates both the energy and
angular moment»m Buxes. It is also found that the un-
derestimate is larger for a & 0 and for smaller r„. In the
case a = 0, the underestimate of the energy Bux becomes
more than a factor of 5 for r„& 10M. Furthermore for
case a = —0.9M, the underestimate of the energy Bux
becomes about a factor of 5 even for rz & 15M.

As pointed out in a previous paper [17], these inconsis-
tencies arise partly because in the quadrupole formula,
we neglect the relativistic corrections, such as fast motion
of the star and the scattering of gravitational waves by
the curvature near the black hole. As another reason, we
can mention the spin e8ect. To shower that, in Fig. 3 we
show the relative error of the energy Bux using the for-
mula Eq. (2.33) instead of the quadrupole formula. We
can see that the relative errors become independent of
the spin. This Bgure just indicates that the spin eKect is
important in the highly relativistic orbits. At this stage
we may consider that the lowest order PN correction of
the spin eH'ect is taken into account and the error comes
mainly kom our ignorance of the PN correction except
for the spin eH'ect. To see that, in Fig. 4 we show the
relative errors using the following formula instead of the
quadrupole formula:
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FIG. 3. Relative errors of the energy Sux in the case where
we use the N + P ~ N formula, i.e., Eq. (2.31) instead of the
quadrupole formula.

FIG. 4. Relative errors of the energy lux in the case where
we use the N + PN + P ~ N formula, i.e., Eq. (3.14), instead
of the quadrupole formula.

dE 1024IEI ( p l t ( 73 2 37 4~ MS t 1313 2 297 4 249 s~

dt 5(1 —e2)~&2 ~M~ [ ~
24 96

~
12Ls

~
2 8 16

IEI . . . 27405 , 5377 ,
168(l —e2)

I
4 16

~ J

' (3.i4)

where the last line is the first PN correction derived by
Blanchet and Schafer [13]. In this formula, N + PN +
P2~2N terms except for the tail term [24] are taken into
account. To put both the PN and P / N efFects in the
eccentricity, we define the eccentricity

e2 1
I I s + 12IEI 15E2L2
M2 ' ML

16SE'I..+ (3.i5)

We should note that Eq. (3.15) reduces to the PN eccen-
tricity derived by Blanchet and Schafer [13] in the case
S = 0. From Fig. 4, we can clearly see that the relative
error becomes smaller than that in Fig. 3 irrespective of
the spin; for r~ & 20M, the error is less than 20% and
for r~ & 30M, the error is lest than 10%. However,
even in this formula, the energy Qux is underestimated
by a factor of more than 2 for r„& 10M, and the ac-
curacy is not improved so much for r„5M. It seems
that this just indicates the limitation of the PN approxi-
mation for the emission problems of gravitational waves
by a particle with a highly eccentric orbit. We need a
mere appropriate formula.

Next, let us investigate the spin efFect minutely. To
see the spin efFect to the energy and angular momentum
fluxes clearly, we compare dE/dt and dJ,/dt for different
spins, but with the same orbital parameters (E', L,). In
Fig. 5, we plot dE/dt and dJ,/dt in a vertical axis and r„
in a horizontal axis. In Table I, we show the parameters
adopted to write Fig. 5. From Fig. 5, it is found that
the energy and the angular momentuTo fiuxes behave as
oc r„,and indices are n 5 and n 3, respectively. To
see the amplitude of gravitational waves, we show that
for a/M = 0.9, 0 and (E', L,/M) = (0.9657447, 3.77964)

I

as an example (Fig. 6). We can find the ratio of the max-
imum amplitude to be about 2/3. Since the ratio of the
periastron is also 2/3, we may consider that the ampli-
tude of gravitational waves behaves as oc r„. On the
other hand, the spin efFect does not change the apastron
so much, so the orbital period is not difFerent because of
the spin. Also, although the characteristic &equency of
gravitational waves depends on the spin (see next sub-
section), the sensitivity of a bread-band detector to their
&equencies is not difFerent so much. Thus, we may say
that the most important spin efFect to the detection prob-
lem is to change the periastron of the test particle be-
cause the event rate depends only on the periastron, e.g. ,

E/E oc rz. This indicates that the spin effect to the
event rate can be simply put in r„ in calculating the event
rate approximately.

C. Spectrum of gravitational waves
and extraction of parameters

In this subsection we show Fourier spectrums of grav-
itational waves considering a possibility of extracting pa-
rameters of the source such as the eccentricity, the semi-
major axis, the masses of the star and SMBH, and so on.
Although an eccentric orbit ef a star amund a SMBH will
evolve radiating gravitational waves, in the discussion be-
low, we neglect the back reaction of gravitational waves.
This is not an incorrect approximation for a SMBH of
mass 10 Mo because the integration time by a detec-
tor ( 1 yr) is short compared with the evolution time
of the orbit, Cg.

Before we show the Fourier spectr~~~s for highly rela-
tivistic orbits, we consider those for orbits in the Newto-
nian limit. The wave form of h;~ is written by the second
derivative of the quadrupole moment. For example, the
xx component h is
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FIG. 5. The energy and angular momentum Suxes for various a, but the same (E', L, ) as a function of Iog(rs jM). In
each Sgure, the Slled sguare and closed triangle denote the energy and angular momentum Buxes, respectively. The adopted
parameters are shown in Table I. The logarithm is base 10.
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TABLE I. Parameters for Fig. 5. Units of dE/dt and dJ,/dt are (p/M) and M(p/M), respectively.

@t

0.9657447163
I,/I

3.77964473
a/M
0

0.3
0.6
0.9

dE/dt
1.6788 x 10
5.8882 x 10
3.4611x 10
2.3893x 10

dJ,/dt
2.9145x 10
1.4384 x 10
1.0238 x 10
8.1351x 10

r~/M
5.86626
7.19879
8.09872
8.84992

Io/M Fig. 5
20.2660
19.9885 (a)
19.6956
19.3848

0.9859489306 4.850712501 —0.9
—0.6
—0.3

0
0.3
0.6
0.9

6.7888 x 10
4.4452 x 10
3.2806 x 10
2.5922 x10
2.1375x 10
1.8196x 10
1.5864 x 10

2.4349 x 10
1.8229 x 10
1.4854 x 10
1.2702x10 4

1.1182x 10
1.0063x 10
9.2055 x 10

9.68526
10.4707
11.0976
11.6274
12.0886
12.4973
12.8636

57.7696
57.6873
57.6054
5T.528T (h)
57.4424
57.3615
57.2810

0.986930827 5.77350269 -0.9
—0.6
—0.2

0
0.2
0.6
0.9

4.3135x 10
3.8314x 10
3.3330x 10
3.1295x 10
2.9498x 10
2.6475 x 10
2.4608 x 10

4.4910x 10
4.1664x 10
3.8174x10
3.6704 x 10
3.5381x 10
3.3099x 10
3.1651x 10

19.0746
19.5786
20.2004
20.4925
20.7733
21.3040
21.6775

54.6667
54.5166
54.3162
54.2160 (c)
54.1157
53.9150
53.7646

0.9932955700 7.29324957 —0.9
—0.6
—0.2

0
0.2
0.6
0.9

2.6738x 10
2.5575 x 10
2.4190x 10
2.3564x 10
2.2983x 10
2.].913x ]0
2.1192x 10

5.6733x10
5.5141x 10
5.3209x 10
5.2327x 10
5.1506x10
4.9967x 10
4.8920x 10

30.7298
31.0266
31.3935
31.5710
31.7434
32.0735
32.3086

116.116
116.047
115.956
115.910 (d)
115.865
115.776
115.709

h = — (cos2y + e cos p).
2@M 3

Rap 1 —e2

where J is the Bessel function. From the same procedure,
3.16

(neap) 2g (e),

In this case, the Fourier components appear for u = moo,
where Idp ——(M/asp)~/2, and become [19,24]

h (n) = — (~p) —J„'(ne) — J„(ne)
2 n n2e2

2pM2/s T l
R (2m)

2I.M'/' & r ~
hss(n) = —

l

— (nPIP) gss(e) ~ (3.18)
R (2Ir)

Since the following result is essentially the same for the x
mode, we only pay attention to the + model seen along
the z axis, which becomes

2~M'/' ( T')
h+ ——— (nPIp)

2

R 2x)

0.5 +-

I I I I

I
I I I I I

1 —e21 2 —e
x —J„'(ne) — J„(ne)

e n 2A e
(3.19)
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FIG. 6. Waveforxas of gravitational vraves observed along
the spin axis (z aIcis) for a = 0 (dotted line) and 0.9M (solid
line), and (E', L,/M) = (0.965T44T163, 8 TT9644TS).

We should note that the shape of the Fourier spectrum is
completely determined by the eccentricity e. In Fig. 7, we
show the Fourier spectrIIm ~h~( for e = 0.4, 0.6 as exam-
ples. For orbits with low eccentricities, there appears one
peak at n = 2 in the Fourier spectr»m. This is natural
because in the limiting case e = 0, all the Fourier compo-
nents except n = 2 disappear. On the other hand, we can
see two characteristic angular frequencies for more eccen-
tric orbits; one is uo, and another is one determined by
the periastron, which is about (M/rs) ~/ = (1—e) pIp.

Let us consider parameters to be observed &om a signal
of gravitational waves emitted by a star with a highly ec-
centric orbit around a SMBH. Provided that an ideal de-
tector (i.e., a detector with a sIIRIcient small noise level)
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orbital parameters of a test particle, (E', L, ) [26].
Next we consider the spectrum for relativistic or-

bits. From Eq. (3.5), Fourier components of gravitational
waves are written as

h+((u) —ih„(ur) = )
p.2—

b,

0 ~
0 2 4 6 8 10

x h (cu —(u„)e* —, (3.20)

where a = err* —mp is a phase factor. h+(u) and
h (u), respectively, become

(b)-

( )
16z ) Xx „—2Sx

RAt, cp

xb(~ —~„)cos(o. + xi ), (3.21)

04—

03—

16m ) .Xx „2Sx
RAt cp

x b((u —(u„)sin(a + xi ),

0.2—
I I I I I I I I I I I I I

2 4 6 8 10

where

(2& 2~x -"Xxm~„/cp)

FIG. 7. The Fourier components of gravitational waves (h+
mode) for eccentric orbits of e = 0.4, 0.6 in the Newtonian
limit. The horizontal line shows n = &u/~p.

To see the shape of the spectrum with respect to u, we
define the following quantity as a Fourier spectrum:

(3.22)

exists, we can extract the following quantities from the
Fourier spectrum: the amplitude, the spectrum shape,
and the basic angular &equency ceo. Then we can ob-
tain (1) e from the spectrum shape because it depends
only on e; (2) T from up, which can be measured from
the frequency of the first peak or &om the di8'erence of
frequencies between two peaks of the spectruxn; and (3)
M2~sy/R from the amplitude of the spectruxn. Once we
obtain e and T, we can also know E and L, of the star.
To know the masses M, p, and the distance R, we need
additional information. As for the mass of the SMBH, M,
it does not seem difficult to obtain: If we extract the first
PN effects, we will additionally obtain the ratio M/ap be-
cause every correction appears as a function of M/ap [for
example the periastron shift is 6m'M/ap(l —e2)]. Since
up ——(M/asp) ~, M is obtained from up and a PN cor-
rection term such as the periastron shift. However, we
cannot obtain R and p. It is quite natural because of the
equivalence principle, which states that a trajectory of a
test particle in an external graviational field is indepen-
dent of its mass. To obtain p, we need other information,
such as the change rate of the orbital period by the ra-
diation reaction. As for the spin of a SMBH, it seems
possible to measure it if we can extract the P / N e8ect.
This is very similar to the procedure in extracting pa-
rameters from the pulse from pulsars [25]. Thus it seems
possible to measure parameters for the SMBH as well as

In Figs. 8(a) and 8(b), we show Rh(u) for (E', L,/M) =
(0.97187295,4.0) and a/M = 0, 0.9 as examples. In the
figures, the open triangle and filled triangle denote the
Fourier spectrum of gravitational waves observed along
the spin axis and in the direction of 8 = x/4, respec-
tively. In these cases, 2m/AT and Arp/AT = up become
0.0115M and 0.0169M for a = 0 and 0.0118M
and 0.0142M for u = 0.9M. It is found that the fea-
ture of the spectrum shape is similar to the case of the
Newtonian orbit: There are two characteristic &equen-
cies, one is ~o and another is determined by the motion
in the vicinity of the periastron. Details of the spectrum
shape are somewhat H~H'erent &om that in the case of
the Newtonian orbit. For example, the &equency of the
first peak does not correspond to uo. For both a = 0
and a = 0.9M cases, it corresponds to (m, n) = (2, —1).
However, the global shape of the spectrum is essentially
the same as that for the Newtonian orbit. Hence, if ere
prepare accurate theoretical templates, it will be possible
to extract parameters of the SMBH as well as orbital pa-
rameters of a test particle from a signal of gravitational
waves.

The spectrnrn shape is also difFerent depending on the
direction of the observation as found in Figs. 8(a) and
8(b). In the case that an observer detects the signal along
the spin axis, he only detects modes of ~m~ = 2 because of
the property of the spheroidal harmonics [19]. However,
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FIG. 8. The Fourier components of gravitational waves Rh(&u) in the case of general relativistic eccentric orbits,
(E', L /M) = (0.97187295,4.0) for (s) a = 0 snd (b) a = 0.9M. The open triangle and Riled triangle denote the spec-
trum of gravitational waves detected along the z axis (8 = 0) snd 8 = z/4, respectively. The unit of the horizontal axis is

M . The Fourier component Rh(u) is shown in (c) snd the wsveform Rh~ is shown in (d), each for gravitational waves

with a = 0.9M snd (E', L, /M) = (0.93, 2.5). The open triangle snd filled triangle denote the spectrum of gravitational waves

detected along the z axis (8 = 0) snd 8 = z'/4, respectively.

if he observes the signal along the other directions, he
will detect modes of (m) g 2 as well as those of (m~ =
2. For the highly relativistic orbits, such modes have
large amplitudes. In Fig. 8(c), we show the spectriim for
(E', L,/M) = (0.93, 2.5) and a = 0.9M (rz ——2.48M,
2m/b, T = 0.0346M, ups

——0.0739M ). In this case,
the peak amplitude for ~m~ = 3 is about one third as
large as that for ~m~ = 2. In Fig. 8(d), we also show the
waveform (+ mode) seen along 8 = z /4. It is found that
the waveform has a very complicated shape because of
the relative enhancement by the higher multipole modes.
So, we may expect to find such a mode in the shape of
the spectrum even in the noisy data. Since the relative
strength of the mode of ~m) = 3 to the mode of ~m~ = 2
also depends on parameters of the SMBH as well as the
orbital parameters of a test particle, it will be of some
help for us in extracting parameters kom a signal.

IV. DISCUSSION

As we show in Sec. III, the quadrupole formula under-
estimates the energy and angular moment~I' Buxes of
gravitational waves by a large factor; as for the energy

Bux, the factor for r„10M is 2 for a = 0.9M, 5 for
a = 0, and 10 for a = —0.9M, respectively. As for the
angular momentum Bux, the factor is 1.5 for a = 0.9M,

2 for a = 0, and 3 for a = —0.9M. Suppose that
the energy and angular momentum Buxes becomes five
times and twice as large as those by the quadrupole for-
mula. (This corresponds to the case for a = 0). From
Eqs. (1.4)—(1.6), we find that even if r„becomes about
6M, the sufficient energy to satisfy tG QIJ ( t is dis-'
sipated. In this case, the duration time tg is invariant
even if r„changes; so, from Eq. (1.12), the event rate
becomes about 1.5 /' 4 times. It is somewhat compli-
cated to estimate the event rate for the spinning SMBH.
In the case a = 0.9M, the energy and the angular mo-
mentum Buxes are, respectively, twice and 1.5 times as
large as those by the quadrupole formula. In this case,
the allowed value for r„does not change so much. In
the case a = —0.9M (i.e., retograde orbit), the energy
and angular moment»~ Buxes are, respectively, 10 and 3
times as large as those by the quadrupole formula. In this
case, r„may become twice, so that the captured rate for
the regrograde orbit seems to become about 2 ~ 10
times larger than that for the prograde orbit. On the
other hand, rMg 2M for a = 0.9M and rMB 7M
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for a = —0.9M, so a star with a prograde orbit is not
susceptive to plunge into the SMBH, whereas a star with
a retrograde orbit is susceptible to plunge. Hence, the
event rates for the retrograde and prograde orbits will
be almost the same, and they will be considerably higher
than that estimated by the quadrupole formula. In any
case, the event rate becomes larger than that estimated
in Sec. I if we take into account the relativistic efFects to
the energy and angular momentum Quxes, and about 10
events per year will be expected with 1 Gpc.

In Sec. III C, we consider the possibility of extracting
parameters of the star and the SMBH of mass 10 Mo
from a signal of gravitational waves. There, the orbital
parameters (E,L,) of the s'.ar are not assumed to change
because the evolution time scale of the orbit tg is much
longer than the integration time of the detector 1 yr.
In this case, the extraction of all parameters except for p
and R seems possible if we can prepare theoretical tem-
plates which are accurate enough. For any orbital pa-
rameters and observation directions, it will be possible
to prepare the accurate template using the perturbation
method. Hence, the parameter extraction &om a signal
of gravitational waves also will be possible if the orbital
evolution of the star can be neglected. (It will be possible
even in the case that the orbital plane is not the equato-
rial plane. ) However the above assumption is not correct
for a SMBH of mass & 10 Mo because the evolution time
scale becomes tp & 1 yr. In this case, we must prepare
the theoretical template considering the back reaction of
gravitational radiation to the particle. For the case that
the particle stays on the equatorial plane, it will be pos-
sible. The reason is that the appropriate formula for the
energy and angular momentum Quxes can be calculated,
and then the orbital evolution may be evaluated by the
adiabatic approximation [23], since the evolution time
scale by gravitational radiation is much longer than the
orbital period except for orbits just before plunging into
the SMBH. Here, we should notice that the PN formula is
not appropriate for a highly relativistic and highly eccen-
tric orbit, so that we need a general relativistic formula.
For that, we should perform a more systematic and wider
survey of the energy and angular momentum Buxes.

For the case that the particle does not stay on the
equatorial plane (i.e., in the general case), the situation
is completely different and the problem becomes much
more difEcult. The reasons are as follows. (1) We can
no longer use the adiabatic approximation because it can
be applied to the problems in which the orbit of the test
particle has some periodicities. Hence, we must consider
the back reaction to the test particle locally in time. (2)
We must consider the back reaction of not only the energy
and angular momentum, but also of the Carter constant

of which we do not know the correct physical meaning
[19]. To solve the problem (1), we need the elaboration to
construct the robust formalism for the radiation reaction
which can be applied to strong field and fast motion [23].
In contrast, the back reaction to the Carter constant itself
does not seem a serious problem because it will be solved
if the solution to problem (1) is found. As described in a
previous paper [19], the Carter constant can be written
as

C = L + L„+a (1 —E )cos 8.

The change rate of it is

dC dI dL+ 2 2 dcos 8=L+ +I ++a 1 —E

dJ dJ+ 2 dE
+L+ +L + —2t2, E cos 8,

dt dt dt

(4.2)

(4.3)

Therefore, if we can 6nd an expression for the loss rate of
the energy and 6 components of the angular momentum
by gravitational radiation locally in time, we can evaluate
the back reaction of the Carter constant. Thus, problem
(2) is attributable to problein (1). Most urgent is the
construction of a formalism for the radiation reaction in
a Kerr spacetime.
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where L~ = L +iL„, and dL, /dt and dJ;/dt denote the
change rates of the angular momentum due to the orbital
precession and the radiation. reaction. As mentioned in a
previous paper [19], the first line can be neglected if the
time scale of the radiation reaction is much longer than
the orbital period and precession time scale. Because of
the condition p (( M, the present situation satis6es the
relation for the time scales except for orbits just before
plunging. Equation (4.2) thus becomes
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