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To investigate the possibility of obtaining evidence for scalar-tensor theories of gravity by laser
interferometric gravitational wave observatories (e.g. , LIGO), we perform numerical simulations of
the gravitational coQapse of a spherically symmetric dust auid and investigate the waveform and
amplitude of scalar-type gravitational waves (SGW s) in the Brans-Dicke theory, which is one of
the simplest scalar-tensor theories. We find that in the case of the dust collapse of mass Mo and
initial radius 100—1000 km, the emitted SGW's have a maximum amplitude 10 (500/u) (10
Mpc/A) and a characteristic frequency 40—1000 Hz. This means that if the gravity theory is the
Brans-Dicke theory with ~ & several thousands, the advanced LIGO may detect a signal of SGW's
from a supernova at the Virgo cluster. And, if we happen to find a supernova in our Galaxy, we may
detect SGW's even if u is as large as 10 . Concerning cosmic censorship, we also investigate the
fate of a collapsed object. Our numerical results suggest that the final product of a collapsed object
is a black hole in the Brans-Dicke theory like in the Einstein theory, and outside the black hole,
the Brans-Dicke scalar field seems to become constant. These results support the cosmic censorship
conjecture.

PACS number(s): 04.30.Db, 04.50.+h

I. INTRODUCTION

Laser interferometric gravitational wave observatories
(such as LIGO) will be in operation by the end of this
century [1]. These detectors have the ability to detect
the signal of gravitational waves from coalescing binaries
with an amplitude & 10 and &equency 10—1000 Hz.
Using the matched filter technique [2,3] in the data anal-
ysis, we have a chance to determine not only the various
parameters of a binary, such as mass, spin [4,5], inclina-
tion [6], radius of neutron stars [3], and so on, but also to
obtain the cosmological parameters such as the Hubble
constant Ho, cosmological constant A, and the deceler-
ation parameter qo [7,8]. It may be possible to identify
the p-ray burst with coalescing binary neutron stars [9].
These show that the observation of gravitational waves is
very important for astronomy because it allows us a new

way to see the Universe as a whole as well as the general
relativistic objects themselves, such as neutron stars and
black holes. But here we point out other possibilities by
the detection of gravitational waves.

Can we use gravitational waves to verify Einstein's
theory of gravity'? Of course there are no experiments
that contradict Einstein's theory of gravity [10], but all
tests except for the pulsar timing test [11]are within the
parametrized post-Newtonian (PPN) framework, which
have fundamental limitations because they test objects in
weak gravity. From a quantum theoretical point of view,

the Einstein theory should be regarded as an effective
theory in the energy scale much lower than the Planck
scale. Hence, it is a natural question as to whether or
not the Einstein theory is a good effective theory even in
strong gravity systems in which the PPN framework is
not applicable.

As an example for the other metric theories of gravity,
dilaton gravity is naturally predicted by the superstring
theory, which is at present only one theory to treat the
gravity in a way consistent with quantum mechanics [12].
Dilaton gravity is included in a more general &amework,
i.e., the so-called scalar-tensor theory. In practice, we

have not yet been able to rule out the scalar-tensor the-
ories, and also vector-tensor theory [10], because such
theories have the allowed regions for their intrinsic pa-
rameters (e.g. , u in the Brans-Dicke theory [13],which is
the simplest one in the scalar-tensor theories). To verify
the correctness of the Einstein theory more rigorously or
to obtain evidence for the other metric theories, we need
other tests involving a strong gravity source such as black
holes and neutron stars.

One method is the pulsar timing test in a binary pulsar
[ll] in which the total energy of the system is dissipated
by the emission of gravitational waves. The essence of
this method is that each theory predicts different polar-
izations of gravitational waves and, as a result, a diferent
emissivity of gravitational waves. Since pulsar timing is
affected by the back reaction of gravitational waves, each
theory predicts a djtfferent pulsar timing. Hence, making
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use of the binary pulsar, especially using a black-hole—
neutron-star binary pulsar, we can test the metric theory
more rigorously [10,14]. However, for a rigorous test, we
need black-hole —neutron-star binaries or binary neutron
stars of a large mass ratio in our Galaxy [14],which have
not been found yet.

The second possibility to investigate the metric the-
ory is the direct detection of gravitational waves, which
may include various types of polarization [15,16]. For ex-
ample, let us consider the Brans-Dicke theory (or scalar-
tensor theory), which is our subject in this paper. In this
case, there are three polarization modes: Two of them
are the same as those in the Einstein theory, that is, the
so-called + and x modes, but there exists one additional
mode, the scalar (spin-zero) mode, which is emitted even
in the spherically symmetric space-time. Thus, theoret-
ically, if we can detect scalar-type gravitational waves
(SGW's) with a laser interferometric detector, we may
say that the scalar-tensor theory is correct. Also, if we
do not detect the scalar mode but do detect only + and
x modes, it has an important meaning because we can
exclude the scalar-tensor theory within the sensitivity of
the detector.

In practice, there may be maximally six polarization
modes in gravitational waves if we take into account the
various theories [15,10]. In this case we need at least
six detectors operating at the same time and at ddfer-
ent places to distinguish every mode. Hence, it seems
impossible to distinguish the scalar mode kom the vari-
ous other modes unless we Snd a strong periodic source
of gravitational waves [10]. However, as shown in this
paper, the characteristic amplitude and frequency of the
scalar mode may be difFerent &om those of the other
modes in some sources of gravitational waves. This
means that several characteristic peaks may appear in
the spectr»m of gravitational waves. Since the interfero-
metric gravitational wave detector has a wide &equency
band, it has the ability to detect the various types of
waves of diferent characteristic &equencies and wave-
forms. Hence, we may be able to distinguish the scalar
mode &om the other modes completely by making use of
the features of these modes.

From the above point of view, a supernova (SN), which
is considered a weak emitter of gravitational waves in the
case of the Einstein theory [17], becomes an important
source of SGW's because the scalar mode is emitted even
&om spherically symmetric collapse. We can think as
follows: If signals of SGW's &om a SN are detected, we
can verify the scalar-tensor theory, and, even if no signals
of SGW's are detected &om the SN, which is seen by
electromagnetical observations, we may give the upper
limit of the intrinsic parameter of the theory, e.g. , ~ in
Brans-Dicke theory. Thus, the absence of a signal may
lead to the restriction of the theory.

This is the reason we perform the n»merical simula-
tion of the gravitational collapse and investigate the am-
plitude and the kequency of SGW's in the Brans-Dicke
theory to see the possibility in detecting gravitational
waves other than the + and x modes. Although there
are many alternative scalar-tensor theories in addition to
the Brans-Dicke theory, which is consistent with the PPN

II. BASIC EQUATIONS AND NUMERICAL
METHOD

A. Basic equations

The basic equations of the Brans-Dicke theory [13] are
originally expressed in the Brans-Dicke &arne, and they
have the form

R s —2g sR=Sng Ts
+~4 '(Vo4Vs4 zgosg"V. 4—V~—4)
+y '(V.Vsy —g.sV.V'4), (2.1)

V V Q = Sz (2u) + 3) T (2.2)

and

V T~ ——0, (2.3)

where g g is the metric in the Brans-Dicke kame, and
B g, B, and V are the Ricci tensor, Ricci scalar, and
covariant derivative with respect to g ~, respectively. T p
is the energy-momentnm tensor, and P is the Brans-Dicke
field by which the locally measured gravitational constant
can be written as

g24p+ 4

2'+ 3 (2.4)

Dicke has pointed out [20] that the theory can also be
expressed in another kame, the so-called Einstein kame,
and in this kame, the equations become

experiment [10,18], we only pay attention to the Bra~~-
Dicke theory because our intent here is to show that it is
possible to detect SGW's &om the SN source. Hence, we
also do not intend to calculate the detailed dynamics of
the gravitational collapse and waveforms of SGW's. The
detailed calculations will be future problems.

The remainder of this paper is devoted to the details
underlying the above discussion. In Sec. II, we derive
the equations for the spherical symmetric gravitational
collapse in the Brans-Dicke theory, and the numerical
methods are also shown. In Sec. III we first show the
numerical results, in particular, the waveforms and the
Fourier spectra of SGW's for various models. Even if the
SGW has a high enough amplitude to be detected by the
interferometric detector, it is nontrivial whether or not
the detector has the ability to detect SGW's. Thus, in the
latter half of Sec. III, we show that it is possible to detect
SGW's with a laser interferometric detector. To make
sure of the cosmic censorship hypothesis [19],in Sec. IV,
we brie8y show that the Bnal fate of the collapsing objects
is a black hole by means of the apparent horizon search.
Section V is devoted to the snmmary. Throughout this
paper, we take the units of c = G = 1 and Mo denotes
the solar mass.
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R g
—2g gR=87lC Tg

= ~'(Vo@Vs4 —
—,'g sg'"V, @VLCC ), (2.5)

Then the equations of the dust become

Bt,D+ (—r DVi) „=0 (2.14)

and

(2.6)
1

OqSi + —s(r SiVi) „= —2S aa „e

V Ts = 2(V O)TP —2i(Vs@)T (2 7)

where u' = ~ + 2, 4 = ln(P), and g s = Pg s. R q, R,
and V are the Ricci tensor, Ricci scalar, and covariant
derivative with respect to g s, respectively.

Here, in the Einstein kame, the equations are essen-
tially the same as the Einstein equation with a scalar
field 4', while the equations in the Brans-Dicke frame
are somewhat complicated because they include the sec-
ond derivatives of P in the right-hand side (RHS) of Eq.
(2.1). Hence for convenience of numerical computation,
we solve the equations in the Einstein frame.

We numerically treat the spherically symmetric dust
collapse in the Brans-Dicke theory. In numerical calcu-
lation, we use the 3+1 formalism and choose the line
element (i.e., the gauge condition) as

where y = r . S becomes

S = — e~D2 + e2~A —2yS20 1

t9g4—

o.B2
O,g = 4y@yy+ 6@y

fa„B„
+4y@y '" + 2

Av~ 4n D2+-
A )

~' So

The equation of the scalar field becomes

(2.16)

(2.17)

ds = adt —+A dr +B r (d8 +sin ed' ) . (2.8)

Pa
A A A

Tab = ~au& ) (2.9)

As for the time coordinate, we adopt the maximal slic-
ing condition, K = 0. Then, in the above gauge,
K = Bg(AB )/A—B, so that AB is constant with re-
spect to the time t and depends only on the radial coor-
dinate r

The energy-momentum tensor of the dust fiuid is writ-
ten as

To solve the metric and extrinsic curvature, we have
several choices to treat the equations in the Brans-Dicke
theory because they also have the constraint equations
as well as the evolution equations. Here we adopt the
following method: (1) As for the three-metric, we solve
the evolution equation of A, so that B is obtained &om
AB = vPs(r) = const, where Q is fixed at the stage of the
initial value equations (see below); (2) as for the extrinsic
curvature K„"(=Ki), we solve the momentum constraint
equation; (3) the Hamiltonian constraint is used to check
the accuracy.

Then the basic equations become

V (pu ) = 2(V 4)pu (2.10)

Thus, we define p = pe 2 . In this case the equation
becomes the conservative form

where p and u are the baryon mass density and the
four-velocity in the Brans-Dicke frame. This means that
—u u does not become unity but P in the Einstein
kame. Furthermore, the equation for p does not become
a fiux conservative equation. Instead, it becomes

0~A = —o.K~A,

( B„A,„~
4/el yy + 6' y + 4go.' y 2

A

(2.18)

(2.19)

V (pu)=0. (2.11) = 4' O! + + —&Kg A + 4) 0,'
/Apse ~ ASViy) 3 . . . g'

Taking into account these facts, we define the Huid vari-
ables as

pp, = pAB (au ), S„=aAB pu u„,
(2.12)

Si ——S„/r, Vi ——V"/r . (2.13)

D=aAB pu, S =Du, V"= „"
u A

We also define the following quantities to guarantee the
regularity at r = 0:

(2.20)

Ki ——r B dr r A B[8vrSi —2~'g4, &] . (2.21)
0

The first equation is the evolution equation of A. The
second and third equations are obtained &om the max-
imal slicing condition K = 0. The fourth equation is
obtained &om the momentum constraint.
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To obtain the initial condition, we must solve the
Hamiltonian constraint. By virtue of the spherical sym-
metry, we can consider, without loss of generality, the
conformally flat initial condition A = B = $2. Then, in
this case, the Ham~&tonian constraint becomes

4yvj „„+6@„=—2z ——Q K~
phe

I

[—~'—@ '+4(@, )'yW]. (2.22)

Before proceeding further, we brieQy review the be-
havior of the metric in the wave zone [16]. Since met-
ric quantities, a, A, and B, do not contain the wavelike
component in the wave zone, in the Brans-Dicke frame
(denoted by Ch), the line element in this zone becomes

p:(p) I I I I I I

-.5

gauge condition is not the same as theirs. (Their spatial
coordinate condition is the conformally fiat gauge. ) For
the test problem, the initial radius for OS collapse is cho-
sen as r/M = 10, where r is the coordinate radius in the
present gauge. In Figs. 1(a) and 1(b), we show a and
A at t/M = 46.1 and 57.3, respectively, as an example.
Solid lines show the semianalytic solution, and the square
symbols show the numerical results. These figures show

ds = (1+4)ds (2.23) -1.5
where ds2 is the component that does not contain the
wave part and ~4~ (( 1. This means that, in the wave
zone, we may regard 4 as just the SGW's. Therefore,
to see SGW's in the wave zone, we have only to see the
Brans-Dicke scalar field.

-2

.6

I I I I I I I I I I

5 10 15 20

B. Numerical method and test of code

We solve the above equations by means of the finite
difference method. In order to see the SGW's clearly,
as for the partial derivatives of the scalar field, metric,
and extrinsic curvature, such as 8&A and A,„,we use the
second-order finite difFerence as follows:

An I ~—& (Ara+1 Are)6t„+Et„,
~

Et„

.2

p I I I I I I I t I I t i i i T i i T T

0 5 10 15 20

(A" —A" z)
Lt„

b,t„
(2.24)

A„= t ' ' '(A,+, —A, )y'+i —y*' [ y~+i —y'

+ '+ '(A —A )I9' —9'—i

~ 0002 gl
:(e)

.00015—

.0001

I I I I I I;i., I I I I I I I I I

where A", 6 t„, and A;, respectively, denote A at the nth
time step, the time cMerence between the nth and the
(n+ 1)th steps, and A at y;. As for the fiuid equation,
we use the standard flux conservative method [21]. In
numerical calculation, typically, we take 4000 grid points
for r;(y;), and the outer grid becomes about 1000 M. For
one calculation it took about 10 h on a YHP 715-50 work
station.

To see the accuracy of the numerical code, we perform
several test problems. In Figs. 1(a) and 1(b), we com-
pare the results for the Oppenheimer-Snyder (OS) col-
lapse calculated by the m~~erical code and semianalytical
method, respectively. Here, we call essentially the s~me
method as that used by Petrich, Shapiro, and Teukol-
sky [22] the semianalytical method, although the present

-100 -5Q Q 50 100
t- r*

FIG. 1. (a) The lapse function a ss a function of the coor-
dinate radius on selected time slice t/M = 46.1 and 57.3 for
Oppenheimer-Snyder collapse &om r/M = 10. The solid line
shows the results calculated by the semiaualytical method,
and square symbols denote those calculated by the n~~mer-
ical code. (b) The same as (a), but for A. (c) The sca&~r
waves induced by a spherical dust shell, which initially rests
at r, = 10M and fe&&~ into a Schwarsschild black hole. The
solid and dashed lines show the results by the perturbation
study and the numerical simulation, respectively.
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that the present niimerical method works well.
%e also perform the comparison of wave forms of scalar

waves calculated by the perturbation study around a
Schwarzschild black hole and by numerical simulation.
Here, the method of the perturbation study is essentially
the same as the perturbation study of gravitational waves
around a black hole. (See, for example, Ref. [26].) In Fig.
1(c), we show the numerical results of 4r at r 100 M
induced by a spherical dust shell, which initially rests at
rg ——10M, where r~ is the areal radius and falls into a
Schwarzschiid black hole. In this calculation, the mass
of the dust shell is set as y, = M/10, so that two results
should agree within an accuracy of 10'%%uo. In numerical
simulation, the black hole is expressed by the compact
dust clump whose radius B 0.3M initially. In the fig-
ure, solid and dashed lines show the results by the pertur-
bation study and the numerical simulation, respectively.
It is found that both results agree very well. This also
shows that the present numerical method works well.

equilibrium state will be mainly determined by neutrino
pressure [24]. In this case, the equation of state will be-
come p pe/3 and T becomes —p. To take into account
this property, we calculate the initial condition of 4 from
the following equation, which is obtained from Eq. (2.17)
inserting Bt,ri = rl = 0:

( cr„B„A„t
4y@ yy + 64 y + 4y@ y

'" + 2

4~2
(3 2)

Note that if we solve this equation, the asymptotic value
of 4 becomes M/rut'. In both cases, the momentum
constraint is satisfied automatically (Ki ——0) and we
have only to solve the Hamiltonian constraint to obtain
the initial condition.

III. NUMERICAL RESULTS B. Numerical results

A. Initial conditions

As for the initial density configuration of the dust,
p~i& 0, we adopt

pI = p [1+exp&(u —ui)/2@2)] (3 I)

where p„yi, and y2 are constant &ee parameters. Since
we treat the dust, we can freely scale the unit of mass.
For convenience, we determine p, to fix M = 1. Hence,
the remaining free parameters are yi and y2. In the
case of yi )) y~, the distribution is almost homogeneous,
while, in the case of yi (& y2, it becomes a Gaussian-
type distribution. Here, we must be careful to give these
parameters because, if we choose an inappropriate set of
the parameters, the naked singularity due to the shell fo-
cusing [23] appears during numerical simulations and the
simulation must be stopped before the SGW's propagate
to the wave zone. Experimentally, we found that such a
singularity seems to appear in the case of yi ( y2, so we

adopt parameters satisfying yi & y2.
Before we give the initial condition of C and g, we

should note the following: In the initial data, there is
no information about the equation of state for baryonic
matters, although we treat p = 0 dust in the dynamical
evolution. This means that we may consider our simula-
tions as follows: For t ( 0, the matter is almost under
the equilibrium state (so rI = 0), and, for t & 0, the pres-
sure is reduced to zero and the collapse begins. Taking
into account the above, we consider two types of initial
conditions. We call them cases (A) and (B). As for case

(A), we use the initial condition, 4 = rI = 0. We adopt
case (A) just for simplicity, but we can regard it as the
highly relativistic initial condition because it is consistent
with T = —p(1+ e) + 3P = 0, where e is the internal
energy per baryon mass. As for case (B), we adopt the
more realistic initial condition. In realistic situations of
stellar cores before collapse, the equation of state in the

i t' M i /lOMpc)@~10
(0.002) I 10Mo) ( R (3 3)

TABLE I. Initial conditions for models (Al) —(AS) and
(B1)-(B4).

Model
(A1)
(A2)
(A3)
(A4)
(A5)
(As)
(A7)
(As)
(B1)
(»)
(B3)
(B4)

500
50
5

500
500
500
500
500
500
500
500
500

~yi
15
15
15
15
30
10
10

30
15
10

~@2
0.4
0.4
0.4
6

0.4
0.4

0.4
0.4
0.4
0.4
0.4

Pc
7.4 x 10
7.4 x 10
74x10
64x10
9.0 x 10
2.6 x 10
2.2x10 '
2.1 x 10
9.0 x 10
7.4 x 10
2.5 x 10
2.1 x 10

We have performed numerical computations for a va-
riety of parametrs yi, y2, and ur' for both cases (A) and
(B). We show the parameters as well as the density at
the center p for selected models in Table I. Since the
unit of the density is 6.17 x 10 gcm (Mo/M), the
central densities in the initial conditions are 1011 1014

gcm for M = 1Mo 10Mo.
First, to see the effects of u' on the waveforms of

emitted SGW's, we compare the wave forms of models
(Al) —(A3) in Fig. 2. The vertical axis corresponds to
4(~'/500) at the numerical boundary. The solid line,
dot-dashed line, and dashed line show the waveforms of
models (Al) —(A3). We note that the unit of the time t
is 4.93x10 (M/10Mo) sec. Amplitudes of SGW's are
shown in units of h = 4(R/M), where R is the areal
radius &om the detector to the source. Hence, the am-
plitude at the detector becomes
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FIG. 2. Waveforms of the scalar wave observed in the wave

zone are shown for models (Al)—(A3). The amplitudes for
models (A2) and (A3) are written on scales of 1-10and 1—100,
respectively. The solid line, the dot-dashed line, and dotted
line show for models (Al) —(A3), respectively. Lines for models

(Al) and (A2) overlap each other.

is more compact (yq is smaller) or less condensed (yz is
larger), the wave rises more sharply and the wavelength
becomes shorter. Also for case (B), as the initial config-
uration of dust is more compact (yq is smaller), the wave
descends more sharply.

(2) All the models have the same waveforms during
their damping.

Property (1) refiects the motion of the dust, while

property (2) seems to refiect a feature of the space-time;
that is, we see the quasinormal mode (QNM) of the
black hole. To co»&rm that these are the QNM's, we

show the various results of the perturbation study on a
Schwarzschild space-time. In Fig. 4, we show the scalar
waves induced by spherical dust shells, which initially
rest at r, /M = 5, 10, 20. From the figure, we can see the
same damping waveforms as those in Fig. 3.

In Fig. 5, we show the Fourier spectrum for mod-
els (Al) and (A4)—(AS). Horizontal lines show that
the log&of, and the»»lt of the &equency f becomes
2.03x104(10Mo/M) Hz. The Fourier spectr»m is de-
fined as

From Fig. 2, it is found that shapes of the waveforms are
almost the same, so that the ratio of the amplitudes is
the same as the ratio of u'; the scalar fields are linearly
scaled with ~'. This means that the Brans-Dicke scalar
fields behave like linear perturbations and does not afFect
the dynamics of the matter field and the metric so much,
even in the case of u' = 5. (This is consistent with the
simulations performed by Matsuda and Nariai [25] 20
years ago. ) In fact, the maxim»m value of O is ~ 10
for u' = 500, and 0.1 even for a' = 5. Therefore,
we may regard the scalar field as the linear perturbation
for u' & 5, and we can linearly extrapolate the results
obtained in the present calculations to the cases of large
w'. Taking into account this fact, hereafter, we only show
the n»merical results for the case of ur' = 500.

In Fig. 3, we show the various waveforms for models

(A4)—(A8) and (Bl)—(84). Since the initial values of h for
case (B) are approximatley ~ 0.002, the amplitude of the
wave for (A) and (B) are di8'erent before the oscillation of
the wave begins, but the &l&erence between (A) and (B)
is only their initial values. Since the final products are
the black holes in all models, h becomes 0 at~ t + oops

and the maxim»m ~Vh~ becomes ~ 0.002 irrespective of
the models. Therefore, we can expect that irrespective
of the initial condition, the maxim»m amplitude @max of
SGW's at the wave zone becomes

&max

hy = h(t)exp(2z'i ft)dt,
0

(3.5)

and in figures, we plot f[by[/0. 002 = Hy. Note that the
»»t of Hy is

$0 22 M ~ (10 Mpc~ (500~

10Moj ( R ) (~') (3 6)

fclNM + 500(M/10Mo) Hz . (3 7)

and it is the quantity to be compared with the root mean
square (rms) noise (h, = [fS(f)]~~ ) at each &equency
of the detector [1,2]. From Fig. 5, it is found that Hy
has the following features: (1) There is a characteristic
frequency f, Below f„.Hy damps linearly and irrespec-
tive of the model, Hy ~ 10 o s 0.3 at f = f, ; (2) f, is
approximately proportional to +p; (3) for f ) f„there
are a few peaks in the spectrums, and the value of some
peaks as large as that at f = f„i.e., 0.2 & Hy & 0.3.

As for feature (3), the peak &equencies are 200—
400(10Mo/M) Hz, and they are not so difFerent for each
model. This means that they refiect the QNM of the
black hole because the estimation of the &equency fqNM
of the QNM by the WKB approximation [27] shows

M ~ ~10 Mpc~ t 50014 10
I10Mo) ( R ) ( ~ )

(3.4)

As for the waveforms shown in Fig. 3, we can see the
following features.

(1) For the case (A), as the initial configuration of dust

In the case of the neutron-star formation, the results will
be H&trent because h wi11 become a Snite value. See the
discussion below.

Hence, in the case of the neutron-star formation, QNM's
will have different &equencies (see below). On the other
hand, features (1) and (2) mean that although the max-
im»m amplitude is independent of the initial condition,
the characteristic &equency f, of the Fourier spectr»m is
determined by the initial configuration. This will reBect
that the scalar field is driven out of the black hole, and its
time scale depends on the motion of the matter, i.e., the
formation process of the black hole. A remarkable fea-
ture for case (A) is that Hy at f = f is always greater
than that at the &equency of the QNM. This is because
the waveform is not doml»ated by the QNM contrary to
the case of + and x mode of gravitational waves [28].
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Although in case (B) the possibility of detecting
SGW's depends on the window function [i.e., we need an
appropriate window width 5(M/Mo) ms], we proceed
with discussions assuming that the appropriate choice of
the window function is achieved. Until now we have con-
sidered SGW's &om the black-hole formation and seen
that they have an amplitude and a frequency to be de-
tected by the advanced LIGO. However, we must be care-
ful to conclude that they are always emitted with such
amplitude and frequency becuase in reaIIstic SN's, a neu-
tron star will be formed in most cases. We may overesti-
mate the amplitude of SGW's using our results because

Mv2

R (3.15)

where v denotes the characteristic speed of the matter in
the system. Hence, compared with the case of black-hole
formation, h will be suppressed in the case of neutron-

in the case of black-hole formation, matter moves more
rapidly in the strong gravitational field compared with
neutron-star formation For example let us consider the
+ and x modes. From the quadrupole formula, the am-
plitudes of them are written as
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FIG. 5. Fourier spectrum of the SGW's for models (Al), (A4) —(AS). The unit of the frequency is 2.03xl0 (10Mo/M)
Hz. (a)—(f) correspond to that for models (Al), (A4)—(AS). The horizontal line aud the vertical line show logsof and
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4, TdV . (3.16)

In the case of stellar core collapse, T will change from
—p for the precollapse star with P pe/3 « p «
—p(1+ e) + 3P several xp/10 for the protoneutron

star with P pe & p [24]. This means 4 changes from
M/Ku' to several x M/10&v'. Therefore 64 is expected
to become

M44 several x

) (10 Mpc) 500)

)& )
(3.17)

Thus even in the case of the neutron-star formation,
the maximum amplitude of SG%'s will become
10 (M/1. 4MO) (10 M~, /R) (500/u) irrespective of the
initial condition and the formation process (e.g. , v).

Although the maximum amplitude is almost the same,
irrespective of the final products and the initial condi-
tions, the characteristic &equency will be difFerent. From

star formation. However, we think that the amplitude of
SGW's in the case of neutron-star formation is not very
different from that in the case of black-hole formation
because of the following reason: We can evaluate the
amplitude of the scalar field in the static space-time by
a simple order estimate using a quadrupole-like formula,
which may be called a monopole formula:

f, 1.5+p 40 Hz
10~0 gcm —3 (3.19)

Hence, the frequency will become 40 & f & 1000 Hz at
which LIGO has good sensitivity. Thus, we can conclude
that if the Brans-Dicke theory is correct and u is less than
a few thousands, SGW's from the SN in the Virgo cluster
may be detected by advanced LIGO. Furthermore, if we
happen to find a SN in our Galaxy, we can detect SGW's
from it even though ur is as large as 10 . On the other
hand, when nothing is detected by LIGO even if we find
that a SN occurs in the Virgo cluster (or our Galaxy) by
means of optical observation (or neutrino observation),
we may say that u is larger than a few thousands (or
10 ).

the present calculations, it is found that the characteristic
frequency f, is determined by the time scale in which the
configuration of the scalar field changes or the frequency
of the QNM. In the case of the neutron-star formation,
the frequency of the QNM is not clear, but is expected
to become [29]

X/2

fqNM & —gpNS 1 kHzi
~2.8 x 10~4 gem s

~

(3.18)

In case (A), extrapolating the numerical results, f, be-
comes
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FIG. 6. The Fourier spectrum with the window function for model (81)—(84). The units are the same as for Fig. 5.
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C. Detection of SG%V's

In the above, our discussion assumed that the laser
interferometric detector has the ability to detect SGW's,
whereas it is a nontrivial problem. Thus, we here brie8y
show it as possible in reality.

In the wave zone composed of SGW's, the line element
can be written as u=t —z and v =t+z. {3.26)

the mirror within the z-y plane does not occur even if
the SGW 4(t-z) arrives at the mirror.

On the other hand, the SGW causes a nontrivial mo-
tion of the mirror in the z direction. Here we intro-
duce the retarded and advanced time coordinates (u, v)
to make the equations simple:

ds = (1+4)(—dt +de +dy +dz ) . (3.20) From Eqs. (3.21) and (3.23), we obtain

d dt 1 Bg(1+ 4)
d7 dr 2 1+4 (3.21)

This is the conformally Sat space-time in which the null
structure is completely the same as the Minkowski space-
time, so that the laser (light) does not change their pass
and the phase shift does not occur, by SGW's, as long as
the laser goes along a null geodesic. Hence, it seems to be
impossible to detect SGW's by the laser interferometric
detector. However, this is not the case. We should note
that the laser is reflected by the mirror again and again
in the detector and the pass of the laser changes. If the
miiTor is not in6uenced by SGW's and rests, there is no
signal in the detector, since the laser goes along the null
geodesic efFectively. However, if the mirror is perturbed
by SGW's, the phase difference is caused and the inter-
ferometric detector can detect SGW's. As will be shown
below, in reality it happens.

When the SGW comes from a very distant source, it
can be approximated as a plane wave at the detector.
Hence, we assnme that the SGW 4 is a function of t
z and, in this case, the geodesic equation of a mirror
becomes

d ~ du I (9„4u[1+4( )l-
d~ ( d~) 1+4(u)

(3.27)

Then we get

dQ

d7 1+ C (u)
(3.28)

dv 1

d7 a
(3.29)

and

7 = av+b, (3.30)

where b is an integration constant, which corresponds
merely to the advanced time coordinate translation, and,
hence, without loss of generality we will take it to be
zero. In order to see the meaning of the other integration
constant a, we write down the equation for z from Eqs.
(3.28) and (3.29) as

where a is an integration constant. From Eqs. (3.24) and
(3.28), we find

dz dy—(1+4)—= 0 = —(1+4)—
d7. d7. d~ d7.

(3.22)
dz 1 f a'1—
d7' 2a

I 1+4)
(3.31)

d dz 18(1+4)
d~ d~ 2 1+4 (3.23)

Before the SGW arrives at the mirror, i.e., 4 = 0, the
above equation becomes

where 7 is the proper time of the mirror and in order to
derive the above equations we have used the relation

dz 1—= —(1 —a).
d'T a

(3.32)

(dt ~ ~dxl Idyl ~dz~ 1

d~) I d~) I d~) ) d~) 1+
(3.24)

This is just the initial velocity of the mirror, so we will
choose a = 1 because the mirror initially rests.

Now we can find the motion of the mirror in the z
direction by integrating Eq. (3.28) as

Equation (3.22) is immediately integrated and we obtain

dx(1+4)—= P = const,
d~

(1 + 4') —= PII = constdy
d~

(3.25)

Since we ass»~e that the mirror is at rest initially, P
and Pz should vanish. This means that the motion of

z = —,'(z —z;) = -', J(1+O(u))dz —z
~

t—a
= zp + 2 4 (u)du, (3.33)

where zo is the initial location of the mirror and we have
used the fact 7 = v. Then assnming 4 « 1, the displace-
ment of the mirror in the z direction is given by
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t—sp —Az
4z=z —zp ——

2
1 O(u) du

B,.&

q(r) = Kg+ — —+r
=0. (4 1)

4(u)du . (3.34) In n»merical simulations, we determine the location of
the apparent horizon, r = r;, from the condition

[n mq —n m2] = sin8, /1 —sin2y, , (3.35)

where mq and m2 are the directions of the two arms
of the detector and are assumed to be mq ——(1,0, 0)
and m2 ——(0, 1,0). n = (8„((s,) describes the incoming
direction of the wave to the detector [2]. Equation (3.35)
means that if one of the arms of the detector agrees with
the incoming direction of SGW, the sensitivity becomes
maxim~~m. In this case, the phase difference Ag at the
maximum displacement of the mirror is given by

2' Az 0
4(u) du,

A 2
(3.36)

As shown above, the mirrors move only in the propaga-
tion direction z of the waves. This means that in the
case that the detector lies on the z-y plane, the sensi-
tivity of the detector is zero because the arm length of
the laser interferometer does not change even if the SGW
comes. However, the sensitivity of the detector to SGW's
is not zero in the other cases because the arm length of
the detector must be changed. The change of arm length
means that the pass of the laser is also changed, so that
the laser interferometer can measure the change, i.e., de-
tect SGW's. (This also explains why the noise level of the
laser interferometer to + and x modes of gravitational
waves is roughly the same as that of the scalar mode. )

The antenna pattern of the laser interferometric detec-
tor is proportional to

(4.2)

In all the models, we find that the apparent horizon was
formed and these results strongly suggest that the black
hole was formed. To make sure that those are the ap-
parent horizon around the Schwarzschild black holes, we
also calculate their area (S) from

S/M = 4mB r (4.3)

We find that in all calculations S/M2 becomes & 16'',
where 16m is the area of the event horizon of the
Schwarzschild black hole.

To see the final configuration of the scalar field, in Fig.
7 we show the time evolution of the scalar configuration
for model (A2) as an example. We do not intend to show
figures for other models because the results in the other
calculations are essentially the same as that for model
(A2). In Fig. 7, we show the configuration of the scalar
field at t/M = 136 and 370, at which the loci of the ap-
parent horizon are r/M = 5.4 and 9.5, respectively. It is
found that outside the apparent horizon the value of the
scalar field tends to vanish after the wave packet passes
through this region, while it is not constant inside the ap-
parent horizon. This also supports our conclusion, which
states that the final products are the static Schwarzschild
space-time.

We also performed simulations with the same ~' and
same initial configuration of p~ as model (A2), but with
a large initial value of 4:

where A and 0 are the wavelength and the angular fre-
quency of the laser, respectively. Thus SGW's can be
detected by the laser interferometric detectors.

It should be noted that the most sensitive directions of
the detectors for the SGW's are perpendicular to those
for + and x modes, i.e., their antenna patterns are dif-
ferent from those of SGW's. This means that if there ex-
ist four detectors and there are no modes except for the
scalar, +, and x modes, we can distinguish the SGW's
Rom the other two modes as well as we can determine
the direction of the source.
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IV. FATE OF COLLAPSED OBJECTS
I I I I I I I I I I I I

To investigate whether or not the final fate of a col-
lapsing object is a black hole, we investigated whether or
not the apparent horizon [30] is formed in the numerical
simulation. In this section, we briefiy show the results.

In the gauge condition adopted in the present calcu-
lations, the location of the apparent horizon is obtained
&om

FIG. 7. ConSgurations of the scalar Seld as a function of
logqor—:z for model (A2) are shown for t/M = 136 and 370.
A vertical axis shows 4(r/M). Solid and dashed lines show
the configuration for t/M = 136 and 370, respectively. Note
that loci of the apparent horizon are z = 0.73 and 0.98 for
t/M = 136 and 370, respectively.
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Using the results of the present calculation, we can
roughly estimate that in the realistic gravitational col-
lapse and the subsequent neutron star formation, f, be-
comes

While the characteristic frequency f depends either on
the QNM of the black hole, f 200—400M/10Mci Hz,
or on the initial condition, in which f, is approximately
proportional to +p, where p, is the density when the
collapse to black hole begins, the characteristic amplitude
becomes

FIG. 8. The same as in Fig. 7, but for model (A2').
Dash-dotted, solid, and dashed lines show for t/M = 2.3, 74,
and 257, respectively. Note that loci of the apparent horizon
are z = 0.44 and 0.84 for t/M = 74 and 257, respectively.

f, 40 —1000 Hz,

and its amplitude will be

(5.3)

4 = 4,exp~— yl
„&5001 & M 'l I'10M„&

4'f f 10
I

ur ) (1.4MO) ( 8 )
(5.4)

g=0.
(4.4)

In Fig. 8, we show the numerical result of the time evo-
lution of 4 for 4, = 4 x 10 » M/(ur'~yi) (i.e., an
unrealistically large value) as an example. [We call this
model (A2').] Here, we choose the amplitude of the dust

p, in order that M = 1 and, as a result, 20% of the total
mass M comes &om the energy of the Brans-Dicke field.
From Fig. 8, we find that 4 seems to be static at the
late stage. It is also found that about 20% of the total
energy M propagates as SGW's and the area of the ap-
parent horizon approaches 4m(2 x 0.8M)2. This means
that most of the Brans-Dicke field merely propagate away
in the gravitational collapse and do not afFect the final
fate very much. Thus, we may conclude that the final
products after the spherically symmetric gravitational
collapse in the Brand-Dicke theory are the Schwarzschild
black holes, not the naked singularities [19].

V. SUMMARY

(5001 ( M & &10M„I4 10
~10MO) ~

R (5.1)

In this paper, we have considered the spherically sym-
metric gravitational collapse in the Brans-Dicke theory to
see the feature of the emitted SGW's as mell as the fate
of the collapsed objects. We obtain results as follows.

(1) In realistic situations (i.e. , for realistic values of p„
yi, and 4,), the scalar field does not affect the dynamics
of the gravitational collapse for u' & 5. This is made
certain by investigating the total-energy Bux, which is
emitted for less than 1% of the mass of the system. This
ensures that we treat the Brans-Dicke field as a linear
perturbation in the case of u & 500.

(2) In the case of black-hole formation, irrespective
of initial conditions, the maximum amplitude of SGW's
seems to become

These mean that advanced I IGO may detect SGW's
&om a SN at the Virgo cluster if a is less than a few
thousand, and, if we happen to find a SN in our Galaxy,
we can detect SGW's even though ur is as targe as 10s.

(3) The final products of the collapsed objects are
Schwarzschild black holes, and outside the apparent hori-
zon, the scalar field tends to become constant. This sup-
ports the cosmic censorship conjecture, which states that
the final product of the gravitational collapse of nonro-
tating matter is a Schwarzschild black hole, and outisde
the horizon scalar field converges to a constant.

In particular, result (2) is interesting in the light of the
current resurgence of the scalar-tensor theories as either
the infiationary scenario or the dilaton gravity predicted
by the superstring theory. These theories predict the
scalar-tensor theories, so that if we detect SGW's, not
only will we know the correct theory of gravitation, but
also we will obtain a clue about the very early Universe.

Although we did not mention it in this paper, the de-
tection of gravitational waves &om coalescing black-hole—
neutron-star binaries or binary neutron stars of large
mass ratio by laser interferometric detector can also be
used as a test of the theory of gravities. As mentioned in
Sec. I, the back reaction to the binaries of gravitational
waves are difFerent in each metric theory, so the evolution
of them are difFerent in each theory. Comparing the Ein-
stein theory with the Brans-Dicke theory with ~ = 500,
as an example, the difference of the accumulated cycles
becomes about 3 in the case of 10MO —1.4MO black-hole—
neutron-star binary [14],which we will be able to measure
using the matched filter technique [3].

Thus, the observation of gravitational waves have a
possibility of investigating the last three minutes of coa-
lescing compact binary as well as the first thee minutes
of the Universe. Hence, detailed studies of the gravi-
tational collapse and coalescing compact binary in the
various scalar-tensor theories will be needed before the
gravitational astronomy starts.
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