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We present a method to find the apparent horizon~AH! on a special family of three-dimensional~3D!
spacelike hypersurfaces which hasp-rotation symmetry around thez axis as well as the reflection one with
respect to the equatorial plane. In a nonaxisymmetric 3D hypersurface, the AH, if it exists, is determined by
solving a 2D elliptic-type equation. In the present method, we solve the elliptic-type equation as a boundary
value problem. To test this method, we apply it to a variety of nonaxisymmetric 3D hypersurfaces which can
be obtained by solving the constraint equations in general relativity. We find that the present method works
well in all cases.@S0556-2821~97!04904-7#

PACS number~s!: 04.25.Dm, 04.20.Ha

I. INTRODUCTION

One of the most important issues in numerical relativity is
to clarify the formation process of a black hole~BH! because
its formation will be a common phenomenon in astrophysical
situations. For example, if a stellar core collapses in the final
phase of a very massive star, a BH will be produced. Also,
the final fate of coalescence of binary neutron stars~BNS’s!
or BH’s will be a BH. These BH formation processes are
also the most promising sources of gravitational radiation for
planned kilometer size laser interferometric gravitational
wave detectors such as the Laser Interferometric Gravita-
tional Wave Observatory~LIGO! @1# and VIRGO @2#. In
analyzing the signal of gravitational waves from such objects
to extract a variety of information from them, we will need
theoretical knowledge on the formation process of BH’s. By
comparing a theoretical prediction of a signal of gravitational
waves with the detected one, we will be able to extract in-
formation from the signal. Thus, we need an investigation of
the formation process of BHs theoretically, which is possible
only by a three-dimensional~3D! fully relativistic simula-
tion.

A BH is characterized by an event horizon~EH! which is
defined as the boundary of the causal past of future null
infinity @3#. Hence, in order to understand the formation pro-
cess of a BH, we should investigate the formation and evo-
lution of the EH in numerical relativity. A technique to find
the EH has been developed by a few groups@4,5#, and they
showed successful results in axisymmetric simulations.
However, to find the EH in 3D numerical relativity, we need
to save a large amount of numerical data in general because
of the global nature of the EH in spacetime. Although future
computers may have memory to store such a large amount of
data sets, that seems very difficult now. Hence, the EH is not
a useful notion in 3D numerical relativity.

In contrast with the EH, the apparent horizon~AH! is very
useful as an approximate notion of the EH@3#, and has often
been used in numerical relativity. The AH is defined as the
outermost spacelike and closed two-surface such that the ex-
pansion of future-directed outgoing null congruence orthogo-
nal to the two-surface vanishes. A useful property of the AH
is that it always lies inside the EH in the globally hyperbolic
spacetime@3#. Thus, if the AH exists, the existence of the

EH, i.e., the formation of a BH, is guaranteed. Furthermore,
in contrast with the EH, we have only to retain numerical
data sets of a 3D spacelike hypersurface to determine
whether or not the AH exists. Hence, we do not have to
worry about the computer memories.

In order to determine the two-surface of the AH,
h(u,w), in 3D numerical relativity, we need to solve a 2D
elliptic-type equation with an appropriate boundary condi-
tion which is determined from the regularity of the two-
surface. Here, the elliptic-type equation is@see Eq.~2.6!#

h,uu1cotuh,u1
h,ww

sin2u
22h5S~h,gmn!, ~1.1!

whereS(h,gmn) depends on nonlinear terms inh as well as
the geometric variablegmn . To guarantee the regularity ev-
erywhere on the two-surface, Nakamura, Oohara, and
Kojima @6# proposed a method in which the spherical har-
monic expansion is utilized. In their method, they expandh
by the spherical harmonic functionYl ,m(u,w) as

h~u,w!5(
l ,m

al ,mYl ,m~u,w!, ~1.2!

whereal ,m is a coefficient. Then,al ,m can be written as

al ,m52
1

l ~ l 11!12E d~cosu!

3E dwYl ,m~u,w!*S~h,gmn!, ~1.3!

whereYl ,m* denotes the complex conjugate ofYl ,m . Thus,
once a trial value ofh is given,al ,m can be calculated and
then the new trial value ofh is obtained. If this procedure is
repeated up to convergence ofal ,m , the AH is determined.
An important point is that the regularity of the two-surface is
completely guaranteed becauseh(u,w) is expanded by the
regular functionYl ,m . Using this method, they succeeded in
determining the AH for several time-symmetric 3D hyper-
surfaces which are given analytically.

As criticized by Nakao@7#, however, this method does not
seem to be efficient when we apply it to the numerical data
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sets of 3D hypersurfaces because of the nature ofYl ,m :
SinceYl ,m becomes a more and more variable function in
the u coordinate with an increase ofl , we need a careful
choice of grid points and weight factors to guarantee the
orthogonality ofYl ,m in numerical integral as

2p(
i51

Nl

Yl ,m~u i ,w!Yl 8,m~u i ,w!* n i5d l ,l 8, ~1.4!

where u i and n i denote the appropriate grid points and
weight factors, andNl is determined by our choice of the
largestl (l max). Here,un i u in each grid point is required to
become larger and larger with an increase ofl max to guar-
antee the orthogonality ofYl ,m accurately. Numerical calcu-
lation of the integral byu in Eq. ~1.3! is performed as

(
i51

Nl

Yl ,m~u i ,w!*S~h,gmn!n i . ~1.5!

If a small truncation error is included ingmn , S deviates
from the true value likeS5Strue1dS. Since n i for
i51;Nl are large numerical factors for a largel max, the
relative error

(
i51

Nl

Yl ,m~u i ,w!* dSn iY (
i51

Nl

Yl ,m~u i ,w!*Struen i , ~1.6!

becomes;1 even for a small errordS/Strue5O(un i u21). In
the case when we want to determine a nonspherical AH in
which contributions of highl modes are significant, we
need to adopt a largel max. Thus, in such a case, the two-
surface of the AH will not be determined accurately by their
method.~But, see@8# in which a devisal is proposed.!

In this paper, we propose a different method from theirs
for a special family of 3D hypersurfaces: We assume that the
3D spacelike hypersurface has thep-rotation symmetry
around thez axis @i.e., h(w,u)5h(w1p,u)# as well as the
reflection symmetry with respect to the equatorial plane. This
assumption is appropriate for many problems which we are
interested in for the present, such as coalescence of BNS’s of
equal mass, the collapse of a rotating ellipsoid, and so on.
~Note, however, that this method cannot be applied to deter-
mine the AH of each BH in coalescing binary BH’s.! When
such symmetries exist, the boundary condition forh(u,w) at
the z axis becomesh,u50. In the present method, we solve
the 2D elliptic-type equation for the AH as the boundary
value problem under such a boundary condition. As shown
below, in this method, the AH is accurately determined even
when the geometry in 3D hypersurfaces is given numeri-
cally.

The paper is organized as follows: In Sec. II, we first
derive the basic equation to determine the AH on the confor-
mally flat 3D hypersurface, and then show a numerical
method to solve the equation. In Sec. III, we review the
initial value problem in general relativity and show numeri-
cal methods to solve the Hamiltonian and momentum con-
straints. In particular, a formulation to solve the momentum
constraint equation accurately is presented. In order to show
that the present method is accurate and efficient enough, we
apply it to a variety of 3D hypersurfaces, i.e., to both time-

symmetric and asymmetric 3D hypersurfaces, and to those
obtained by solving the constraint equations analytically as
well as numerically: In Sec. IV, we apply the AH finder to
time-symmetric 3D hypersurfaces of many BH’s close each
other in order to determine the AH encompassing these BHs.
In Sec. V, we apply it to time-asymmetric 3D hypersurfaces
which are calculated numerically. In all cases, we show that
the AH finder works well. Section VI is devoted to summary.
Throughout this paper, we use the units ofc5G51.

II. APPARENT HORIZON FINDER
IN 3D NUMERICAL RELATIVITY

A. Basic equation for apparent horizon

The AH is defined as the marginally outermost trapped
surface@3#; i.e., outgoing light rays cannot expand from the
AH. Expansion of the outgoing null vector is expressed as

r̂5¹ml n~gmn1nmnn2smsn!, ~2.1!

where ¹m is the covariant derivative with respect to the
spacetime metricgmn , n

m is the unit normal of a 3D space-
like hypersurface,sm is the unit normal of a two-surface of
the AH, and lm is the outgoing null defined as
(nm1sm)/A2. If a closed two-surface on whichr̂ vanishes
everywhere exists, the AH exists. Before writing down the
explicit equation ofr̂50, we introduce the 3D metric and
the extrinsic curvature which are defined, respectively, as

gmn5gmn1nmnn , ~2.2!

Ki j52g i
mg j

n¹mnn . ~2.3!

Then, from Eq.~2.1!, the conditionr̂50 is written as

K2Ki j s
isj2Dis

i50, ~2.4!

whereDi is the covariant derivative with respect tog i j and
K is the trace part ofKi j .

Denoting the location of the AH asr5h(u,w), si is ex-
pressed as

si5Cc2~1,2h,u ,2h,w!, ~2.5!

whereC is a normalization factor determined fromsisi51.
In this paper, we only consider the conformal flat 3D metric,
i.e., g i j5c4d i j for simplicity. In this case,C becomes
(11h,u

2 /h21h,w
2 /h2sin2u)21/2. Substituting Eq.~2.5! into Eq.

~2.4!, the following equation is derived:
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h,uu1cotuh,u1
h,ww

sin2u
2~22h!h5hh1

c2h2

C3 ~Ki j s
isj2K !1

4

c S c ,r2c ,u

h,u
h2

2c ,w

h,w
h2sin2u D S h21h,u

2 1
h,w
2

sin2u D
1
3

h S h,u2 1
h,w
2

sin2u D 1
1

h2sin2u
~2h,uh,wh,uw2cotuh,w

2 h,u!2
h,u
2

h2sin2u
~sinucosuh,u1h,ww!

2
h,w
2

h2sin2u
~h,uu1cotuh,u!, ~2.6!

where h is a constant and its value can be appropriately
chosen to accelerate the convergence in numerical computa-
tion.

Since Eq.~2.6! is a 2D elliptic-type equation, it should be
solved under appropriate boundary conditions atu5umax,
umin , andw5wmax, wmin . In this paper, we assume that the
3D hypersurface has thep-rotation symmetry around thez
axis @h(w,u)5h(w1p,u)# as well as the reflection symme-
try with respect to the equatorial plane. In this case, we must
impose the boundary condition atw50 and p as
h(0,u)5h(p,u). Also, we need to impose the boundary con-
ditions at u50 and p/2. For the boundary condition at
u5p/2, we simply imposeh,u50 due to the reflection sym-
metry with respect to the equatorial plane. On the other hand,
the boundary condition atu50 is imposed as follows: Since
the surface of the AH is smooth as well as the 3D hypersur-
face has the symmetries with respect to thep rotation around
the z axis and the equatorial plane, the location of the AH
can be expressed as

h~u,w!5(
l ,m

al ,2mYl ,2m . ~2.7!

Notice thatYl ,m is proportional to exp(imw)Pl ,m , where
Pl ,m is the associated Legendre polynomial, andPl ,m be-
haves atu→0 as

Pl ,m→um. ~2.8!

This means thath(u,w) behaves nearu50 as

h~u,w!→const1O~u2!. ~2.9!

Thus, we may also impose atu50 ash,u50. We use these
boundary conditions in numerical calculation.

Finally, we show the equation to calculate the area of the
AH, AAH . The 2D geometry on the AH can be written as

dl25c4$~h,udu1h,wdw!21h2du21h2sin2udw2%,

5c4$~h,u
2 1h2!du212h,uh,wdudw

1~h,w
2 1h2sin2u!dw2%, ~2.10!

and the determinant of the 2D metric becomes

c8h2~h2sin2u1h,u
2 sin2u1h,w

2 !. ~2.11!

Hence,AAH becomes

AAH54E
0

p

dwE
0

p/2

duc4hAh2sin2u1h,u
2 sin2u1h,w

2 .

~2.12!

B. Numerical method

The strategy to solve Eq.~2.6! is as follows:~1! We sub-
stitute a trial functionh(0)(u,w) into the right-hand side
~RHS! of Eq.~2.6!; ~2! we solve an elliptic-type equation

h,uu1cotuh,u1
h,ww

sin2u
2~22h!h5S~h~0!!, ~2.13!

as the boundary value problem;~3! we substitute a new
h(u,w) obtained at~2! into the RHS of Eq.~2.6! and repeat
this procedure until a sufficient convergence is achieved.

In solving Eq.~2.13!, we first change the left-hand side
~LHS! to a finite-difference form using

h,uu5
hi , j1122hi , j1hi , j21

du2
, h,u5

hi , j112hi , j21

2du
,

h,ww5
hi11,j22hi , j1hi21,j

dw2 , ~2.14!

wherei and j denote the grid point ofw andu, respectively.
We take the grid points as

w i5S i2 1

2D dw, i51;Nw ,

u j5S j2 1

2D du, j51;Nu , ~2.15!

whereNw andNu are grid numbers between 0,w,p and
0,u,p/2, respectively, and

dw5
p

Nw
, du5

p

2Nu
. ~2.16!

At i51 andNw , the finite differences forh,ww become

h,ww5
h2,j22h1,j1hNw , j

dw2 , h,ww5
h1,j22hNw , j1hNw21,j

dw2 .

~2.17!

Also, at j51 andNu , h,u andh,uu become
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h,uu5
hi ,22hi ,1

du2
, h,u5

hi ,22hi ,1
2du

,

h,uu5
2hi ,Nu

1hi ,Nu21

du2
, h,u5

hi ,Nu
2hi ,Nu21

2du
.

~2.18!

Then, the LHS of Eq.~2.6! is rewritten to the matrix equa-
tion as

Mi j hj5Si . ~2.19!

The schematic form ofMi j becomes

where * denotes a nonzero component, and if * is absent, the
matrix components are equal to zero.~Note that the above
form corresponds to the caseNw55 andNu53.! Mi j is not
a symmetric matrix, but essentially has only five diagonal
components. Thus, to solve this matrix equation, we make
use of the ILUCGS~incomplete lower-upper decomposition
and conjugate gradient squared! method @9# which is effi-
cient when solving matrix equation in such a situation. In the
ILUCGS method, we first carry out the ILU decomposition
asMi j5LikDkkUk j2Ri j , where

Di j5H di for j5 i ,

0 otherwise, ~2.21!

Li j5H di
21 for j5 i ,

Mi j for j5 i21, i2Nw ,

0 otherwise,
~2.22!

Ui j5H di
21 for j5 i ,

Mi j for j5 i11, i1Nw ,

0 otherwise,
~2.23!

anddi is determined from the condition

LikDkkUki5Mii . ~2.24!

Ri j has two diagonal components as

Ri j H Þ0 for j5 i6Nw71,

50 otherwise, ~2.25!

and calculated fromLikDkkUk j2Mi j . Hence, (i ,i6Nw71)
components inMi j are absorbed inRi j . Note that the accel-
eration parameterh @see Eq.~2.6!# is chosen as;1 in mak-
ing Mi j . Once the ILU decomposition is completed, we re-
write Eq. ~2.19! as

@ I2U21D21L21R#h5U21D21L21S, ~2.26!

whereI is the unit matrix. Then, Eq.~2.26! is solved by the
CGS method. In the Appendix, we also show the numerical
scheme in the case where the 3D hypersurface has symme-
tries with respect tox-y, y-z, andz-x planes.

It should be also noticed that we use a relaxation tech-
nique in substitutingh(u,w) into the RHS of Eq.~2.26! @i.e.,
in procedure~2!#. We determine the trial value as

htrial
~n11!5h~n!j1htrial

~n! ~12j!, ~2.27!

whereh(n) is a solution of Eq.~2.13! for S(htrial
(n) ). j is an

acceleration parameter and chosen as;0.5.
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Finally, we emphasize the following point: The solution
of Eq. ~2.13! in each step of iteration is guaranteed to be
regular because the matrix operator on the LHS of Eq.~2.13!
is taken so as forh to become regular. As a result, when we
substitute a new trial function calculated from Eq.~2.27! into
the RHS of Eq.~2.13!, the RHS of Eq.~2.13! is also guar-
anteed to be regular. Hence, if we give an initial trial func-
tion h(0) which is a regular function anywhere, the final so-
lution of h(u,w) is also guaranteed to be regular. This is the
essential reason why the present method works well.

III. INITIAL VALUE PROBLEMS

In order to test the method described in Sec. II, we must
prepare 3D spacelike hypersurfaces. In general relativity, the
Hamiltonian and momentum constraints must be satisfied in
each 3D hypersurface. This means that to prepare a 3D hy-
persurface, we need to solve these constraint equations. In
the case where the 3D hypersurface is assumed to be confor-
mally flat andK50, they are, respectively, written as@10#

Dc522prhc
52

1

8c7Ai jA
i j[24pSc , ~3.1!

and

D̃ iAj
i58pc6Jj , ~3.2!

whereD̃ i is the covariant derivative with respect tod i j and
D is the Laplacian of flat space. In the following, we use the
Cartesian coordinate, so thatD̃ i5] i . Ai j is defined as
c2Ki j , and its indices are raised and lowered byd i j , i.e.,
Ai j5Ai j5Ai

j . rh and Ji are defined from the energy-
momentum tensor as

rh5Tmnn
mnn, Ji52Tmnn

mg i
n . ~3.3!

If we assume the absence of the transverse-traceless part
of Ai j , we can rewriteAi j as @10#

Ai j5Wi , j1Wj ,i2
2
3d i jWk,k . ~3.4!

Then, Eq.~3.2! becomes

DWi1
1
3Wk,ki58pc6Ji . ~3.5!

This is the coupled elliptic-type equation forWx , Wy , and
Wz , and it is not a desired form in numerical calculation. To
decompose the coupling of each component ofWi , previous
authors@11,12# have introduced methods of decomposition
of this equation. However, in their methods, the Poisson
equations with noncompact source appear as a result of the
decomposition. In 3D numerical relativity, the grid number
we can adopt is restricted, and it seems difficult to improve
accuracy in solving such an equation in the restricted grid
number. Thus, we rewriteWi as

Wi5Bi2
1

8
$x ,i1~Bkx

k! ,i%, ~3.6!

where Bi and x are vector and scalar potentials, and
xk5(x,y,z). Then, the LHS of Eq.~3.5! becomes

DBi2
1
6 ~Dx1DBkx

k! ,i . ~3.7!

Hence, Eq.~3.5! may be decomposed into the two equations

DBi58pc6Ji[8pSi , ~3.8!

Dx528pc6Jix
i[28pSix

i . ~3.9!

Thus, the source terms of Poisson equations forBi andx are
compact as long as compact matter is concerned. We empha-
size again that this decomposition ofWi is very useful to
obtainWi accurately.

In the following, we will takeSi5Jic
6 as~1! Si50 ~i.e.,

Ki j50), or ~2! Si5S(x)ai j x
j , whereai j is a matrix and cho-

sen as

ai j5S k1s 2v 0

v k2s 0

0 0 0
D . ~3.10!

Hence, we do not solveBz in the following. In case~1!, we
only need to solve the Poisson equation forc, and in case
~2!, we first calculate the Poisson equations forBi andx to
give Ai j , and then Eq.~3.1! is solved.

When we solve the Poisson equations shown above nu-
merically, we adopt homogeneous or inhomogeneous Carte-
sian grids which cover2L<x, y<L, and 0<z<L, where
L is a constant, in order to set up a finite-differencing equa-
tion. Inhomogeneous grids are taken as

dxi5adxi21 , dyj5adyj21 , dzk5adzk21 , ~3.11!

where dxi5xi112xi , dyj5yj112yj , dzk5zk112zk and
a is chosen as 1,a<1.05. At the outer boundary (uxu,
uyu, andz5L), we impose boundary conditions as

c511
M

2r
1O~r23!, ~3.12!

Bi52
2nx

r 2 E SixdV2
2ny

r 2 E SiydV1O~r24!, ~3.13!

x5
2

r E Six
idV1O~r23!, ~3.14!

whereni5xi /r andM is the gravitational mass of the system
calculated by

M52E ScdV. ~3.15!

Thus, the Poisson equations forc andx are solved by the
same Poisson solver, but that forBi is different from it.
Hence, we need two types of the Poisson solvers. In both
cases, we impose the reflection symmetry condition with re-
spect to the equatorial planez50.

The finite-differencing equation for these Poisson equa-
tions becomes

Ci jXj5Yi , ~3.16!
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whereCi j5Cji has seven diagonal components, andXi and
Yi are vectors. To solve this type of matrix equation, we use
the ICCG ~incomplete Choleskii and conjugate gradients!
method @9#, which is a similar method to the ILUCGS
method: In this method, the matrixC is decomposed into
LDL T2R, where Li j

T5L ji , because of symmetry ofC.
Then, we transform Eq.~3.16! into the following matrix
equation:

@ I2~LDL T!21R#X5~LDL T!21Y, ~3.17!

and solve Eq.~3.17! by the CG method.
Accuracy of the Poisson solvers are checked by compar-

ing numerical solutions with the exact solutions. For ex-
ample, if we choose the density as

r5H r0~12r1
2 /r 0

2! for r1,r 0 ,

6r0~12r2
2 /r 0

2! for r2,r 0 ,

0 otherwise,
~3.18!

wherer0 is a constant,r65A(x7xc)
21(y7yc)

21z2 and
xc ,yc ,r 0 are constants,L/2, then the followingf is the
solution of the Poisson equationDf54pr:

f55
2M0 /r17M0 /r2 for r1 ,r2>r 0 ,

2M0 /r16pr0f ~r2! for r1>r 0 ,r2,r 0 ,

pr0f ~r1!7M0 /r2 for r2>r 0 ,r1,r 0 ,

pr0f ~r1!6pr0f ~r2! for r1 ,r2,r 0 ,

~3.19!

whereM058pr0r 0
3/15, and

f ~r !5
2

3
r 22

1

5r 0
2 r

42r 0
2 . ~3.20!

The solution of the upper sign can be used to check whether
the scalar-type Poisson solver works well or not, and the
other one is for the vector-type Poisson solver. We compared
the numerical solutions with the exact ones for several com-
binations of (xc ,yc ,r 0).

In Fig. 1, we show the absolute value of the relative error,
u12~numerical solutions!/ ~exact solutions!u, in the equato-
rial plane (0<x,y<L) for the Poisson solvers of the scalar-
type potential@Fig. 1~a!# as well as the vector-type potential
@Fig. 1~b!# in the case wherexc5r 05L/3 andyc50 as an
example. In this case, we use the homogeneous grid with a
grid number of (97,97,49). For the scalar-type Poisson
solver, the relative error is always less than;1023 within
r;2L/3 although around the outer boundary it often be-
comes as large as;1022. For the vector-type Poisson
solver, it is also less than;231023 within r;2L/3 al-
though it becomes;231022 at the outer boundary. Thus,
the accuracy ofAi j near the outer boundary is not so good.
However,Ai jA

i j around the outer boundary is not large com-
pared with that in the inner region becauseAi j behaves as
→r23 for r→`. Hence, the error itself does not contribute

to the source term ofc so much.1 Also, we will find the AH
far from the outer boundary~see Sec. V!, so that the accu-
racy of the Poisson solvers seems sufficient.

IV. APPARENT HORIZON ENCOMPASSING
MANY BLACK HOLES

In this section, we apply the AH finder to time-symmetric
3D spacelike hypersurfaces of many BH’s. If these BH’s are
close enough, the AH, which encompasses them, will exist.
The purpose of this section is to determine it.

A geometry which representsN-BH’s of each massmi at
an arbitrary spatial pointr i at a moment of time symmetry
~i.e., Ai j50) may be conformally flat, and the conformal
factor can be written as@13,14,15#

c511(
i51

N
mi

2ur2r i u
. ~4.1!

In this paper, we setmi52m/N ~i.e., M52m) and take
r i5(xi ,yi ,zi) as

xi5
rBH
2
cosS 2p

N
i1wcD , yi5

rBH
2
sinS 2p

N
i1wcD , zi50,

~4.2!

whererBH andwc are constants.
In the caseN52, the 3D hypersurface is axisymmetric

around the axis connecting two centers of BH’s. If the axis is
chosen as thez axis, Eq.~2.6! becomes the following ordi-
nary differential equation:

1But, as mentioned in Sec. V,Ai jA
i j does contribute even at

r;L unlessL is large enough.

FIG. 1. Accuracy of the Poisson solvers for the scalar-type~a!
and vector-type potentials~b!. In each figure, the relative error in
the equatorial plane (0<x,y<L) is shown.
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h,uu1cotuh,u2~22h!h

5hh1c2h21~h21h,u
2 !3/2~Ki j s

isj2K !

1
4

c S c ,r2c ,u

h,u
h2 D ~h21h,u

2 !1
3

h
h,u
2 2

h,u
3 cotu

h2
. ~4.3!

This equation is solved under the boundary conditions
h,u50 atu50 andp/2. In the axisymmetric case, the AH is
easily determined with a desired accuracy as has been inves-
tigated so far@15,16,17,18#. So that, first of all, we apply the
3D AH finder to determine the AH encompassing two-BH’s
which are not located in thez axis, but in the equatorial plane
~i.e., located in the non-axisymmetric configurations around
thez axis!, and compare the result with the axisymmetric one
calculated by the 2D AH finder.@Hereafter, we call the nu-
merical code to solve Eq.~4.3! ‘‘the 2D AH finder.’’ On the
other hand, we call the numerical code to solve Eq.~2.6!
‘‘the 3D AH finder.’’#

For the two-BH case, Cadez showed that there exists the
AH which encompasses two BH’s whenrBH is less than
;1.53m @16#. Hence, we investigate the AH changingrBH
from 0 to 1.53m as well as changing grid numbers,Nw and
Nu . We also changewc from 0 to p/2, but the results, of
course, do not depend onwc . An initial trial functionh

(0) is
chosen as h02h1cosu, where 0.9<h0 /m<1.1 and
0<h1 /m<0.5 are constants. ForrBH<1.5m, the AH is de-
termined with a sufficient accuracy within 10 iterations, al-
though about;100 iterations are needed forrBH;1.53m. In
Table I, we show the area of the AH as a function ofrBH .
The area is shown in units of 64pm2. The second column
shows the results by means of the 2D AH finder, and third to
seventh columns show results by means of the 3D AH finder
with Nw5Nu516, 32, 48, 64, and 100, respectively. Note
that for the caserBH51.53m with Nw5Nu516, the AH can-
not be found. This is simply because the coarse grid fails to
resolve the highly distorted surface of the AH.

In Fig. 2, we show numerical errors of the area of AH as
a function of Nw(5Nu) for the casesrBH /m51.4 ~solid
circles! and 1.52~open circles!. The numerical error is de-
fined as

12
area of the AH determined by 3D AH finder

area of the AH determined by 2D AH finder
. ~4.4!

The figure shows that the numerical algorithm is indeed
second-order convergent.

In Fig. 3, we compare the location of the AH determined

TABLE I. Area of the AH encompassing two-BH’s at a moment
of time symmetry as a function ofrBH . The area is shown in units
of 16pM2, whereM is the gravitational mass of the system. The
first column denotesrBH in units of m5M /2. The second column
shows results calculated by the 2D AH finder, and the third to
seventh columns show results by the 3D AH finder with different
grid numbers (Nw ,Nu). ‘‘3 ’’ means that the AH finder fails to find
the AH.

rBH 2D cal. ~16,16! ~32,32! ~48,48! ~64,64! ~100,100!

1.53 0.97710 3 0.97540 0.97637 0.97670 0.97693
1.52 0.97801 0.97194 0.97659 0.97738 0.97766 0.97786
1.50 0.97960 0.97466 0.97840 0.97906 0.97930 0.97947
1.40 0.98550 0.98260 0.98478 0.98518 0.98532 0.98543
1.20 0.99260 0.99141 0.99230 0.99247 0.99253 0.99257
1.00 0.99650 0.99613 0.99641 0.99646 0.99648 0.99649

FIG. 3. Location of the AH encompassing two-BH’s for the case

rBH /m51.52 ~a! and 1.53~b!. The horizontal axis showsû ~see
text! and the vertical axis shows the radius of the AH. Solid, dotted,
and dashed lines denote the results by the 2D AH finder, 3D AH
finder of (32,32) grids, and 3D AH finder of (48,48) grids, respec-
tively.

FIG. 2. Numerical errors of the area of AH@Eq. ~4.4!# as a
function ofNw(5Nu) for the casesrBH /m51.4 ~solid circles! and
1.52 ~open circles!. The logarithm is to base 10.
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by the 3D AH finder with that by the 2D AH finder for the
case rBH51.52m and 1.53m. The horizontal axis denotes
û5u/p for the 2D case andû51/22u/p for the 3D case
(w50), and the vertical axis shows the radius of the AH in
eachû. Solid, dotted, and dashed lines denote results by the
2D AH finder, the 3D AH finder ofNw5Nu532, and of
Nw5Nu548, respectively. These results show that~1! when
the AH is not so distorted, a grid number ofNw5Nu532 is
enough and~2! the numerical scheme works fairly well even
for the highly distorted AH if we take the grid number of
Nw5Nu548. Hence, we adoptNw5Nu548 as a grid num-
ber in the following. In this case, the numerical error of
AAH is expected to be less than 0.1% for any case. We note,
however, that unless the AH is so distorted, we do not need
such a large number of the grid to guarantee that the accu-
racy forAAH is better than;0.1%.

Then, we present numerical results for the cases of many
BH’s. Before showing numerical results, we comment on the
limit N→`. In this case, Eq.~4.1! becomes

c511 lim
N→`

m

N (
k51

N
1

Ar 21rBH
2 22rr BHsinucos~w22pk/N!

,

511
m

2pE0
2p

dw8
1

Ar 21rBH
2 22rr BHsinucosw8

,

511
2m

pAr 21rBH
2 12rr BHsinu

K~k!, ~4.5!

whereK(k) is a complete elliptic integral of the first kind as

K~k!5E
0

p/2 df

A12k2sin2f
, ~4.6!

and

k25
4rr BHsinu

r 21rBH
2 12rr BHsinu

. ~4.7!

This conformal factor agrees with that of ring whoserh is

rhc
55

m

prBH
d~r2rBH!dS u2

p

2 D . ~4.8!

This means that whenN is large enough and alsorBH is not
so large that the two-surface of the AH is nearly spherical,
the AH encompassing the many BH’s should be approxi-
mately the same as that for the ring. The AH for the ring is
easily and accurately determined by the 2D AH finder.
Hence, by comparing the AH forN-BH’s determined by the
3D AH finder with the AH for the ring determined by the 2D
AH finder, we can carry out the code check of the 3D AH
finder, again.

In Table II, we show the area of the AH for 4, 6, 8, 12, 16,
and 24 BH’s and the ring as a function ofrBH . In Fig. 4, we
also show the area of the AH as a function ofrBH . The solid
line denotes numerical results for the ring determined by the
2D AH finder, and squares, hexagons, triangles, and circles
denote those for BH’s ofN54, 6, 8, and 16, respectively,

which are determined by the 3D AH finder. Note that, in all
cases, the AH which encompassesN-BH’s disappears when
rBH becomes larger than a critical separationr crit , where
r crit;1.6621.67m for N54, r crit;1.7621.77m for N56,
r crit;1.8221.83m for N58, r crit;1.8921.90m for N512,
r crit;1.9121.92m for N516, r crit;1.9221.93m for
N524, and r crit;2.1322.14m for ring. From Fig. 4, we
soon find that whenrBH is sufficiently smaller thanr crit , the
area of the AH forN-BH’s is nearly equal to that for the
ring. This fact also supports that our numerical scheme
works well.

Finally, we comment on the shape of the two-surface of
the AH. Irrespective ofN, the two-surface of the AH be-
comes nonspherical nearr crit . In Fig. 5, we plot bird’s-eye-
views of the two-surface of the AH for the caserBH51.2,
1.5, and 1.66 ofN54 as an example. We can see that with
increase ofrBH , the nonspherical nature of the two-surface
of the AH is remarkable.

TABLE II. Area of the AH encompassing the ring and
N-BH’s at a moment of time symmetry as a function ofrBH in units
of m. The area is shown in units of 16pM2. The AH encompassing
ring is determined by the 2D AH finder, while the AH encompass-
ing N-BH’s is determined by the 3D AH finder with
(Nw ,Nu)5(48,48) ~so that, the numerical error will be less than
0.1%). ‘‘No’’ means that the AH encompassingN-BH’s do not
exist.

rBH Ring 24BH’s 16BH’s 12BH’s 8BH’s 6BH’s 4BH’s

2.10 0.976 No No No No No No
2.00 0.982 No No No No No No
1.90 0.986 0.984 0.983 No No No No
1.80 0.989 0.988 0.988 0.988 0.986 No No
1.70 0.991 0.991 0.991 0.991 0.990 0.989 No
1.60 0.993 0.993 0.993 0.993 0.993 0.992 0.989
1.50 0.995 0.995 0.995 0.995 0.995 0.995 0.993
1.40 0.996 0.996 0.996 0.996 0.996 0.996 0.995
1.20 0.998 0.998 0.998 0.998 0.998 0.998 0.998
1.00 0.999 0.999 0.999 0.999 0.999 0.999 0.999

FIG. 4. The area of the AH which encompassesN-BH’s, where
N54 ~squares!, 6 ~hexagons!, 8 ~triangles!, and 16~circles!, and
ring ~solid line!, as a function ofrBH . The area is shown in units of
16pM2.
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V. APPARENT HORIZONS FOR TIME-ASYMMETRIC
3D HYPERSURFACES

In this section, we prepare time-asymmetric 3D hypersur-
faces from Eqs.~3.1!, ~3.4!, ~3.6!, ~3,8!, and~3.9!, and apply
the 3D AH finder to them. First, we consider the case when
equations forBi andx can be analytically obtained as fol-
lows. The solution of a vector Poisson equation

DPi54pr~r !xi , ~5.1!

where

r~r !5H r0~12r 2/r 0
2! for r<r 0 ,

0 for r.r 0 ,
~5.2!

is written as

Pi5H 4pr0x
i~2r 0

2/121r 2/102r 4/28r 0
2! for r<r 0 ,

28pr0r 0
5xi /105r 3 for r.r 0 .

~5.3!

Also, the solutions of the following scalar-type Poisson
equations,

DQ154pr~r !~x22y2!, ~5.4!

DQ254pr~r !S z22 r 2

3 D , ~5.5!

DQ354pr~r !r 2, ~5.6!

are, respectively, written as

Q15H 4pr0~2r 0
2/201r 2/142r 4/36r 0

2!~x22y2! for r<r 0 ,

28pr0r 0
7~x22y2!/315r 5 for r.r 0 ,

~5.7!

Q25H 4pr0~2r 0
2/201r 2/142r 4/36r 0

2!~z22r 2/3! for r<r 0 ,

28pr0r 0
7~z22r 2/3!/315r 5 for r.r 0 ,

~5.8!

Q35H 4pr0~2r 0
4/121r 4/202r 6/42r 0

2! for r<r 0 ,

28pr0r 0
5/35r for r.r 0 .

~5.9!

Hence, if we chooseS(x)5r(r ), then the solutions ofBi and
x are simply written as

Bx522vPy12~k1s!Px , ~5.10!

By52vPx12~k2s!Py , ~5.11!

x522sQ112kSQ22
2

3
Q3D . ~5.12!

Note that, in all cases, the linear momentum of the system
vanishes, while the angular momentumJw of the system is
written as

Jw5
8p

105
r0r 0

5v5
1

7
M0r 0

2v. ~5.13!

We also give a very simple expression forrh as

rhc
55r~r !. ~5.14!

Thus, in the time-symmetric case,k5s5v50, c becomes

c[c05H 12pr0f ~r !/2 for r<r 0 ,

11M0/2r for r.r 0 , ~5.15!

where the gravitational mass of the system (M ) is equal to
M0. In the following, we will setM052 andr 050.9. In the
time-symmetric case, the AH exists ath(u,w)51 because
the 3D hypersurface is spherical symmetric andM.2r 0.
However, this is not the case when one of three parameters,
(k,s,v), is not zero.

We consider six cases:~a! kÞ0 and s5v50, ~b! s
Þ0 andk5v50, ~c! vÞ0 andk5s50, ~d! k5sÞ0 and
v50, ~e! s5vÞ0 andk50, ~f! k5s5vÞ0. For cases
~a!, ~c!, and ~d!, the 3D hypersurfaces are axisymmetric,
while for other cases, they are nonaxisymmetric. Note that
for casek56sÞ0 andv50, the matter is purely collaps-
ing or expanding in thex or y direction, and for case~c!, the
matter is purely rotating around thez axis.

In solving the Poisson equation forc, we adopt homoge-
neous as well as inhomogeneous grids with various grid
spacings, but fixing grid number as
(Nx ,Ny ,Nz)5(109,109,55) in order to see the dependence
of results on the choice of grids. We find that fluctuations of
the gravitational mass and the area of the AH is less than
1% if the amplitude of Ai j is small ~i.e., uku, usu,
uvu;122), but they become larger than 1% whenuku,
usu, uvu are larger than;5. The fluctuations mainly come
from the volume integral ofAi jA

i jc27 in Eq. ~3.15! which is
evaluated in estimation ofM and thus used when imposing
the outer boundary condition. It is not easy to suppress this
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numerical error due to the following reasons:~I! when we
use a coarse grid spacing, the truncation error becomes very
large becauseAi jA

i j changes rapidly aroundr;1, and a
coarse grid cannot resolve it correctly;~II ! we will underes-
timateM for the case where we take a small grid spacing and
as a result,L is not sufficiently large, becauseAi jA

i j behaves
as→r26 at r→`. To estimate how much the error of the
gravitational mass is, it is appropriate to see the quantity

I ~R![E
r<R

Ai j A
i jc0

27d3x. ~5.16!

We found that I (4)/I (`).0.88, I (5)/I (`).0.92, and
I (6)/I (`).0.95 irrespective of cases~a!2~f!. Thus, for case

TABLE III. Numerical results on time-asymmetric initial data
and the apparent horizon on it for various combinations of
(k,s,v). The third to fifth columns show the gravitational mass of
system(M ), (hx ,hy ,hz)5@h(0,p/2), h(p/2,p/2), h(0,0)], and the
area of the AH in units of 16pM2. The Poisson equation for the
conformal factor is calculated using the homogeneous grid with
(Nx ,Ny ,Nz)5(109,109,55) anddx5dy5dz50.09. For the case
M;2.00, the numerical error ofM , (hx ,hy ,hz) and AAH is less
than 1%, but forM.2.1, the error is 122 %.

Cases (k,s,v) M (hx ,hy ,hz) AAH/16pM
2

~a! (0,0,0) 2.00 ~1.00,1.00,1.00! 1.00

(1,0,0) 2.00 ~0.92,0.92,0.93! 1.00

(21,0,0) 2.00 ~1.08,1.08,1.06! 1.00

(22,0,0) 2.02 ~1.16,1.16,1.13! 1.01

(25,0,0) 2.11 ~1.40,1.40,1.33! 1.02

~b! (0,2,0) 2.01 ~0.97,1.02,1.00! 1.00

(0,5,0) 2.07 ~0.94,1.04,0.99! 0.98

(0,8,0) 2.17 ~0.90,1.05,0.97! 0.95

~c! (0,0,62) 2.02 ~1.00,1.00,1.00! 0.99

(0,0,65) 2.16 ~0.98,0.98,0.98! 0.95

(0,0,68) 2.35 ~0.94,0.94,0.94! 0.90

~d! (1,1,0) 2.01 ~0.91,0.93,0.93! 1.00

(21,21,0) 2.01 ~1.08,1.06,1.06! 1.00

(22,22,0) 2.03 ~1.18,1.13,1.13! 1.00

(25,25,0) 2.17 ~1.46,1.33,1.33! 1.00

~e! (0,1,1) 2.01 ~0.99,1.01,1.00! 1.00

(0,2,2) 2.04 ~0.97,1.02,0.99! 0.99

(0,5,5) 2.22 ~0.92,1.01,0.97! 0.94

(0,8,8) 2.46 ~0.84,0.95,0.90! 0.88

~f! (1,1,1) 2.01 ~0.91,0.93,0.93! 1.00

(21,21,21) 2.01 ~1.09,1.06,1.06! 1.00

(22,22,22) 2.05 ~1.17,1.12,1.12! 0.99

(25,25,25) 2.30 ~1.42,1.30,1.29! 0.96
FIG. 5. Bird’s-eye views of the AH for the caserBH /m51.2 ~a!,

1.5 ~b!, and 1.66~c! of N54.

FIG. 6. Location of the AH inu5p/8 ~inner lines!, p/4 ~middle
lines!, and the equatorial planes~outer lines! for case~e! of the
time-asymmetric 3D hypersurface (s5v55). Solid lines denote
the result when we giveKi j analytically, and dotted lines denote
that whenKi j is obtained from numerical calculation.
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I (`)/16pM050.1, we need to take grids at least up to
L;5 to reduce the estimation error ofM within ;1%, and
for the caseI (`)/16pM050.2, we needL;6. Furthermore,
with an increase ofI (`), we need to take largeL to keep the
error within ;1%. On the other hand, we want to take a
finer grid to avoid~I! as well as to solve Eq.~3.1! with a
sufficient accuracy, but it is restricted due to~II ! and a re-
stricted grid number. Thus, an error of;122 % is unavoid-
able unless we take a larger number of grid or we perform
the integral in a more sophisticated manner@19#. However,
the purpose of this paper is not to present the highly accurate
results forc, M , andAAH , but to demonstrate that the AH
finder works well. For this purpose, the above accuracy
seems enough. Hence, we do not pursue improving accuracy
any longer in this paper.

To determine the AH from Eq.~2.6!, c(h,u,w) is needed.
So, we calculate it by interpolation from numerical data sets
of c(xi ,yj ,zk) which is assigned only at discrete grid points.
As a trial function ofh(u,w), we give h(u,w)51. In all
cases, the AH is determined within a small fraction of a grid
zone in;10 iterations.

In Table III, we show the area, the intersection of the
two-surface of the AH withx, y, andz axes, and the gravi-
tational mass in the time-asymmetric 3D hypersurface. The
results described here are calculated when we adopt the ho-
mogeneous grid withdx5dy5dz50.09. As mentioned
above, each value will have the error of;122 %. From
Table III, we soon recognize the following facts.

~1! Because of the purely collapsing motion of matter
@cases~a! and~d!#, the coordinate radius of the AH becomes
larger, while the expanding motion acts oppositely.

~2! In the case where the matter is purely collapsing or
expanding@cases~a! and~d!#, the area of the AH is approxi-
mately 16pM2. Hence, in this case, even if we start a nu-
merical simulation from such an initial data, gravitational
radiation is hardly emitted. On the other hand, if the matter
has a rotation or shear motion@cases~b! and~c!#, the area is
sufficiently less than 16pM2. So that, if we start a simulation
from these initial data sets, gravitational radiation may be
emitted.

Feature~1! is qualitatively consistent with previous works
performed in the axisymmetric cases@20,21,18#. Also, a pre-
vious work@20# showed that in the case when the BH has the
angular momentum, the area of the AH is always smaller
than 16pM2. Hence, the results obtained here seem reliable.

Finally, to demonstrate that the present method works
well even in the case when we obtainKi j numerically, we
solve the equations forBi andx, as well as that forc in the
case~e! of s5v55 as an example. To solve the Poisson
equations forBi , x, andc, we use the homogeneous grid of
dx50.09 with a grid number of (101,101,51). Since we nu-
merically obtain Ki j , not only c(h,u,w), but also
Ki j (h,u,w) must be calculated by interpolation from those
assigned only at discrete grid points in determining the AH
from Eq. ~2.6!. In Fig. 6, we show the location of the AH in
u5p/8 ~inner lines!, p/4 ~middle lines!, and the equatorial
planes~outer lines! for two cases; one is the case where
Ki j is analytically obtained~solid line! and the other is the
case whereKi j is numerically calculated~dotted line!. It is
found that the location of the AH in the two cases agrees
within a small fraction of a grid zone. Also, the areas agree

with each other within 0.5%. Thus, the present method is
expected to work well even for fully numerical data sets of
3D hypersurfaces.

VI. SUMMARY

In this paper, we have described a method to determine
the AH on a special family of 3D hypersurfaces which has
p-rotation symmetry around thez axis as well as the reflec-
tion one with respect to the equatorial plane. In the present
method, we solve the 2D elliptic-type equation for the AH as
the boundary value problem in contrast with a previous work
@6#. To check whether the method works well, we have ap-
plied the 3D AH finder not only to data sets of time-
symmetric 3D hypersurfaces which are given analytically,
but also to that of time-asymmetric 3D hypersurfaces ob-
tained numerically. In all cases, we found that the 3D AH
finder brought accurate results. Hence, we expect that it is
also useful to determine the AH for a wide variety of forma-
tion problems of BH in numerical relativity such as coales-
cence of BNS’s of equal mass to be a BH@11#, collapse of a
rotating ellipsoid to be a BH, collapse of quadrupole gravi-
tational waves to be a BH@22#, and so on. We will apply the
present method to determine the AH in such numerical simu-
lations in the near future.
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APPENDIX

Here, we briefly describe how to make the numerical code
to determine the AH when the 3D hypersurfaces has the
reflection symmetries with respect tox-y, y-z, and z-x
planes. Such an AH finder will be useful in investigating the
formation process of BH’s in the triaxial systems such as
collapse of the triaxial ellipsoid. In the case when such sym-
metries exist, we take a grid which covers 0,w,p/2 and
0,u,p/2. The boundary conditions atu50 andp/2 are
the same as that for the case of thep-rotation symmetry, but
the boundary conditions atw50 andp/2 change to the re-
flection symmetric boundary conditions and the finite differ-
ences there~i.e., at j51 andNw) become

h,ww5
h2,j2h1,j

dw2 , h,ww5
2hNw , j1hNw21,j

dw2 . ~A1!

Thus, the schematic form ofMi j becomes
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In this case,Mi j has only five diagonal components, so that the matrix equation can be also solved by the ILUCGS method@9#
as mentioned in Sec. II.
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