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Gravitational waves from a particle orbiting around a rotating black hole:
Post-Newtonian expansion
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Using the Teukolsky and Sasaki-Nakamura equations for the gravitational perturbation of Kerr
spacetime, we calculate the post-Newtonian expansion of the energy and angular momentum lumi-
nosities of gravitational waves from a test particle orbiting around a rotating black hole up through
post -Newtonian (P N) order beyond the quadrupole formula. We apply a method recently
developed by Sasaki to the case of a rotating black hole. We take into account a small inclina-
tion of the orbital plane to the lowest order of the Carter constant. The result to P N order is
in agreement with a similar calculation by Poisson as well as with the standard post-Newtonian
calculation by Kidder, Will, and Wiseman. Using our result, we calculate the integrated phase of
gravitational waves from a neutron-star —neutron-star binary and a black-hole —neutron-star binary
during their inspiral stage. We Gnd that, in both cases, spin-dependent terms in the P N and P N
corrections are important to construct efFective template waveforms which will be used for future
laser-inter ferometric gravitational wave detectors.

PACS number(s): 04.30.Db, 04.25.Nx

I. INTRODUCTION

The last stage of an inspiraling compact binary
such as binary neutron stars is one of the promising
sources of gravitational waves for the near-future laser-
interferometric detectors such as Laser Interferometric
Gravitational Wave Observatory (LIGO) [1] and VIRGO
[2]. The main reasons why it is most promising are that
the event rate is expected to be 3 events/yr within 200
Mpc Rom a statistical study [3] and that it is possible to
theoretically predict the amplitude of gravitational waves
with good accuracy. Such a binary is, moreover, not only
a strong source of gravitational waves, but also has a pos-
sibility to become a treasury of physics of neutron stars
[4], cosmology [5], theories of gravity [6], etc. , provided we
obtain the data about binaries such as masses, spins, dis-
tance to the earth, and. so on. However, to obtain those
data with sufhcient accuracy, it is necessary to construct
theoretical template waveforms whose phasing has a &ac-
tional accuracy of less than 10 4 [4]. Hence considerable
efForts have been made to construct such theoretical tem-
plates [7—15].

To calculate gravitational waves &om an inspiraling
compact binary, the standard method employed is the
post-Newtonian expansion (PNE) of the Einstein equa-
tions [7], in which the equations are expanded in terms
of a small parameter v (M/r) i'2, where M and r are
the total mass and orbital length scale of the system,
respectively. Despite much efFort, however, calculations
have been successful to only a few orders in v beyond
the leading (Newtonian) order so far. More fundamen-
tally, the nature of PNE has not been clarified due to its
complexity: nobody knows the convergence property of

PNE nor the validity of the polynomial expansion in v

[16]. Given this situation, it is highly desirable to have
a method which is complementary to the standard PNE.
The perturbative study of a black hole spacetime is one of
such, in which we consider gravitational waves radiated
by a particle of mass p « M orbiting around a black hole.
This method, though restricted to the case of p « M,
is very powerful because we can calculate fully general
relativistic corrections of gravitational waves by means
of relatively simple analyses. It is then fairly straightfor-
ward to evaluate the post-Newtonian corrections which
are to be calculated in the standard PNE. This direc-
tion of research was first done analytically by Poisson [8]
to posts' -Newtonian (Ps'2N) order and numerically by
Cutler et al. [9] to P N order. Thena highly accurate nu-
merical calculation was done by Tagoshi and Nakamura
[14] to P4N order and an analytical calculation to the
same order was done by Tagoshi and Sasaki [15] which
confirmed the result of Tagoshi and Nakamura. In par-
ticular, the appearance of lnv terms in the energy Aux
at O(vs) (PsN order) and at O(v ) (P4N order) is con-
firmed and it is clarified that the accuracy of the energy
Hux to at least P N order is necessary to construct tem-
plate waveforms for optimal use of the interferometric
data.

In this paper, we extend the analysis of Tagoshi and
Sasaki [15] to the case of circular orbits around a rotat-
ing black hole to see the efFect of spin. Some analytical
[10,12] and nuxnerical analyses [11,13] of its effect at its
leading order (i.e., P ~ N order) have been performed.
They found that it gives rise to a large error in the inte-
grated phase of gravitational waves &om inspiraling bina-
ries for a typical value of the spin angular momentum if it

0556-2821/95/51(4)/1646(18)/$06. 00 51 1995 The American Physical Society



GRAVITATIONAL %'AVES FROM A PARTICLE ORBITING. . .

is ignored in the template. The large effect of the P ~ N
order spin-orbit term causes us great anxiety about the
effects of higher-order terms due to the spin angular mo-
mentum since the convergence property of the PNE has
been found to be slow [4,14,15]. Hence we study the efFect
of spin to P / N order in this paper.

The paper is organized as follows. In Sec. II, we show
the basic formulas to perform the PNE in our perturba-
tive approach. First we show the PNE of the Teukolsky
radial function [17] using the Sasaki-Nakaxnura equation
[18]. We must also perform the PNE of the angular equa-
tion, which is given in Appendix D. Then we describe
the PNE of the source terms. We consider circular or-
bits around a Kerr black hole, that is, those at constant
Boyer-Lindquist radial coordinate. These circular orbits
are, however, not necessarily on the equatorial plane and
the emission rates of gravitational waves are different for
difFerent orbital inclination angles (or more precisely, dif-

ferent values of the Carter constant) [13]. To see the
leading effect of the orbital inclination, we consider orbits
with small inclination angles. In Sec. III, the energy and
angular-momentum luminosities to O(v ) beyond New-
tonian are derived. In Sec. IV, using the results given in
Sec. III, we estimate errors in the accumulated phase of
gravitational waves caused by the nonvanishing spin an-
gular momentum. Section V is devoted to the summary.
Throughout this paper we use the units of c = G = 1
and GMo/c2 = 1.477 km.

II. FORMULATION

To calculate gravitational radiation from a particle or-
biting around a Kerr black hole, we start with the Teukol-
sky equation [17]. We focus on the radiation going out to
infinity described by the fourth Newman-Penrose quan-
tity, @4 [19],which may be expressed as

ecflL fP

g4 = (r —r'a cord) f dwe ) '&8& (d)R~ (r),
2

(2.1)

where 28& is the spheroidal harmonic function of spin
weight 8 = —2, which is normalized as

+ a
(2.7)

f (,S,~~ smede=1,
0

(2.2)
For definiteness, we fix the integration constant such that
r' is given explicitly by

and A is the eigenvalue. The radial function R~ (r)
obeys the Teukolsky equation with spin weight 8 = —2, f

dr*

d™"
I

—&(r)% ~ = &i~ (r),2 d (1dR)
)

(2.3)
2Mr+ r —r+ 2Mr r —r

( )=r+ In ln
r+ —r 2M r+ —r 2M

where Tj (r) is the source term whose explicit form will
be shown later, and L = r —2Mr + a . The potential
V(r) is given by

K'+ 4i(r —M)KVr +SNOT+ A (2 4)

3 'Leapt'

~lm, ~r (2.5)

where r+ ——M + QM2 —a2 denotes the radius of the
event horizon and B&" is the homogeneous solution
which satisfies the ingoing-wave boundary condition at
the horizon,

T3gyout iwv ~ r —1ggin &
—icuv'

hnur ' le(u
(2.6)r' + +oo,

where k = ur ma/2M@+ and r' is the tor—toise coordinate
defined by

where K = (r2 + a2)ur —ma.
The solution of the Teukolsky equation at infinity (r -+

oo) is expressed as

A = Ao+ a(uAx+ a u) Ay+ 0(v ), (2.9)

where r~ = M + QM2 —a2.
Thus in order to calculate gravitational waves emit-

ted to infinity &om a particle in circular orbits, we need
to know the explicit form of the source term T~ (r),
which has support only at r = r0 where r0 is the orbital
radius in the Boyer-Lindquist coordinate, the ingoing-
wave Teukolsky function BI" (r) at r = ro, and its inci-
dent amplitude B&" at infinity. We consider the expan-
sion of these quantities in terms of a small parameter,
v2 = M/ro Note tha.t v is approxixnately equal to the
orbital velocity, but not strictly equal to it in the case of
a P 0.

In addition to these, we need to expand the spheroidal
harmonics and their eigenvalues in powers of au. Since
u = O(Q) where 0 is the orbital angular velocity of the
particle, we have au = O(Mtu) = O(vs). Thus the ex-
pansion in powers of au is also a part of PNE. Note also
that the spin parameter of the black hole a does not have
to be small but can be of order M. We defer this expan-
sion of the spheroidal harmonics to Appendix D.

In the following, we consider the PNE of the ingoing-
wave Teukolsky function and the source term separately.
Since the angular eigenvalues A come into play in the
radial equation, we set
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where Ao ——(l —1)(l+2) and Ai ———2m(l +l+4)/(l +l)
have been obtained previously [20], and A2 is derived in
Appendix D.

A. Homogeneous solution

jp 1Il
lm~ 4 2

4u2
+lm4p

Cp

1
Di

dim~

out
A) (2.14)

The PNE of the Teukolsky equation for a rotating
black hole was first performed by Poisson up to O(vs)
beyond the quadrupole formula [12]. In his method, he
introduced a parameter e = 2M~ = O(v ) and expanded
the equation in terms of it to the 6rst order in e, since
only the homogeneous solution to O(e) is needed to ob-
tain the energy fiux up to O(v ) level. The purpose here
is to obtain the higher terms, O(v") (n ) 3). Specifically
in this paper we consider the gravitational wave luminos-
ity to O(vs). Hence we need the homogeneous solution
accurate up to O(e2). However, it is very difficult to treat
the Teukolsky equation itself to obtain the higher-order
corrections because the zeroth-order solutions (i.e. , the
kernel functions) already have a quite complicated form
[12). Hence instead of the Teukolsky equation, we use the
Sasaki-Nakamura (SN) equation [18], which is obtained
by a certain transformation of the Teukolsky equation.
The reason to use it is that the SN equation is a general-
ization of the Regge-Wheeler (RW) equation for a = 0 to
the case of a P 0 and hence has a more tractable struc-
ture. In addition, we can make use of algebraic formulas
for the PNE of the RW equation developed by Poisson
[8] and by Sasaki [21].

The SN equation has the form

where co is given in Eq. (A3) of Appendix A and

di~~ = /2Mr+[(8 —24iM~ —16M (u )r+
+(12iam —16M + 16amM~ + 24i M ~)r+
—4a m —12iamM + 8M ] . (2.15)

Now let us consider the PNE of X&" . It is charac-
terized by the ingoing-wave boundary condition at the
horizon, X&" e '" as r* ~ —oo. However, since r'
cannot be expanded in terms of e at r* ~ —oo, a naive
expansion of the SN equation in terms of e would obscure
the boundary condition at the horizon. One prescription
to circumvent this difBculty has been suggested by Sasaki
[21] in the case of the Schwarzschild black hole, namely,
to separate out the factor e ~" "~ from X&" from the
beginning. Here we generalize this method to the case of
the Kerr black hole.

First we introduce the variable z = ur and

z = z+ e ln(z —z+)
z+

z+ z—

ln(z —z )

= 4Jp + 6 lnt ) (2.16)
(2.10)

where the explicit forms of F and U are given in Ap-
pendix A. It is obtained by the transformation &om B~
to Xi as

where z~ ——mr~. For later convenience, we also intro-
duce a nondimensional parameter q = a/M. Hence, for
example, au = zqe, z~ = ze(1 6 gl —q ). As rnen-
tioned before, q is not necessarily very small but can be
of order unity.

Next we define a function P(z) as

(2.11)

Xi =(r +a )'~ r J J —Rir (2.12)

where yi = XiA/(r +a ) '~, and the functions n,
P, and rl are shown in Appendix A. Conversely, we can
express X~ in terms of B~ as

1 Z Z+= z* —z ——mq ln
2 Z+ —Z Z —Z

(2.17)

X,'" = Qz2 ~ a2u)2(i (z) exp[ —iP(z)] . (2.18)

which generalizes the phase function ~(r' —r) of the
Schwarzschild case. Note that e '~~'~ e ' " as r' ~
—oo and e ' ~" "~ as r* ~ +oo. Then we set

where J = (d/dr) —i(K/A). Then the ingoing-wave so-
lution X&" which corresponds to B&" has the asymp-
totic behavior

By this prescription, it is easy to implement the ingoing-
wave boundary condition on Xt"

Inserting Eq. (2.18) into Eq. (2.10) and expanding it
in terms of e = 2M', we obtain

Lm~ g —ikr
lmcu & )

(2.13)
(2.19)

where A&", A&", and C~ are, respectively, related where 1,(ol, L,~i&, Q&il, and Ql2l are differential operators
given by
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d2 2 d ( l(1+1)1
dz2 z dz ( z2

L,() 1 dz fl 2i) d
zdz' (z' z) dz

(4—
/

———+ —
I(zs z' zp

(2.20)

(2.21)
for arbitrary / and

(~) iqAq d 4imq
2z2 dz l(l + 1)zs

4m@ Agq + 2mq

l(l + 1)z2 (2.22)

Q(2)
q~ d2 f Qq2 —2m2q2 —6irnq i(2m2q2 —9q2) —19mq ) d

4z dz ( 36z 108z ) dz

It'Qq2 + 5m2q2 —3imq i(2m2q2 —Qq2) —63imq + 8lq2 —2mzq2 l
9z4 54z3 378z2 (2.23)

) -
g( )( )

n=O

we obtain from Eq. (2.19) the iterative equations

(2.24)

I (p) [((p)] ()

1,(P) [(( )] L,(~) [(( )] + Q(~) [((P)]

lm

L"'X'"]= L'"N'"]+ Q"'X'"]
+Q( )

[Qg ] = Wi

(2.25)

(2.26)

(2.27)

The general solution to Eq. (2.25) is immediately ob-
tained as

for l = 2. We shall see that we do not need Q(2) for l ) 3
for the post-Newtonian order we consider in this paper
[i.e. , up to O(vs) beyond Newtonian]. Expanding (i in
terms of t' as

radius ro, the source term T~ has support only at r =
rp and urrp = O(Orp) = O(v). Hence we only need Xt"
at z = O(v) « 1 to evaluate the source integral, apart
&om the value of the incident amplitude A&" . Hence
the PNE of X&" corresponds to the expansion not only
in terms of e = O(v ) but also z by assuming e « z « 1.
In order to evaluate the gravitational wave luminosity to
O(vs) beyond the leading order, we must calculate the
series expansion of (I" in powers of z for n = 0 to l = 4,
for n = 1 to l = 3, and for n = 2 to l = 2 (see Appendix
C). On the other hand, the accuracy of AI" we need
for this purpose is O(e) or n & 1. Thus we need the

asymptotic behavior of $&" at infinity only for n = 1
(that for n = 0 is trivially obtained).

To calculate (~ to the accuracy discussed above, we
rewrite Eqs. (2.26) and (2.27) in the indefinite integral
form by using the spherical Bessel functions j~ and n~.'

s z
= n, dzz pic, —y) dzz niW,(n) (n) ~ (n)

((p) ~(p)j, + p(p)n, (2.28)

Now we consider the boundary condition. The ar-
gument is parallel to that given in Ref. [21] for the
Schwarzschild case. The condition that X&" e
as r' ~ —oo implies gz2 + e2q2/4/i (z) should be reg-
ular at z = mr+ e. Since e can be made arbitrar-
ily small, gz2 + e2q2/4(i (z) should be no more singu-
lar than O(z ") at z = 0. Thus in particular we have

(o) (o) . (o)(I ——nI j~. For convenience, we set o.I
——1. Taking

into account the behavior of the lowest-order solution,
we then infer that gz2 + e2q2/4(& (z) must be no more
singular than z+ at z = 0. Hence for n & 2, the
boundary condition is that $&" is regular at z = 0.

As noted previously, in the case of a circular orbit of

(n = 1, 2) . (2.29)

The series expansion formulas for (I" around z = 0

are easily obtained if we know those for W&" . Then it
is straightforward to impose the boundary condition at
z = 0. Further, if the integrations can be done exactly in
closed analytic form, it is easy to extract out the values
of the incident amplitude A&" by examining the asymp-
totic behavior at infinity of the thus obtained functions.
As we shall immediately see, this is easily done for n = 1,
which is sufBcient for our purpose.

For n = 1, if we set q = 0, Eq. (2.26) becomes the
same equation as that discussed in Ref. [21]. Hence the
only correction is to include the contribution &om the
Q(~)[(& ] term. Using the formulas developed in that
paper, this is easily done to yield

(g) (g) . (l —l)(l + 3) . l2 —4

'. (1+) ~

—+
~

z (nijq —j~nI, )jq+n~(Ci2z —p —ln2z) —jisi2z+ ij~lnz
gk k+ 1)

+ imq ( l +4 l . imq t' (l+ 1)2+4
2 (l (2l+ 1)j 2 ((l+ 1) (2l + 1))3l—1 + (2.30)
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where Ci(2:) = —f dt cos t/t and Si(x) = f dt sin t/t are cosine and sine integral functions, p is the Euler constant,

and a& is an integration constant which represents the arbitrariness of the normalization of X&" . We set 0« ——0
for simplicity.

In the actual calculation of the gravitational radiation to infinity, we need to know Xx" (z) at e « z « 1. Using
Eq. (2.17), we obtain the expansion of Eq. (2.18) as

X,'" = Qz + a2(u2(x exp(-i&p)

+ e
I z(l (l

(o) / (x) ™q(o) (o)

z
l (I —i(I lnz ——(x (lnz)

+i( ——( mq + —( !
——mq + ——

l

——( mq lnz(p) 2 (x) 1 (p)
r' i q m q l 1 (p)

Em 2 lm xm ( 4 8 8 ) 2 lm (2.31)

For n = 2, expanding Eq. (2.30) in terms of z and inserting it into Eq. (2.29), we have the series expansion of (I
Inserting it into Eq. (2.31), we obtain

z' z' zr, (imqz' 13z''"- =
is 2io+ 7s60+ (")+'l 3o 63o

+ 2 l~q +2imq™q mz 2+O( s)l
120 30

105 1890 126 945
z'

+ O(zr) .

llimqz4
3780

(2.32)

(2.33)

(2.34)

Once we have the hoxnogeneous solutions of the SN equation, we have only to perform the transformation (2.11) to
obtain the corresponding solutions of the Teukolsky equation. The results are

30 45 1260 420 45 360 11340

1' —z' i, i 4 mqz'
+e

l

——mqz ——z +
i 15 60 60 45

4lz 277i s 3li s 7mqz
3780 22 680 3780 1620 )

( 2 ' 2 2

+e
l

—+ —mqz +
i 30 40 60

2 2 2 3mqz a s mqz z——Z + —q Z mqz
240 60 30 90 120

(2.35)

5 7
in Z 6

630 1260 3780

6 ~ 7B:".= ' +"
11340 28 350

i, 1' —z'
i62oo' + '

l 2s2
i 4 i s ilmqz

1890 756 22 680
(2.36)

(2.37)

Here, it is worth noting that the terms linear in q(= a/M)
at O(vz) beyond the leading term in each RI" are pure
imaginary. This implies there is no linear term in q at
the P N order of the luminosity. Such terms will appear
at the P / N order, which is in fact what was found by
Poisson [12]. Further, it is expected that terms linear in q
will not appear at the P N order, but at the P / N order.
By the same argument, terms quadratic in q are expected
to appear at the P N order, but not at the P / N order.

Next, we consider AI" to O(e) = O(v ). The proce-
dure is the same as that in the Schwarzschild case [21].
Using the relations jx+x —jx x (—1) + n2~ x, etc. ,

we obtain the asyxnptotic behavior of (x( at z = oo as

where

—jx + 1&
—lnz nx + ijxlnz,(1) ~ - (1)

and @(l) is the digamma function,

l —1-1
@(i) = ).~

—v.
k=1

() @(i)+@(i~,)+ ( )(+ )
l(l + 1)

2zmq

l2(l + l)2 '

(2.38)

(2.39)

(2.40)
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To consider the asymptotic form of 4&'", we set (&

f&
——

f& + ij~ lnz and express the asymptotic form of(i) (~)

f& at z -+ oo as(1)

fl ~ Pl 21+ Q) nl(i) (i) (i)

1(P(1) .qil))h(1) ~ 1(Pil) + .qil))h(2)

where h&( and h& are the spherical Hankel functions of(~) (2)

the first and second kinds, respectively, which are given
by

(1) etz
hI )(z) = jz(z) + in)(z) w (—i)'+'

z

—tZ

hI )(z) = j)(z) —in)(z) m i'+'
z

From Eq. (2.38), we have

(~) ~ (~) (~)
PI ————, Q, = q)

—lnz .
2

Then the asymptotic form of X&'" becomes

(2.41)

(2.42)

2C,
'" = Qz2 + a2(u2() exp( —imp)

(~) mg z —z+
z[j& + e(f& + ij~ lnz) + . .

] exp —i z' —z- ln
2/1 q2 z —z

2e
" (ze"hI )(1+e[P& + i(Q& + lnz)] + . j

+-'e" (ze "hI ))(1~ e[P,i ) —i(QI +lnz)]+ (2.43)

&+&e , (2.44)

From this equation, A&" can be easily extracted out:
I

where E, l, and C are the energy, the z component of
the angular momentum, and the Carter constant [22] of
a test particle, respectively, Z = r + a cos 0 and

where we use the fact that mr* = z* —sine Rom our
definition of z*. Speci6cally for / = 2, 3, and 4, to the
orders respectively required, we have

R = [E(r2+ a ) —al, ]

A[(Ea —l—,)'+ r'+ C] . (2.49)

A3"

A4"

. (5 mq
1 —e —+ze

I p —ln2
I
+

2 2 (3 18

+O(e ), (2.45)
1 a . (13 mq

1 —e —+ze~ ——7 —ln2 ~+
2 2 g6 ) 72

+ O(e2), (2.46)

= —+O(e) . (2.47)

Finally, the corresponding incident amplitudes B&" for
the Teukolsky function are obtained from Eq. (2.14).

We consider the case in which a particle moves along a
constant radius r = ro, but precesses around the sym-
metric axis. The degree of precession is determined by
the value of C. If ro and C are given, the energy E
and the z component of the angular momentum l are
obtained by the two equations, R = 0 and dR/dr = 0.
Thus the energy-momentum tensor of a test particle is
written as

p, dz Gz

P sin8dt/dr dr dr

x8(r —rp)h(8 —8(t))h(cp —cp(t)) . (2.50)

B. The source term

A test particle obeys the equations of motion

de )2 - 1/2
Z—=+ C —cos 8 a (1 —E)+

d7 sin 0

The source term of the Teukolsky equation is

T) ———4 dndtP P B2 + B2

=—e(8),
= —

/

aE—
~
+ [E(r + a2) —al, ],—

sin 8)
(2.48)

where

8
Xe—ina&p+iu t —2

2~
(2.51)

dt
Z —= —

~

aE—

p2 + Q2
[E(r' + a') —al.],

Z —"=+~R,
d'T

In this section, these constants of motion are those mea-
sured in units of p. That is, if expressed in the standard
units, E, l, and C' in Eq. (2.48) are to be replaced with

E/p, l /p, and C/p, , respectively.
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B2 = —
2 p pL i[p Lp(p p Tnn)]

2 2
pp+L i[p p J+(p p & T )]

(2.52)
B2' = ,'p—'P—&'J+[p 'J+(p 'pT==)]

1

2 2
P P& J+[P P+ L i(P— P T )1

and Q denoting the complex conjugate of Q. In the
present case, the tetrad components of the energy-
momentum tensor, T, T-, and T-~, are in the form

T„„= .""b(r —ro)b(8 —8(t))b(y —y(t)),sin 0

with T=. = . "b( — o)b(8 —8(t))b(v — (t))
sin 0

(2.54)

p= (r

I, =Og

—i,a cos8)
m+ —au sin0+ 8 cot 0,

sin 0
iK+ ~ )

(2.53)

where

b( )b(8 8( t)) b('p 'p(t))
sin 0

2 2Z't
.[E(r2 ~ a2) —al, ]

Vp'
i sin8

~

aE-
2Zt

l,
~
+ O(8)

sin 8)

C „= . [E(r + a ) —al, ]

l
I
+ O(8)

sin 8j (2.55)

and t = dt/dr.
Substituting Eq. (2.52) into Eq. (2.51) and performing the integration by parts, we obtain

Tx = — dte* ' ' ~ Ltx(p Lt2—(p—S))C„„P p '(r —ro)
2Ã

Q2 —2

[Lt2S + ia(p —p) sin 8S]J+(C pp 4 h(-r —ro))
2p

1+ L2(p'S(p'p '),.)C &p '&(r —-ro)22'
p4 S—J—+(p J+[pp C b(r —r-p-)])

iut —img
lmw ) (2.56)

where

mI~ = Og — . + au sin0+ s cot0,
sin 0

(2.57)

ik(urDt —md ~)1m~ = one /
A:

= AsT „,) b(~ —~„), (2.60)

and S denotes 2Sx (8(t)) for sixnplicity.
Equation (2.56) can be further simplified by noting

that the orbits of our interest have the properties

8(t+ Et) = 8(t), (p(t+ b.t) = y(t) + Ey, (2.58)

where

(u„= nOs + mA~ (n = 0, +1,k2, . . .), (2.61)

2m . L(pOg=, O~= (2.59)

where Et is the orbital period (of the motion in the 8
direction) and Ey is the phase advancement during At.
For convenience, we set

= b,2[(A„„O+A-„p+ A- -p)h(r —rp)

+((A-„x + A i)h(r —ro) j„-—

+(A 2b(r —rp)) „], - -' (2.62)

Then the source term reduces to the form
and the A's are given in Appendix B.Inserting Eq. (2.60)
into Eq. (2.5), we obtain Zx as
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~)m~ = ) .~(& —&~)Am&„,

(2.63)

that we do not need the exact expressions for E and l
in terms of rp and C (or y), but only the PNE of them.
To the 6rst order of y as well as to the P /' N order, they
are given by

Og

214)~B)

"(A-„(+A- -g)
l&

d R)"
dr2

R]" (A„„p+A-„p+ A- -o) M 3ME=1— + 8~2
y1 —— —O v'

0

(2.65)

Now, let us consider the orbital integral in Eq. (2.62).
To perform them, we must know the trajectory of a test
particle, i.e., 8(t) and y(t), but they are not simple ana-
lytical functions of t for general trajectories. Thus, here
we consider the case in which a particle is in the orbit
with small inclination. To be specific, we introduce a
d.imensionless parameter y de6ned by

C
Q2 t2 + 2(1 E2) (2.64)

and regard it as small. Since Q~ l~ and C l~ + l~,

[13] this is equivalent to assuming l~ + l~ && l~. Note also

3M'~2a
(1 —y)

Pp

27M y a+21—— + —21 —2y
0 0

15M3/2
(1 —y) + O(~') .

2Fp

To solve the geodesic equations under the assumption
y (( 1, we first set 8 = vr/2 + y~~~8' and consider the
geodesic equation for 0. It then becomes

(d8'l
~~d-)~

= '
Q

-""("""i'
( -E)+g2 y ( cos2 (y 1l281))

(2.66)

Since the right-hand side (RHS) of Eq. (2.66) contains
only even functions of y

/' 8', we can solve it iteratively
by expanding 0' as

Q ( 2vr)
8(p) —sin(Opt), Os

o ( At)
(2.71)

e = 0(p) + ye(, ) + y'e(2) + - ~ ~ . (2.67)
where we have chosen 0(p) ——0 at t = 0. Thus we have

This is similar in spirit to the method used by Apos-
tolatos et aL [23], who considered gravitational waves
&om a particle in an elliptical orbit around a nonrotat-
ing black hole with small eccentricity e « 1. However,
here we only consider the lowest-order solution 8(p). This
means we take into account the e8ect of inclination up to
O(y), as seen from the structure of the geodesic equations
(2.48). The equation for 8(p) is

8 = —+ y
~~ sin(Ost) .

2
(2.72)

Note that solution (2.72) implies that the inclination an-

gle Hq is indeed given by 0, = y ~ in the present approx-
imation.

Next, we consider the geodesic equation for p. Taking
account of the terms up to O(y), it becomes

( 2
d8(o)

I

= Q (1 —8' )
4 dr r Z2' (') (2.68)

dip rc (l,= — 1+
I

——
dt o.

a E)
~

y (p)

or dividing it by (dt/dr)~,

(d8(o) &
' Q'

I dt )~
—

~ '-'()
where

(2.69)
where

= O~ —y cos(20gt),02
2

(2.73)

o =— a(aE —l, ) + — (E(rp+ a ) —at ) . (2.70)
K = (aE —t, ) + — (E(rp + a ) —al, )

rp

Then the solution is easily obtained as and
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1 ( Erpl tt (l, aEI
o 2 E bt) a (tt 0. )

(2.74)

Ml/2 Ml/2 3 (Ml/2a a2 )
3/2 3/2 2 ~ j T2

ro ro ro "0

+O(vs) (2.76)

The solution to Eq. (2.73) with y = 0 at t = 0 is

y = O~t —y sin(20st) .02
408

(2.75)

Note that O~ g Qs. This means the precession of a
test particle orbit around the spin axis of the black hole.
Specifically, to the order required for the present purpose
(see Sec. III below), we have

Mi 3M' a 3aQs= 1 — + 2+O(v )+(y)
0 0

We see that A~ —Oe ~ 2Ma/ro for ro -+ oo and y -+ 0,
which is just the I ense-Thirring precessional frequency
[241

Now that we have the solution of the geodesic equa-
tions, we can estimate the A's in Eq. (2.63). Up to O(y),
they are integrals of the forln (see Appendix B)

At
3 (0) 4 ~(0)

Q$ +y Qt 8(0)+yQl 8(0)+y Ql d
+yQi „8( )

0

d8

dt
(2.77)

where Q& for It = 1—5 are complicated functions of ro. Substituting Eqs. (2.71), (2.75) into Eq. (2.77), and using
the approximation.

iwrat —irnrP(t) inAet
~

1 +. 2
(

2iAet —2iAet) + O( 2/2)
800

(2.78)

we find

=2~ ~~2 0 l//2 1
~bnu + hno + y (hn, 2', 2) —Qt~~ + y . (hn, 1 hn—, l) Qt~~

8 808

+y-(2h, o —h, -2 —h, 2)Qt' „+y' ' (h, -l + h, i)Qt

02
+y (h, —2 — h, )2Qt „+y (2h o+h, —2+h, 2)Qi „+O(y '), (2.79)

where bn, rtl is Kronecker's delta. Applying these formu-
las to A's of Eq. (2.63), the amplitude Zt is found to
have the form

Zt „=[(Z' +yZ ' )h„,o

1/2(Zl, lh + Zilch
—lh )

III. THE ENERGY
AND ANGULAR-MOMENTUM FLUXES

In this section, we calculate the energy and angular-
moxnentum Huxes to O(vs) beyond the quadrupole for-
lnula and to O(y) in the orbital inclination. From Eqs.
(2.1), @4 at + oo to the required order takes the form

+y(Z2 2h„2+ z' -2h„2) + o(y'/')1,
(2.80)

2
1@4=- )."n=-2

4 l +Q4P~) ) Z 2 lm i~—„(v ' t)+itn~-™uvTl

9=2 m= —l

where Z"~ are functions of ro . In principle, algebraic
calculations of Z'~ are straightforward, but they are al-
most impossible by hand in practice. Thus to avoid triv-
ial mistakes as well as to save time, we have made use
of the algebraic manipulation program MATHEMATICA to
obtain Z"~. We shall not list their explicit forms here
since they are too complicated and not much insight can
be gained &om them.

(3.1)

g4 ——
2 (h+ —ihx) (3.2)

It is worth noting that there are symmetry rela-
tions, 2S& "(8) = 2S& "(7r —8) and Zi

(—1) Zt~ „. At infinity, @4 is related to the two in-
dependent modes of gravitational waves h+ and h~ as
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From Eqs. (3.1) and (3.2), the energy Hux averaged
over t && At is given by

dE )Z, .„~' . (dE)
dt 4vrw ( dt ) &

t

(3.3)

m (dE)
ddt J~

(3.4)

As is clear from Eq. (2.80), since we take the square
of ~Z~

~

we only need n = 0, +1 modes for the present
purpose. Further, since ~ = mO+ + nOg, we only need
Og at the 0th order of y. The PNE's of O~ and Og

In the same way, the angular-momentum Aux is given by

dJ, ).m)Z)
dt 4' v3

l,~,n n

). (dJ, )

are given in Eq. (2.76). In order to express the post-
Newtonian corrections to the luminosity, we define g~

as
(dE) 1 (dE)

dt j ) „ 2 dt ) ~
where (dE/dt)~ is the Newtonian quadrupole luminos-
ity:

(3.6)
(dE) 32p2Ms 32 p 2

go
sddt)~ 5ros 5

We note that because the mode indices (l, m) here are
those associated with the spheroidal harmonics, as is
clear &om Eq. (3.1), they do not correspond to the usual
spherical mode indices. This point should be kept in
mind when one attempts to interpret the PN corrections
to g~ in the language of the standard PN approach.

For l = 2, the results are as follows. If ~m + n~ ) 2 or
m+ n = 0, g~~~ becomes O(v") (k ) 5). The remaining

q~ „which contribute to the luminosity to O(vs) are
given by

107 2 3 3 4784 4 2 4 428m' 5 4216
+2~2 p

——1 — v +4%v —6qv + v + 2q v — v + qv
21 1323 21 189

( 170 2 s s 4784 4 2 4 428vr 5 13186
+y i

—1+ . v —4mv + 15qv — v —llq v + v
21 1323 21 189 )

( 1 17 vr 17
'92+2~i =y

l 36v 504v + 18v + 1134q

1 2 1 3 17 4 1 2 4 m 5 793
't72~y p = —V ——qV — V + —q V + —V — qV

36 12 504 16 18 9072

85, 1, , 5~, iS»&2+ 3+ 4 2 4 5+ qv'
/72 8 1008 32 36 18 144 )

(3 7)

( 170 2 2 2 4784 4 ll 2 4 428vr 5 11078
g2+z+x = y ~

1 — v + 4~v —12qv + v + —q v — v
21 1323 2 21 189 )

qv'
I ,

(1 2 1 2 17 4 1 2 4 m s 745
g20~q ——y

~

—v —. —qv — v + —q v + —v — qv
q 24 12 336 24 12 1008 )

Putting together the above results, we obtain (dE/dt)~ = g „(dE/dt)~ for / = 2 as

(dEI (dE t 1277 2 s 73 s y 37915
1 — v + 4m'v ——qv 1 —— + V

t)2 I dt)w 252 12 2 10584

33, 4 527, 4 2561~, 2O1575, y+—qV — qV y—
16 96 126 9072 2

V + qv 1 —— (3.8)

For / = 3, the nontrivial q~ are given by
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'93+1 0 =

1215 2 1215 4 3645vr 5 1215
896 112 448 112

/ 3645 3645 10 9357r 3645
1792 224 896 112

5 4
@3+3~1= v y )42

63 189 i, 63 189

(3645 3645 10935m 6075
1792 224 896 224 j

i 16 128 3024 8064 18 144 )

8064 1512 4032 9072
11 2 ll 4 lier s 95

16 128 3024 8064 9072

( 25 4 80
"'+'+' = " ' 126" 189q"

2688 504 1344 1008

(3.9)

The other rjr are of O(vs) or higher. Then we obtain

/ dE ) (dE 5 1367 2 32 567 4 16 403vr s 896 s y

g dt y s ( dt y ~ 1008 3024 2016 81 2
V — V + v' — qv

For l = 4, we have

1280 4
re~4 o —— v (1 —2y),567

2560 4
567

5 4

1134
5 4

F4+2 o = v (1 —8u),3969
5

v4y,
882

$4+3+1 =

$4+3~1

$4+1+1

anri the others are of O(vs) or higher. Hence we obtain

(dE ) (dE l 8965,x v
ddt)4 i, dt)~ 3969

Finally, gathering all the above results, the total energy Hux up to O(vs) is found to be

(3.10)

(3.11)

dE dE 1247 2 3 73 3 y 44711 41 — v + 4vrv ——qv 1 —— v
336 12 2 9072

(3.13)

The terms without q agree with those derived in Ref. [15], and the term —73qvs/12 also agrees with the previous
results [10,12].2

Note that Poisson [12] defines the PN expansion parameter as v' = (MQ~) ~, which is related to our v —= (~/ro)~~~
as v' = v[1 —qv /3 + O(v )] for y = 0. Consequently, his Newtonian quadrupole luminosity difFers from ours by a factor
(v'/v) = [1 —10qv /3 + O(v )]. This explains the apparent difference between his result —llqv /4 and ours.
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From Eq. (3.4), the averaged angular-momentum Huxes for l = 2, 3, and 4 are calculated to give

(dJ, I

s (61 61 l 37915 4 y 2 4 t'33 229—qv'
i

———y I
+ 4 1 + 2 4

)
I 12 8 ) 10584 2 (16 32 )

s 2561 y s &22229 27809
126 2 1296 864

(3.14)

32567 4 y

9817
756 y)i

CdJ, 'l (dJ, ) 8965 y

q dt ) 4 ( dt ) ~ 3969 2

where (dJ,/dt)~ is defined to be

(dJ. i (dJ. ) 1367, y

( dt), ( dt)N 1008 2

s 16403 y s (88049
2016 2 i 9072 (3.15)

(3.16)

& dJ, l 32p2Ms~2 32 p,

dt p~ 5p ~ 5 M (3.i7)

Total lux of the angular momentum is then given by

dj, (dJ, I
( y) v 1 —— + 4+v 1 ——

61 s ( 3yb
12 q 2)

44711 4 y 2 4 (33
v 1 —— + q v

8191 5 y s (417 4301
672 2 i 56 224

32"

(3.i8)

We note that the result is proportional to (1 —y/2) in
the limit q ~ 0. This is simply because the orbital plane
is slightly tilted &om the equatorial plane by an angle
0; y ~, hence dJ, /dt (de q/dt) coso;.

Prom the above results, we Gnd the following features
of the gravitational wave luminosity.

(1) As argued in Sec. IIA, the quadratic terms in
q(= a/M) appear at the v order, and the linear terms
in q appear at v and v orders.

(2) The coefficients of qv and qv in (dE/dt)2 and
(dE/dt)s [and hence in (dE/dt)q qj are proportional to
1 —y/2. Since 1 —y/2 cose, , these terms may be
regarded as proportional to the inner product S L of
the spin angular momentum S and the orbital angular
momentum L. With this interpretation, our result at
the v order is consistent with the PN calculation of the
spin-orbit terms by Kidder et al. [10) as well as with the
numerical result of perturbative calculations by Shibata
[»l

(3) Contrary to feature (2), the coefficient of the q v
term in (dE/dt)2 does not seem to be expressible as a
simple function of cos0;. We suspect that a major part
of it is attributable to the quadrupolar gravitational Geld
around the Kerr black hole which modifies the parti-
cle orbit. In fact, for y = 0, the 2q v term of @2~20

in Eq. (3.7) can be explained in terms of the Newto-
nian quadrupole formula as the contribution &om the
quadrupole moment of the Kerr black hole. However,
the 1/16q v term in q2~io cannot be explained in this
way. An inspection of the expanded form of the l = 2
ingoing-wave Teukolsky function given in Eq. (2.35)
reveals that the q z term at O(e ) is proportional to
m —4, hence it vanishes for m = +2 while it remains
Gnite for m = +1. Since this term will contribute to the
q2v terms in the luminosity, we may interpret the q v
term in g2~~O as due to the curvature scattering in the
near zone Geld. Incidentally, this suggests that the coin-
cidence of the coefBcient 2 of the q v term in @2~20 with
the Newtonian calculation is rather accidental; naively
we would expect the same curvature scattering e8'ect to
give rise to some additional contribution to the q2v term
in g2~2O. In any case, our result suggests the existence
of a new type of spin-dependent terms in the energy flux
when a PN analysis beyond the present level is carried
out.

This was first pointed out to us by E. Poisson.
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IV. IMPLICATIONS
TO COALESCING COMPACT BINARIES

In this section, we discuss the effects of PN terms in
the luminosity to the orbital evolution of inspiraling bina-
ries composed of neutron stars (NS's) and/or black holes
(BH's). Although our results are valid only in the test
particle limit, we ignore this fact in the following.

Since we are interested in the orbits off the equatorial
plane, we must consider the evolution of | as well as
r of the particle as it radiates gravitational waves. Al-
though not proved in any sense, let us assume that the
orbit remains quasicircular, i.e., the radius of the orbit
is approximately constant for many orbital periods. We
then would like to see if the inclination angle 0;(= y~/ )
changes in time as the orbit shrinks. Since the test par-
ticle orbit in this case is characterized by two of the four
approximate constants of motion, r, t (or y), E, and
l, we can estimate the change of y with respect to the
change of r by equating the energy and angular momen-
tum luminosities of the gravitational waves with those
lost by the particle,

To the leading order in v and y, this gives

d lny 61 (M)
dlnr 24 (r) (4.2)

Thus y changes only by a small amount during the entire
inspiraling stage until r & 10M even for q = 1. Hence
the approximation y =const throughout the evolution of
the orbit will be good if the orbit remains quasicircu-
lar. Furthermore, by adopting a radiation reaction for-
mula which is valid at least in the Newtonian limit, it
has been numerically found by Shibata [13] that the evo-
lution of the inclination angle is small, at least in the
low-frequency region, r/M & 30. This result is consis-
tent with the assumption of quasicircular orbits. Thus
we assume y =const in the following.

Then the total cycle N(r;, ry) of the phase of gravi-
tational waves &om an inspiraling compact binary &om
r=r; (t=t) tor=rt (t=ty) is

dE BE(r, y) dr BE(r, y) dy

dt Br dt Oy dt '

dJ Bl, (r, y) dr Bl, (r, y) dy
dt Br dt Oy dt

(4.1)

' IdE/dti
' (4.3)

where f is the frequency of the wave. Expanding B~,
dE/dt, and dE/dr with respect to v = (M/r)~/2, 1V is
expressed as

M "' drr3/2 Q„o bI, (q)(M/r) "/2 g„ocg(q)(M/r) "/2

64m p g„odg(q)(M/r)" '
where the series forms in the denominator and numerator represent the PN corrections to the A~, dE/dt, and dE/dr,
that is,

dE/dt
(dE/dt)~ '

) bg(q)(M/r)"/' =
k=O Ap

) cl, (q) (M/r)" / (4.5)
Ic=0

) dg(q)(M/r)"/2 =

and the argument of q(= a/M) is given to the coefficients bl„cy, and dy to emphasize the q dependence of the PN
corrections. To the PN order we consider in this paper, the PN expansions of Oz and dE/dt are given in Eqs. (2.76)
and (3.13), respectively. For completeness, here we show the PN expansion of dE/dr:

dE pM 3M (Mi" f81
+ 5q 1 ——

I

— —
I

—+ 3q'(1 —y) I I

—
I

(4.6)
dr 2r 2r 4

Since the effect of PN corrections in the case of q = 0 has been studied already [15], here we examine only the effect
due to nonvanishing q. For this purpose, we introduce the quantity AN~ & de6ned by

(„) 5 M "* dr r / QI, oby(q)(M/r)"/2 Qq ocg(q)(M/r)"/2
64vr p, Ms/2 Q"

o d~ (q) (M/r) &/2

s/2 &k=o ~(q)(M/r)"'+ b (o)(Mlr)"'
&k=o d~«)(M/r)"'+ d-(0)(M/r)"'

(n —1)."( )( / )"'+ -(o)( / )"'
E.=o

(4.7)
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5 M
64~ p, M (r j
x ([b„(q) + c„(q) —d„(q)]

[b (0) +—c„(0)—d (0)]) . (4.8)

This gives

EN~ ~
~ ~

(1 —0.4y),
(7oi
(&ms)

AN 4 - —
~ ~

(1 —1.5y),( 2

~
(1 —o.3y) .

(91
&P-)

(4.9)

Although the y corrections in the above are valid only
for y && 1, we expect them to be qualitatively valid
even for y 1. As mentioned previously, the correc-
tions LN~~ and LN~ ~ are due to the spin-orbit cou-
pling, hence replacing y with 2(1 —cos 8;) in the above
formula will give a reasonable estimate in the qualitative
sense. As for AN~ ~, although we have not been able to
specify the physical meaning of it with certainty, at least
we may say that the dominant contribution comes &om
the quadrupole moment of the gravitational field around
the Kerr black hole, as discussed at the end of the previ-
ous section. Hence we may also expect the replacement
y + 2(1 —cos8;) to be approximately correct. Thus the
inclination angle directly affects the values of these phase
corrections whenever they become important.

We know three binary pulsars in our Galaxy which
will merge within a Hubble time, PSR1913+16 [25],
PSR2127+11C [26], and PSR1534+12 [27]. Hence these
may be regarded as a typical target of the gravitational
wave detectors. Their rotation periods are P, = 59.0,
30.5, and 37.9, respectively. If we also assume these
values as typical, we have LN& ~ & 1 as has been dis-
cussed previously [11,13] while AN& l and AN& l are
small. However, we know there are several pulsars with
P, & 2 in our Galaxy [28], for which both AN&4l and
EN&@ exceed uiiity. Hence it will be safe to construct
templates which take account of the P N and P / N spin
terms.

Note however that a main contribution to the correc-
tion LN& ~ is due to the quadrupole moment of the grav-
itational field, the value of which reBects the peculiarity

This describes the efFect of q corrections at the P /2N

order.
First we consider a NS-NS binary of equal mass M =

1.4MQ (M/p = 4) as a typical example. The future
laser interferometric gravitational wave detectors such as
LIGO [1] have good sensitivity in the frequency band
between 10 and 1000 Hz so we choose r; = 175M and
pf = 8M. A NS of mass 1.4MO and radius B 10 km
has q 0 4/P. „where P, is the period of rotation in
units of a ms. In this case, the phase N is accumulated at
relatively large radii r/M & 100. Hence the convergence
of the PN series in the numerators and denominators of
the integrands in Eq. (4.7) is good enough so that we may
expand them further to obtain the approximate formula

of the Kerr black hole. Concerning this point, Bildsten
and Cutler [29) considered the quadrupole moment of the
gravitational Beld induced by the quadrupolar deforma-
tion of a NS due to its rotation and evaluated the phase
correction for a realistic NS model as

2

(4.1o)

This result is somewhat larger than our estimate. That
is, the efFect of the quadrupole moment of the gravita-
tional field due to a spinning NS is larger than that due
to a spinning BH for the same dimensionless spin pa-
rameter q. This suggests that if one body of a compact
binary is very rapidly rotating so that we are able to
measure AN&4~ by the matched f[Llter technique, then to-
gether with other terms which carry information of the
orbital parameters such as the spin-orbit terms, it will be
possible to distinguish a BH from a NS even if the BH
has mass MBH 1.5MO.

Next, we consider a BH-NS binary composed of 10Mo
BH and 1.4MO NS (M/p, = 9.28). Our result has more
direct applicability to this case. For simplicity, we set
r; = 68M and rf ——6M irrespective of q and y. In this
case, the estimation of LN& ~ in terms of the approx-
imate formula (4.8) will not be a good approximation.
Instead we must use the original formula for LN~ ~, Eq.
(4.7), as it is. This is because the phase N in the present
case is accumulated at smaller r/M than in the case of
a NS-NS binary, hence the convergence of the PN ex-
pansion becomes slow. As a consequence it is not possi-
ble to derive approximate formulas for LN~ ~ as simple
as Eq. (4.9). Here we only quote the critical value of
the spin parameter q above which each correction LN~ ~

(n = 3, 4, 5) exceeds unity. We find ANt l & 1 for

q & 0.01. Hence the correction at this order is important
even for a very slowly rotating black hole. As for AN~ ~

and LN~ &, they become larger than unity if q & 0.2.
This indicates that yet higher-order PN corrections will
be important if the BH is rapidly rotating (q 1).

Summarizing the above analyses, we obtain the follow-
ing conclusions.

(1) The spin-orbit coupling term at the Ps~ N order
is important for the evolution of NS-NS binaries with
P, & 2 and BH-NS binaries with q & 0.2. Since the
rotation of P, 1 would be the fastest possible period
that a NS could have, inclusion of the phase corrections
up through the P j N order seems to be enough for NS-
NS binaries. On the other hand, the terms higher than
the P j N order are likely to be important for BH-NS
binaries since the rotation of q & 0.2 for a black hole
seems quite possible.

(2) The q2 terms at the P N order become important
for BH's with q & 0.2 or NS's with P, & 2. However,
the latter value is based on our formula which is valid
only for a rotating BH. An estimate based on a realistic
NS model gives P, & 5 [29]. Thus it will be possible
to distinguish a small mass BH &om a NS if the phase
corrections to P2N order can be detected by matched
61tering.

(3) At any order of PN corrections, the effect of a finite
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inclination angle to the number of the phase cycles must
be taken into account whenever the spin terms become
ixnportant.

V. SUMMARY

In this paper, we have performed a post-Newtonian
calculation of the gravitational waves &om a particle of
xnass p orbiting around a rotating black hole of mass
M {p« M). We have considered the orbit of a constant
coordinate radius r = ro but with a small inclination
angle 0; y /, where y is a nondimensional parameter
proportional to the Carter constant of the orbit.

We have formulated the post-Newtonian expansion of
the Teukolsky equation and its source term in terms of
a small expansion parameter v = (M/re) ~ accurate
up through O(vs) (P ~ N order). We have not directly
dealt with the Teukolsky equation but first formulated
a method to obtain the homogeneous solution for the
Sasaki-Nakamura equation, which is a generalization of
the Regge-Wheeler equation for the Schwarzschild black
hole, by expanding it in powers of e = 2M', where u is
the &equency of a gravitational wave. In particular, to
O(e), we have obtained the ingoing-wave radial functions
for arbitrary spherical indices (L, m) in closed analyti-
cal forxn. Then we have obtained all the necessary radial
functions to the required accuracy and transformed them
to the corresponding Teukolsky radial functions, which
have been used to construct the Green's function. Fur-
ther, we have formulated the post-Newtonian expansion
of the source term for circular orbits with small incli-
nation angle. Assuming y && 1, we have analytically
solved the geodesics of a particle accurate to O(y) and
obtained the source term to the required accuracy. We
have used these results to integrate the Teukolsky equa-
tion and derived the forxnulas for the gravitational energy
and angular-momentum fluxes which are correct to O(vs)
and to O(y).

Based on the thus obtained luminosity formula, we
have estimated the accumulated phase N of gravitational
waves &om inspiraling binaries, assuming the orbit re-
mains quasicircular. Specifically we have considered a
NS-NS binary of equal mass 1.4MO and a BH-NS binary
of masses 10MO and 1.4MO, which will be typical tar-
gets of the near-future laser interferometric gravitational
wave detectors. %'e have found that if the rotation of
a neutron star is moderate, say P & 20 xn, only the
phase correction at its leading P /2N order will be im-
portant. However we have also found that if one body
of a binary is a rapidly rotating NS (P & 2 ms) or a
rotating BH (q = JBH/M & 0.2), the phase correction
of LN & 1 will be caused by the spin terms at P N and
P ~ N orders. &uthermore if one body is a rapidly ro-
tating BH (q 1), it is expected that the higher-order
corrections such as the P N ones become important. In
all these cases, when the phase correction at a certain PN
order becomes significant, that due to a nonvanishing in-
clination angle at the same PN order becomes equally
important.

The above conclusions imply that it is desirable to eval-
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APPENDIX A

In this appendix we show the potential functions E and
U of the SN equation (2.10). Details of the derivation are
given in Ref. [18].

The function F(r) is given by

(A1)

where

'g = co + cy/r + c2/r + cs/r + C4/r (A2)

with

co ———12uuM + A(A+ 2) —12aur{au —m),

c~ ——8ia[3a(u —A(a(u —m)],

c2 ———24iaM(au —m) + 12a [1 —2(aa —m) ], (A3)

cs —24ia (a~ —m) —24Ma

C4 = 12G

The function U(r) is given by

U(r) = +G + '" —FG,LUg 2 QQ „
+ Q r +a (A4)

where

2(r —M) rA+r2 + a2 (r2 + a2)2

U, =V+ 12m+
I

—""
I
~+

p q b)„
.KP . 6b,

o. = —i +3iK„+A+ r

P = 2b.
~

—iK+r —M—
r )

uate yet higher-order PN spin corrections to the gravi-
tational wave luminosity. As for the inclination of the
orbit, since we expect the expansion in powers of y to
be valid for y & 1 (0; & m/4), it will be meaningful and
useful to calculate the higher-order corrections in y along
with higher-order PN calculations. These problems are
left for future work.
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APPENDIX B

In this appendix we show the A's in Eq. (2.60):

A- -p ——

i(ut —in'(P(t) C —2 ——1L+( —
4L+ (

3S))

A-„= — dte' ' ~ C-„p (L S)
~

+ p+ p I

—a sin8S —(P —p)
(), + (iK & . K

idte' ' ' ~(')p pC- -S —x
~

—
~

— +»p—

A--» ——

A- -2 ——

A t

p Q~„[Lz S +ia sin 8(P —p) S],
7l O

idte*" '-«'-p 'pc=-=S
~

i—+ p I,
At

P P mm )
iut —img(t) —3 —C

21l p

(B1)

where S denotes 2S& Let us now examine the behaviors of the coefficients
C» and C2. By dimensional consideration, they must be
of the form

APPENDIX C 1
Cg = „fg(2M/—r, (ur) (k = 1,2), (C3)

= z'+'[O(1) + eO(z ') + e'O(z )

+e O(z )+.. .]. (c1)
From Eqs. (2.10) and (2.18), the equation for (~ be-
comes

In this appendix, we show that the asymptotic form of
X&" at e &( z (& 1 has the form where fg(y, z) are dimensionless functions of their argu-

ments. We then easily see that f&(y, z) are regular at
y = 0, since both C»r and C2r have well-de6ned limits
as M ~ 0. Furthermore, by examining the behaviors of
C» and C2 as u —+ 0, we find they are also regular in this
limit. Hence fg(y, z) are regular at z = 0 as well. Thus
fg may be expanded as

L d2
++1 ++2 (l

T dT

fg(y, z) = ) f~(")(z)y",
n=p

(C4)

4 „—b,Fg —2iAQ „
» r2 (C2)

where f&" (z) are regular at z = 0, hence may be further(~)

expanded as

Q2
C2 ————Ug + 2 — '" —b,p „—4 „Fgr2 7

+iAQ„Fg —2iMu) ~,

where Fq ——q „/q, and P, r), and Uq are given in Eqs.
(2.17), (A2), and (A5), respectively.

f(n)( ) )~ f(n, na)

m=O
(C5)

Note that f~
) (z) = 2 and f2 (z) = —l(l + 1)+ zz, which

are the coefficients appearing in the lowest-order difFer-
ential operator L(0) given by Eq. (2.20).

Taking the above consideration into account, scaling r
to z = ar in Eq. (C2), and noting that y = 2M/r = e/z,
we have

L" +~ —-+ ——,I, + ) f () + ) f" ()— (, =0.(. . . &d (. („) ."~1d & (.) (c6)
z 4z ) dz ( z ) zdz

~
z )

Accordingly, if we expand (~ as $~ (e; z) = P o e (& (z) and set (& (z) = jg z, we can easily show recursively

that the asymptotic behavior of (& at z (( 1 is

((~) O (z
—~+&

) (C7)
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Then the conversion of (~ to X'&" by Eq. {2.18) yields the result Eq. {Cl). Since e = O(v ) and z = O(v), in
order to calculate the energy- and angular-momentum fluxes up to O(vs) beyond Newtonian, we conclude that the
necessary power series formulas for X& around z = 0 are those of n C 2 for / = 2, n & 1 for I = 3, and n = 0 for(~)

/=4.

APPENDIX D

In this appendix we describe the expansion of the spheroidal harmonics 2S& and their eigenvalues A in powers
of a&a. Since we are interested in the energy- and angular-momentum 6uxes to O(v ) in this paper, we need the
expansions of 2SP to O(au) for both l = 2 and 3, but those of A to O((au&)2) for l = 2 and O(au) for l = 3, while
we only need the lowest-order formulas for I = 4.

The spheroidal harmonics of spin weight 8 = —2 obey the equation

1 d . d 2 z . 2 (m —2cos8)2
sin9 ——a ~ sin 0 —

2 + 4a~ cos 8 —2+ 2mau + A 2S&
——0 .

sin8 d8 sin 0
(D1)

We assume they are normalized according to Eq. (2.2). We expand 2SP and A as

2SP = zP) + au)SI l+ (a(u) SI +O((a~) ),
A = Ap+ a(uA~+ a u) A2+0((a~) ),

(D2)

where 2P~ are the spherical harmonics of spin weight s = —2, Ap
——(l —1)(l + 2), and Aq

———2m(l2+ 1 + 4)/(l2+ l)
[20].

Inserting Eq. (D2) into Eq. (Dl) and collecting the terms of equal orders in au& and (au), we obtain

CpS) + ApS) ———(4 cos8+2m+ A~) 2P)(~) (~)

l pSI + ApS~ = —(4 cos 8 + 2m + Ay)S~ —(A2 sin 8) 2P[~

(D3)

(D4)

where l'.0 is the operator for the spin-weighted spherical harmonics:

1 d . d (m —2 cos8)'
Cp[ 2P~~] = . —sin8-

sin8 d0 sin 8

= —&0-2&i

—2 2P)

(D5)

First we solve Eq. (D3) for S& . Setting

(~)Si = ) Ci —2Pl'
ll

(D6)

we insert it into Eq. (D3), multiply it by 2P~, and integrate it over 8. Then noting the normalization of the
spheroidal harmonics, we have

4 P 8 P d 8 l' l(l' —1)(l' 2) —(l —1)(l + 2) "
0, t'=l.

Hence c& is nonzero only for l' = I, + 1, and we obtain

2

(l + 1)'
(l + 3}(l—1)(l + m + 1)(l —m + 1)

(2l + l)(2l + 3)
(D8)

2 (l + 2)(l —2)(l + m)(l —m)
l' (2l + 1)(2l —1)

Next we consider A2. We set S&
——P&, d& 2P~ and insert it into Eq. (D4). This time we multiply it by 2P&

and integrate it over 8, noting that d&
——0. The result is



51 GRAUITATIONAL %'AVES FROM A PARTICLE ORBITING. . . 1663

A2 = —4 2Pi222 cos 8S&~ d cos 8 + 2P&222 sm 8 &P&222d cos 8(~) ' 2

= —2(I + 1)(c,'+') + 21(d, ) + 1 —f sPr cos 2 sPi d coo 8 .

The last integral becomes

f 2 (&+4(l —3)(l2+l —Sm2)
2Pl~cos 8 st—~d cos8 = —+—

We need A2 only for l = 2. In this case, the final answer becomes

90 —10m2
A2(l = 2) =

(DIO)

(D11)
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