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Apparent horizon finder for a special family of spacetimes in 3D numerical relativity

Masaru Shibata
Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560, Japan
(Received 17 June 1996

We present a method to find the apparent horizdH) on a special family of three-dimensioneD)
spacelike hypersurfaces which hasrotation symmetry around the axis as well as the reflection one with
respect to the equatorial plane. In a nonaxisymmetric 3D hypersurface, the AH, if it exists, is determined by
solving a 2D elliptic-type equation. In the present method, we solve the elliptic-type equation as a boundary
value problem. To test this method, we apply it to a variety of nonaxisymmetric 3D hypersurfaces which can
be obtained by solving the constraint equations in general relativity. We find that the present method works
well in all cases[S0556-282(197)04904-7

PACS numbd(s): 04.25.Dm, 04.20.Ha

I. INTRODUCTION EH, i.e., the formation of a BH, is guaranteed. Furthermore,
in contrast with the EH, we have only to retain numerical

One of the most important issues in numerical relativity isdata sets of a 3D spacelike hypersurface to determine
to clarify the formation process of a black h@BH) because ~Wwhether or not the AH exists. Hence, we do not have to
its formation will be a common phenomenon in astrophysicalvorry about the computer memories.
situations. For example, if a stellar core collapses in the final [N order to determine the two-surface of the AH,
phase of a very massive star, a BH will be produced. Alsoh(¢.,¢), in 3D numerical relativity, we need to solve a 2D
the final fate of coalescence of binary neutron staisS’s)  €lliptic-type equation with an appropriate boundary condi-
or BH’s will be a BH. These BH formation processes aretion which is determined from the regularity of the two-
also the most promising sources of gravitational radiation fosurface. Here, the elliptic-type equation[see Eq(2.6)]
planned kilometer size laser interferometric gravitational h
wave detectors such as the Laser Interferometric Gravita- 99 _
tional Wave ObservatoryLIGO) [1] and VIRGO[2]. In Mot COWN, ot G — 20 =SNG, (4.3
analyzing the signal of gravitational waves from such objects ) ]
to extract a variety of information from them, we will need WhereS(h,g,,,) depends on nonlinear terms fnas well as
theoretical knowledge on the formation process of BH's. Bythe geometric variablg,,,. To guarantee the regularity ev-
comparing a theoretical prediction of a signal of gravitationale’ywhere on the two-surface, Nakamura, Oohara, and
waves with the detected one, we will be able to extract inKojima [6] proposed a method in which the spherical har-
formation from the signal. Thus, we need an investigation ofnonic expansion is utilized. In their method, they expand
the formation process of BHs theoretically, which is possibleby the spherical harmonic function, ,,(6,¢) as
only by a three-dimensiondBD) fully relativistic simula-
tion.

A BH is characterized by an event horizgH) which is
defined as the boundary of the causal past of future null
infinity [3]. Hence, in order to understand the formation pro-wherea, ., is a coefficient. Thena, ,, can be written as
cess of a BH, we should investigate the formation and evo-
lution of the EH in numerical relativity. A technique to find B 1 d
the EH has been developed by a few gro[#$], and they as/m=~ /(7 + 1)+2f (cosp)
showed successful results in axisymmetric simulations.
However, to find the EH in 3D numerical relativity, we need
to save a large amount of numerical data in general because
of the global nature of the EH in spacetime. Although future
computers may have memory to store such a large amount gthere Y} | denotes the complex conjugate 6§ ,,. Thus,
data sets, that seems very difficult now. Hence, the EH is ng@nce a trial value oh is given,a, ,, can be calculated and
a useful notion in 3D numerical relativity. then the new trial value df is obtained. If this procedure is

In contrast with the EH, the apparent horiz#H) is very  repeated up to convergence &f ,,, the AH is determined.
useful as an approximate notion of the 3], and has often An important point is that the regularity of the two-surface is
been used in numerical relativity. The AH is defined as thecompletely guaranteed becauséd, ¢) is expanded by the
outermost spacelike and closed two-surface such that the exegular functionY , . Using this method, they succeeded in
pansion of future-directed outgoing null congruence orthogodetermining the AH for several time-symmetric 3D hyper-
nal to the two-surface vanishes. A useful property of the AHsurfaces which are given analytically.
is that it always lies inside the EH in the globally hyperbolic ~ As criticized by Nakad7], however, this method does not
spacetimg 3]. Thus, if the AH exists, the existence of the seem to be efficient when we apply it to the numerical data

h<0,<p>=/2m a,mY, m(6,¢), (1.2

xf d¢Y/,m(01¢)*S(h!gMV)l (13)
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sets of 3D hypersurfaces because of the naturé of;: symmetric and asymmetric 3D hypersurfaces, and to those

SinceY, ,, becomes a more and more variable function inobtained by solving the constraint equations analytically as

the 6 coordinate with an increase ef, we need a careful well as numerically: In Sec. IV, we apply the AH finder to

choice of grid points and weight factors to guarantee thdime-symmetric 3D hypersurfaces of many BH'’s close each

orthogonality ofY , ., in numerical integral as other in order to determine the AH encompassing these BHs.

In Sec. V, we apply it to time-asymmetric 3D hypersurfaces

. which are calculated numerically. In all cases, we show that
2”;1 Ym0 @)Y m(0,@)* vi=8, 1, (14 the AH finder works well. Section VI is devoted to summary.

Throughout this paper, we use the unitscefG=1.

where 6; and v; denote the appropriate grid points and

weight factors, and\, is determined by our choice of the

largest/ (/' may - Here,|v;| in each grid point is required to Il. APPARENT HORIZON FINDER

become larger and larger with an increase/gf,, to guar- IN 3D NUMERICAL RELATIVITY

antee the orthogonality of , ,, accurately. Numerical calcu-

lation of the integral byy in Eq. (1.3) is performed as

N,/

A. Basic equation for apparent horizon

N, The AH is defined as the marginally outermost trapped
> Y, m(0i,9)*S(h,g,,,) v . (1.5  surface[3]; i.e., outgoing light rays cannot expand from the
i=1 AH. Expansion of the outgoing null vector is expressed as

If a small truncation error is included ig,,, S deviates .

from the true value like S=S,,+8S. Since v, for p=V,l,(g*"+n*n"—s"s"), 2.9

i=1~N, are large numerical factors for a largg,,, the

relative error

where V, is the covariant derivative with respect to the

. . spacetime metrig,,,, n* is the unit normal of a 3D space-

241 Y, m(0i,¢)* S 241 Y, m(0i,@)*Swei, (1.6)  Jike hypersurfaces” is the unit normal of a two-surface of
the AH, and I# is the outgoing null defined as

becomes~1 even for a small erroé‘S/Strue: O(|Vi|_1). In (n“-f— S’U‘)/\/E |f a closed tWO'S.Urface on Whldﬂ vanishes
the case when we want to determine a nonspherical AH igverywhere exists, the AH exists. Before writing down the
which contributions of high”” modes are significant, we explicit equation ofp=0, we introduce the 3D metric and
need to adopt a larg€ .. Thus, in such a case, the two- the extrinsic curvature which are defined, respectively, as
surface of the AH will not be determined accurately by their
method.(But, se€[8] in which a devisal is proposed.

In this paper, we propose a different method from theirs Yur=Gupt NN, (2.2
for a special family of 3D hypersurfaces: We assume that the
3D spacelike hypersurface has therotation symmetry
around thez axis[i.e., h(¢,0)=h(e+m,0)] as well as the Kij=—%"%"V,n,. 2.3
reflection symmetry with respect to the equatorial plane. This
assumption is appropriate for many problems which we are
interested in for the present, such as coalescence of BNS's A . .
equal mass, the collapse of a rotating ellipsoid, and so orﬁ.jhen’ from Eq.(2.1), the conditionp=0 is written as
(Note, however, that this method cannot be applied to deter-
mine the AH of each BH in coalescing binary BH'&/hen
such symmetries exist, the boundary conditionH6#é, ¢) at
the z axis become#$ ,=0. In the present method, we solve
the 2D elliptic-type equation for the AH as the boundary ) i o .
value problem under such a boundary condition. As show'nereD; is the covariant derivative with respect 4¢ and
below, in this method, the AH is accurately determined everfC IS the trace part oK . .
when the geometry in 3D hypersurfaces is given numeri- Denoting the location of the AH as=h(6,¢), s' is ex-
cally. pressed as

The paper is organized as follows: In Sec. I, we first
derive the basic equation to determine the AH on the confor-
mally flat 3D hypersurface, and then show a numerical si=Cy¢*(1,—h,4,—h), (2.9
method to solve the equation. In Sec. Ill, we review the
initial value problem in general relativity and show numeri- i
cal methods to solve the Hamiltonian and momentum conwhereC is a normalization factor determined frosts;=1.
straints. In particular, a formulation to solve the momentumin this paper, we only consider the conformal flat 3D metric,
constraint equation accurately is presented. In order to showe., 7”:1#45% for simplicity. In this case,C becomes
that the present method is accurate and efficient enough, wd +h?/h?+h? /hZsir?6) "2 Substituting Eq(2.5) into Eq.
apply it to a variety of 3D hypersurfaces, i.e., to both time-(2.4), the following equation is derived:

N,/ N,/

K—K;;s's'=D;s'=0, (2.9
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h,<p<p *h? i 4 hﬁ h,¢, 2 2 h’2<P
h’30+C0t0h’0+m—(z—n)h:‘r]h‘l' ?T(KijSSJ—K)‘FJ (ﬂ‘r—lﬂ‘gﬁz—lﬂ’q,m h +h'0+5?—0
3 2 1 h2
+ | W2+ =2 | + ——5=(2h 4h h yo—COWNZ N ) — oo (sindcOFh 4+h )
h\ %" sirfg]  hZsirfg = 0 e oe @07 hlsirdg A
h2
X
- —hzsinzﬁ(h’“ﬂ— cotoh 4), (2.6

where 7 is a constant and its value can be appropriately w wl2 : — 5

chosen to accelerate the convergence in numerical computa- AAH:4I dsof doy*hyhsir? 9+ h?sino+h’,.

tion. 0 0 (2.12
Since Eq.(2.6) is a 2D elliptic-type equation, it should be '

solved under appropriate boundary conditionsfat,,ay,

Bmin, aNd@=@may, emin. IN this paper, we assume that the B. Numerical method

3D hypersurface has the-rotation symmetry around the The strategy to solve E@2.6) is as follows:(1) We sub-
axis[h(¢,0) =h(¢+m,60)] as well as the reflection symme- stitute a trial functionh(®(6,¢) into the right-hand side

try with respect to the equatorial plane. In this case, we MUSRHS) of Eq.(2.6); (2) we solve an elliptic-type equation
impose the boundary condition ap=0 and 7 as

h(0,0)=h(,#). Also, we need to impose the boundary con-
ditions at #=0 and #/2. For the boundary condition at
0= m/2, we simply imposéd ,=0 due to the reflection sym-
metry with respect to the equatorial plane. On the other handys the boundary value problen8) we substitute a new
the boundary condition at=0 is imposed as follows: Since h(g,¢) obtained a(2) into the RHS of Eq(2.6) and repeat

the surface of the AH is smooth as well as the 3D hypersurthis procedure until a sufficient convergence is achieved.
face has the symmetries with respect to theotation around In solving Eq.(2.13, we first change the left-hand side

the z axis and the equatorial plane, the location of the AH(LHS) to a finite-difference form using
can be expressed as

hr‘P‘P (0)
h gotcotth o+ 55— (2= ph=S(h®), (213

h%:hi,j+1_2hi,2j+hi,j—1 hezhi,j+1_hi,j—1
h(8,0)=2 asmY,om. 2.7 | 00 | 200
hiv1j—2h; j+hi_q
Notice thatY, , is proportional to exph¢)P, ,, Where o= 502 ) (2.14

P, m is the associated Legendre polynomial, &hd,, be-

haves att—0 as wherei andj denote the grid point o and 6, respectively.

We take the grid points as

P/,m_) Hm. (28)
1
This means thaln(6,¢) behaves neaf=0 as <pi=(i— > d¢, i=1~N,,
h(6,¢)— const- O(6?). (2.9 L
_ 0,= j——) 86, j=1~N,, (2.19
Thus, we may also impose &t=0 ash ,=0. We use these 2

boundary conditions in numerical calculation.
Finally, we show the equation to calculate the area of thavhereN, andN, are grid numbers between<Gp< and
AH, A,y . The 2D geometry on the AH can be written as  0< §<m/2, respectively, and

di2=y*{(h ,d6+h ,de)?+h?d6?+hsifodp?}, e T see T 2,16
= yH{(h%,+h?)d6?+ 2h 4h ,dode Ne 2Ny
+(h,2¢+ h?sir?6)d¢?}, (2.10 Ati=1 andN,, the finite differences foh ,, become
and the determinant of the 2D metric becomes hzj—2hyj+hy hyj=2hy j+hn, -1
h go= 592 v hge= 592 .
YPh2(h2sir 9+ h?sir0+h?)). (2.19) (2.17)

Hence,A,y becomes Also, atj=1 andN,, h 4 andh 4, become
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hi ,—h; 1 hi »—hi 1 Then, the LHS of Eq(2.6) is rewritten to the matrix equa-
h""’:T' hﬁ:W, tion as
—hin,thin,-1 hin,—hin,-1 Mihj=S. (2.19
hop=—%— ho=——%55
(2.18 The schematic form oi;; becomes
|
* ok * % \
* * * *
* * % *
* £ * *
* £ * *
* * * * ®
* * * * *
M= * e * , (2.20)
* * * * %
I * % *
* * * *
* % * %
* * * *
* * * *
\ * * % % )
|
where * denotes a nonzero component, and if * is absent, the LixDiUwi=M; . (2.24

matrix components are equal to zefblote that the above
form corresponds to the cade,=5 andN,=3.) M;; is not R has two diagonal components as

a symmetric matrix, but essentially has only five diagonal o _

components. Thus, to solve this matrix equation, we make #0 for j=i=Ny+1,

use of the ILUCGSincomplete lower-upper decomposition Rij{ =0 otherwise, (2.29
and conjugate gradient squayemiethod[9] which is effi-
cient when solving matrix equation in such a situation. In the

; . -and calculated fronk; D, Uy;—M;; . Hence, (,i£N,+1)
!stMC G_Sngth?Jd’ wg f'rs\}vﬁ:rr;y out the ILU decomposition components iM;; are absorbed iR;; . Note that the accel-
ij = LikPrYkj—

i eration parameten [see Eq(2.6)] is chosen as-1 in mak-
d, for j=i, ing M;; . Once the ILU decomposition is completed, we re-

write EqQ.(2.19 as
Dij=) 0 otherwise, (2.2 g.-(2.19
[I-U DL R]h=u"D"IL 15 (2.26
(di* for j=i, wherel is the unit matrix. Then, Eq2.26) is solved by the
_{ My for j=i—1,i-N,, CGS method. In the Appendix, we also show the numerical
Lij= OJ otherwise ¢ (2.22 scheme in the case where the 3D hypersurface has symme-

tries with respect tx-y, y-z, andz-x planes.
It should be also noticed that we use a relaxation tech-
(d? for j=i, _nique in substitutindn( 6, ¢) in_to the RHS of Eq(2.26 [i.e.,
o ) in procedureg2)]. We determine the trial value as
Uij:< M” for J=|+1, |+N(P| (223) (n+1) - ™
0 otherwise, hirial =" E+hiia(1—-6), (2.27
whereh™ is a solution of Eq(2.13 for S(h{)). ¢ is an

trial/ *
andd; is determined from the condition acceleration parameter and chosen-dk5.

\
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Finally, we emphasize the following point: The solution ABi—%(AX'FABka)’i . (3.7
of Eq. (2.13 in each step of iteration is guaranteed to be
regular because the matrix operator on the LHS of(Ed.3 Hence, Eq(3.5 may be decomposed into the two equations
is taken so as foh to become regular. As a result, when we

substitute a new trial function calculated from E2.27) into AB=87y°J=87S, (3.9
the RHS of Eq.(2.13, the RHS of Eq.(2.13 is also guar- 6 i ,
anteed to be regular. Hence, if we give an initial trial func- Ax=—-8my°Jix'=—-8mSx". 3.9

tion h(®) which is a regular function anywhere, the final so-
lution of h( 8, ¢) is also guaranteed to be regular. This is the
essential reason why the present method works well.

Thus, the source terms of Poisson equationgfcaind y are
compact as long as compact matter is concerned. We empha-
size again that this decomposition @f; is very useful to
obtainW; accurately.

In the following, we wiII'takeSiniz,zf6 as(1l) S=0 (.e.,

In order to test the method described in Sec. Il, we musK;j;=0), or(2) S =S(x)a;;x, wherea;; is a matrix and cho-
prepare 3D spacelike hypersurfaces. In general relativity, theen as
Hamiltonian and momentum constraints must be satisfied in

IIl. INITIAL VALUE PROBLEMS

each 3D hypersurface. This means that to prepare a 3D hy- kto —o 0
persurface, we need to solve these constraint equations. In B ® k—o 0
the case where the 3D hypersurface is assumed to be confor- &j = 0 0 0 ' (3.10
mally flat andK =0, they are, respectively, written §%0]

_ s 1 i Hence, we do not solvB, in the following. In cas€1), we

Agp==2mpny= S_WA‘jAJ=_47TS‘/” @D only need to solve the Poisson equation figrand in case
(2), we first calculate the Poisson equations Bgrand y to

and give Ajj, and then Eq(3.) is solved.

SO When we solve the Poisson equations shown above nu-
DiAj=8my°J;, (3.2 merically, we adopt homogeneous or inhomogeneous Carte-
- sian grids which cover-L<x, y<L, and O<z=<L, where
whereD; is the covariant derivative with respect & and | is a constant, in order to set up a finite-differencing equa-
A is the Laplacian of flat space. In the following, we use thetion. Inhomogeneous grids are taken as

Cartesian coordinate, so th@;=4;. A;; is defined as

¢//2Kij , and its indices are raised and lowered &y, i.e., OXi=adXi_1, OYj=adyj_1, OZ=adzy 1, (3.1
Aj=AV=A;'. p, and J; are defined from the energy-
momentum tensor as where oxi=Xi 1= X, &Y;=Yj+1~Yj, 6Z=2Z1~2 and
a is chosen as € @<1.05. At the outer boundaryl|x|,
ph=T,n*n",  Ji=—T,n*y. (3.3 ly|, andz=L), we impose boundary conditions as
If we assume the absence of the transverse-traceless part _ M _3
of Aj;, we can rewriteA;; as[10] y=1+ ZJFO(r ), (3.12

A=W+ W, ;=58 Wy k. (3.9

B anf SixdV ZnyJ Sydv+0O(r %, (3.13
i=— xdV— W r=o), .
Then, Eq.(3.2) becomes I = =

1 — 6
AW|+3\Nk,k| 8myJ;. (3.9 Y= %f SixidV+O(r’3), (3.14
This is the coupled elliptic-type equation fuv,, W, , and
W;, and it is not a desired form in numerical calculation. Toyheren' =x//r andM is the gravitational mass of the system
decompose the coupling of each componenif\pf previous  calculated by
authors[11,12 have introduced methods of decomposition
of this equation. However, in their methods, the Poisson
equations with noncompact source appear as a result of the M :ZJ SydV. 315
decomposition. In 3D numerical relativity, the grid number
we can adopt is restricted, and it seems difficult to improveThus, the Poisson equations fgrand y are solved by the
accuracy in solving such an equation in the restricted gridame Poisson solver, but that f8 is different from it.

number. Thus, we rewritéV; as Hence, we need two types of the Poisson solvers. In both
1 cases, we impose the reflection symmetry condition with re-

—Bi— —{y .+ ky _ spect to the equatorial plarze=0. _
Wi=8, S{X" (Bix), i}, (3.6 The finite-differencing equation for these Poisson equa-

tions becomes
where B; and y are vector and scalar potentials, and
x¥=(x,y,z). Then, the LHS of Eq(3.5) becomes CiX;=Y;, (3.1
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whereC;; =C;; has seven diagonal components, aycand errormax=0.0094
Y, are vectors. To solve this type of matrix equation, we use ERROR

the ICCG (incomplete Choleskii and conjugate gradignts
method [9], which is a similar method to the ILUCGS
method: In this method, the matri® is decomposed into
LDL "—R, where LEzLji, because of symmetry oC.

Then, we transform Eq(3.16 into the following matrix
equation:

[1—(LDLT)"R]X=(LDL )1y, (3.17

errormax=0.018

and solve Eq(3.17) by the CG method.

Accuracy of the Poisson solvers are checked by compar-
ing numerical solutions with the exact solutions. For ex-
ample, if we choose the density as

“““‘\\\\

po(1—r2/r3)  for r <rg,

)
p= *po(l—rilryg) for r_<rg, (3.18
0 otherwise,
(b)
where pg is a constanty . = \(XFx.)°+ (yFYy.)*+2° and FIG. 1. Accuracy of the Poisson solvers for the scalar-tige
Xc,Ye.lo are constants<L/2, then the following¢ is the  and vector-type potentiald). In _each figure, the relative error in
solution of the Poisson equatiang=4mp: the equatorial plane (8x,y=<L) is shown.
CMar M for 1. =r to the source term af so much' Also, we will find the AH
off++NMolt - =70 far from the outer boundar{see Sec. ¥, so that the accu-
—Mo/r =ampef(r_) for ryo=rqg,r_<rg, racy of the Poisson solvers seems sufficient.
¢=9 mpof(ry)TMolr_ for r_=rq,r . <rg, (.19

IV. APPARENT HORIZON ENCOMPASSING

mpof (ri) = mpof(r-) for ro,r_<rg, MANY BLACK HOLES

In this section, we apply the AH finder to time-symmetric
whereMo:87rpor8/15, and 3D spacelike hypersurfaces of many BH's. If these BH's are
close enough, the AH, which encompasses them, will exist.
2 1 The purpose of this section is to determine it.
f(r)= §r2— 5_2r4_ ra. (3.20 A geometry which represent$-BH’s of each massn, at
fo an arbitrary spatial point; at a moment of time symmetry
(i.e., Ajj=0) may be conformally flat, and the conformal
The solution of the upper sign can be used to check whethdgctor can be written agl3,14,15
the scalar-type Poisson solver works well or not, and the
other one is for the vector-type Poisson solver. We compared m;
the numerical solutions with the exact ones for several com- = 1+Zl m
binations of .Y, o). - '
In Fig. 1, we show the absolute value of the relative errorn this paper, we setn,=2u/N (i.e., M=2u) and take
|1— (numerical solutiong (exact solutiony, in the equato- ri=(x,y;,z) as
rial plane (0=x,y=<L) for the Poisson solvers of the scalar-

N
4.1

type potentialFig. 1(a)] as well as the vector-type potential gy 27 rey . (27,
[Fig. Ab)] in the case where&,=ry,=L/3 andy,=0 as an  Xi= 5 €0§ I+ ¢c|. Vi=—sini+ec, z=0,
example. In this case, we use the homogeneous grid with a (4.2)

grid number of (97,97,49). For the scalar-type Poisson

solver, the relative error is always less thari0™ 3 within ~ wherergy and ¢, are constants.

r~2L/3 although around the outer boundary it often be- In the caseN=2, the 3D hypersurface is axisymmetric
comes as large as-10 2. For the vector-type Poisson around the axis connecting two centers of BH’s. If the axis is
solver, it is also less tharn-2x10 2 within r~2L/3 al-  chosen as the axis, Eq.(2.6) becomes the following ordi-
though it becomes-2x 102 at the outer boundary. Thus, nary differential equation:

the accuracy of\;; near the outer boundary is not so good.

However,A;; A around the outer boundary is not large com-

pared with that in the inner region becausg behaves as  'But, as mentioned in Sec. \A;;A does contribute even at
—r 3 for r—o. Hence, the error itself does not contribute r~L unlessL is large enough.
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h’00+00t0h’0—(2—7])h -2

T
O—
n

= ph+y?h~ Y (h?+h%)3%(K;;s's' = K)

This equation is solved under the boundary conditions
h ¢=0 at§=0 and«/2. In the axisymmetric case, the AH is 4

2.5 e
4 h.e 3 h3,cotg u o ts
+E l//’r_l//ﬂ?)(hz_'—h,ze)"_Hh,zﬂ_T. 4.3 ’é‘ 3 E_ BH
m F
t_g) -3.5 :— ° (o)

[
[e]
chl)lllll_l_Llllllllll

easily determined with a desired accuracy as has been inves- - o
tigated so faf15,16,17,18 So that, first of all, we apply the sl Lo L Ly [
3D AH finder to determine the AH encompassing two-BH’s 1.2 1.4 1.6 1.8 2

which are not located in theaxis, but in the equatorial plane log N
(i.e., located in the non-axisymmetric configurations around
thez axis), and compare the result with the axisymmetric one FIG. 2. Numerical errors of the area of AHEq. (4.4)] as a
calculated by the 2D AH findefHereafter, we call the nu- function of N,(=N,) for the casesgy/u=1.4(solid circleg and
merical code to solve Eq4.3) “the 2D AH finder.” On the  1.52(open circles The logarithm is to base 10.
other hand, we call the numerical code to solve E6)
“the 3D AH finder.”] area of the AH determined by 3D AH finder
For the two-BH case, Cadez showed that there exists the 1— area of the AH determined by 2D AH finder
AH which encompasses two BH’s whemn,, is less than

~1.53u [16]. Hence, we investigate the AH changingy,  The figure shows that the numerical algorithm is indeed
from O to 1.5% as well as changing grid numbefs$, and  gocond-order convergent.

N,. We also change. from O to 7/2, but the results, of In Fig. 3, we compare the location of the AH determined
course, do not depend @, . An initial trial function h(©) is
chosen as hy—h;cos®d, where 0.%<hy/pu<1.1 and
0=<h;/u=<0.5 are constants. Fog,<1.5u, the AH is de-
termined with a sufficient accuracy within 10 iterations, al- 1.2
though about- 100 iterations are needed fiog~1.53u. In
Table I, we show the area of the AH as a functionrgf, .
The area is shown in units of &42. The second column
shows the results by means of the 2D AH finder, and third to
seventh columns show results by means of the 3D AH finder 8
with N,=N,=16, 32, 48, 64, and 100, respectively. Note
that for the casegy=1.53u with N,=N,=16, the AH can-
not be found. This is simply because the coarse grid fails to 6
resolve the highly distorted surface of the AH.

In Fig. 2, we show numerical errors of the area of AH as
a function of N,(=N,) for the casesgy/u=1.4 (solid @
circles and 1.52(open circles The numerical error is de-
fined as

—IIIIIIIIIIIIII||III|IIII

h(8,p)

|l|||||l|l|l||

|1II|III|III|

T A AN SN S,
A 2 3 4 5

6

S

TT T[T T I T[T T T T[T IT[TTTIT]
1.2

TABLE I. Area of the AH encompassing two-BH’s at a moment
of time symmetry as a function ot . The area is shown in units 1
of 16mM?2, whereM is the gravitational mass of the system. The
first column denotesg,, in units of w=M/2. The second column
shows results calculated by the 2D AH finder, and the third to
seventh columns show results by the 3D AH finder with different
grid numbers K, ,N,). * X" means that the AH finder fails to find 6

the AH. lllIIIIlllllllllll;\h""r"'l~l?--'

rey 2Dcal. (1616 (3232 (48,48 (64,64 (100,100 1 2 3 4 5

lIllIlIlIIIIIlI

h(8,¢p)
I|III|III|III|I

[=]
>

(b)
1.53 097710 X 0.97540 0.97637 0.97670 0.97693

152 0.97801 0.97194 0.97659 0.97738 0.97766 0.97786 FIG. 3. Location of the AH encompassing two-BH's for the case
1.50 0.97960 0.97466 0.97840 0.97906 0.97930 0‘97947rBH/M:1-52 (@ and 1.53(b). The horizontal axis shows (see
1.40 0.98550 0.98260 0.98478 0.98518 0.98532 0.98543text) and the vertical axis shows the radius of the AH. Solid, dotted,
1.20 0.99260 0.99141 0.99230 0.99247 0.99253 0.99257and dashed lines denote the results by the 2D AH finder, 3D AH

1.00 0.99650 0.99613 0.99641 0.99646 0.99648 0.99649finder of (32,32) grids, and 3D AH finder of (48,48) grids, respec-
tively.
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by the 3D AH finder with that by the 2D AH finder for the TABLE Il. Area of the AH encompassing the ring and
casergy=1.52u and 1.53. The horizontal axis denotes N-BH's ata moment of time symmetry as a functiorrgf; in units
D=0/ for the 2D case and=1/2— 6/ for the 3D case of u. The area is shown in units of #®12. The AH encompassing

_ . : . . _ring is determined by the 2D AH finder, while the AH encompass-
(¢=0), and the vertical axis shows the radius of the AH ming N-BH's is determined by the 3D AH finder with

eachd. Solid, dotted, and dashed lines denote results by th9\|¢,N9)=(48,48) (so that, the numerical error will be less than
2D AH finder, the 3D AH finder ofN,=N,=32, and of .19). “No” means that the AH encompassig-BH’s do not
N,=N,=48, respectively. These results show tfltwhen  exist.
the AH is not so distorted, a grid number Nf,=N,=32 is
enough and2) the numerical scheme works fairly well even rg, Ring 24BH's 16BH's 12BH's 8BH's 6BH's 4BH's
for the highly distorted AH if we take the grid number of
N,=N,=48. Hence, we adopti,=N,=48 as a grid num- 210 0.976  No No No No ~ No  No
ber in the following. In this case, the numerical error of 200 0.982  No No No No No  No
Ay is expected to be less than 0.1% for any case. We notd;90 0.986 0.984 ~ 0.983 No No No No
however, that unless the AH is so distorted, we do not need-80 0.989 0.988 0988 0988 0986 No  No
such a large number of the grid to guarantee that the accd-70 0.991 0.991  0.991 0.991 0.990 0.989 No
racy for Ay is better than~0.1%. 1.60 0.993 0.993 0.993 0.993 0.993 0.992 0.989
Then, we present numerical results for the cases of many.50 0.995 0995 0995 0995 0.995 0.995 0.993
BH's. Before showing numerical results, we comment on thel.40 0.996 0.996 0.996 0.996 0.996 0.996 0.995
limit N—co. In this case, Eq4.1) becomes 1.20 0998 0.998 0.998 0.998 0.998 0.998 0.998
1.00 0.999 0.999 0999 0.999 0.999 0.999 0.999

N

M 1
=1+ lim = ,
v N—>ooNk21 Jr2+r3,—2rr gysindcog @ — 27k/N)

which are determined by the 3D AH finder. Note that, in all

u (27 1 cases, the AH which encompas$¢BH’s disappears when
=l+—f ¢’ , rey becomes larger than a critical separatiqp,, where
2 2 _ . ’ BH rlt s
2mJo Vr?+1gy—2r1 gsingcosp Forit~1.66-1.67u for N=4, r;4~1.76-1.77u for N=86,
2 Mot~ 1.82—1.83u for N=8, r;~1.89-1.90u for N=12,
=1+ > —K(k), (45  Tei—~191-1.92u for N=16, rcy~1.92-1.93:. for
w\/r2+rBH+2rrBHsm0 N=24, andrg;~2.13-2.14u for ring. From Fig. 4, we

. o _ . soon find that whemgy is sufficiently smaller tham;;, the
whereK (k) is a complete elliptic integral of the first kind as area of the AH forN-BH’s is nearly equal to that for the
ring. This fact also supports that our numerical scheme

N do works well.
K(k)= 0 \/m (4.6 Finally, we comment on the shape of the two-surface of
the AH. Irrespective ofN, the two-surface of the AH be-
and comes nonspherical negy,;;. In Fig. 5, we plot bird's-eye-
views of the two-surface of the AH for the casgy=1.2,
4rr gysing 1.5, and 1.66 oN=4 as an example. We can see that with

2

(4.7 increase ofrgy, the nonspherical nature of the two-surface

- .
r“+rgy+2rrgySing .
BH BH of the AH is remarkable.

This conformal factor agrees with that of ring whagseis

1 LI

il =—— &(r —rgy) 5( = g) 4.8

T BH
.995
This means that wheN is large enough and alsgy is not
so large that the two-surface of the AH is nearly spherical,
the AH encompassing the many BH’'s should be approxi-
mately the same as that for the ring. The AH for the ring is
easily and accurately determined by the 2D AH finder.
Hence, by comparing the AH fdX-BH’s determined by the
3D AH finder with the AH for the ring determined by the 2D
AH finder, we can carry out the code check of the 3D AH gglivr ol bl
finder, again. 5 1 15 2
In Table I, we show the area of the AH for 4, 6, 8, 12, 16, Th

and 24 BH'’s and the ring as a functiongfy . In Fig. 4, we
also show the area of the AH as a functiorrgf;. The solid FIG. 4. The area of the AH which encompasse8H’s, where
line denotes numerical results for the ring determined by they=4 (squares 6 (hexagony 8 (triangles, and 16(circles, and
2D AH finder, and squares, hexagons, triangles, and circlesng (solid line), as a function of g, . The area is shown in units of
denote those for BH's o=4, 6, 8, and 16, respectively, 16axM?.

.99

Al167M2

.985

IIII|IIII|IIIIIIIIIT

o
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V. APPARENT HORIZONS FOR TIME-ASYMMETRIC
3D HYPERSURFACES

MASARU SHIBATA

In this section, we prepare time-asymmetric 3D hypersur-

faces from Eqs(3.1), (3.4), (3.6), (3,9, and(3.9), and apply

55
AmrpoX (—r2/12+12/10—r%/283) for r<ry,
Pi=) —8mporixi/1053 for r>r.
(5.3

the 3D AH finder to them. First, we consider the case when

equations forB; and y can be analytically obtained as fol-
lows. The solution of a vector Poisson equation

Also, the solutions of the following scalar-type Poisson
equations,

AP, =4mp(r)x, (5.1) AQ;=4mp(r)(x*~y?), (5.9
where r2
AQ2=47Tp(r)(22— —>, (5.9
po(1—r2/r3) for r<ry, 3
ry= 5.2
P70 for r>ro, 6.2 AQs=4mp(r)r?, (5.6)
is written as are, respectively, written as
|
Ampo(—r3/20+r2/14—r*/36r5) (x2—y?)  for r<ry,
Q1= —8mporl(x2—y?)/315° for r>ro, (5.7
Ampo(—13/20+12/14—r%/36r3) (22— r?/3) for r=<ry,
Q2=) —8mporl(z2—r23)/3155 for r>ry, (5.8
Ampo(—rgl12+14/20—r®42r3) for r=<ry,
Qs= —81rp0r3/35r for r>ry. (5.9

Hence, if we choos8(x) = p(r), then the solutions d8; and
x are simply written as

By=—2wPy+2(k+0)Py, (5.10

By=2wP,+2(k— )Py, (5.11)
2

X=720Q1+2k| Q2= 3 Q3. (5.12

where the gravitational mass of the systelh)(is equal to
M. In the following, we will setM =2 andry=0.9. In the
time-symmetric case, the AH exists lafd,¢)=1 because
the 3D hypersurface is spherical symmetric adid>2r,.
However, this is not the case when one of three parameters,
(k,0,w), is not zero.

We consider six casesa) k#0 andoc=w=0, (b) o
#0 andk=w=0, (c) w#0 andk=0=0, (d) k=c#0 and
w=0, (6) o=w#0 andk=0, (f) k=0=w#0. For cases
(a), (c), and (d), the 3D hypersurfaces are axisymmetric,

Note that, in all cases, the linear momentum of the systerﬁ"h“e for other cases, they are nonaxisymmetric. Note that

vanishes, while the angular momentum of the system is
written as

8w . 1 )
J(pzm‘_’porow:?l\ﬂorow. (5.13
We also give a very simple expression fgf as
pry®=p(r). (5.14

Thus, in the time-symmetric case= o= w=0, {y becomes

1—mpef(r)/2 for r=<ry,

Y=ho=\ 1+ My/2r (5.19

for r>rg,

for casek=* o #0 andw=0, the matter is purely collaps-
ing or expanding in the& or y direction, and for casé), the
matter is purely rotating around ttzeaxis.

In solving the Poisson equation fgr, we adopt homoge-
neous as well as inhomogeneous grids with various grid
spacings, but fixing grid number as
(Ny,Ny,N,)=(109,109,55) in order to see the dependence
of results on the choice of grids. We find that fluctuations of
the gravitational mass and the area of the AH is less than
1% if the amplitude ofA;; is small (i.e., ||, |o],
|o|~1-2), but they become larger than 1% wheéx,
|o|, |o| are larger than~5. The fluctuations mainly come
from the volume integral of\;; A4~ in Eq. (3.15 which is
evaluated in estimation d#1 and thus used when imposing
the outer boundary condition. It is not easy to suppress this
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Zmax=0.857
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TABLE IIl. Numerical results on time-asymmetric initial data
and the apparent horizon on it for various combinations of
(k,0,w). The third to fifth columns show the gravitational mass of
systemM), (hy,h,,h,)=[h(0,7/2), h(m/2,7/2), h(0,0)], and the
area of the AH in units of 16M?2. The Poisson equation for the
conformal factor is calculated using the homogeneous grid with
(Nx,Ny,N,)=(109,109,55) andsx=dy=6z=0.09. For the case
M~2.00, the numerical error df1, (h,,h,,h,) and Any is less
than 1%, but fotM >2.1, the error is +2 %.

Cases k.o,0) M (hy.hy ,hy) App/167M?2
€)] (0,0,0) 2.00 (1.00,1.00,1.00 1.00
(1,0,0) 2.00 (0.92,0.92,0.98 1.00

(-1,000)  2.00 (1.08,1.08,1.0p 1.00
(-2,00) 202 (1.16,1.16,1.18 1.01
(-5,00) 211 (1.40,1.40,1.38 1.02

(b) (0,2,0) 2.01 (0.97,1.02,1.0D 1.00
(0,5,0) 2.07 (0.94,1.04,0.99 0.98
(0,8,0) 2.17 (0.90,1.05,0.97 0.95
© (0,0,+2)  2.02 (1.00,1.00,1.0D 0.99

(0,0+5)  2.16 (0.98,0.98,0.98 0.95
(0,0,+8)  2.35 (0.94,0.94,0.9% 0.90
(d) (1,1,0) 2.01 (0.91,0.93,0.98 1.00
(-1,-1,00) 2.01 (1.08,1.06,1.0 1.00
(-2,-2,00 203 (1.18,1.13,1.18 1.00
(-5-50) 217 (1.46,1.33,1.38 1.00

(© (0,1,1) 2.01 (0.99,1.01,1.0p 1.00
(0,2,2) 2.04 (0.97,1.02,0.99 0.99
(0,5,5) 2.22 (0.92,1.01,0.97 0.94
(0,8,8) 2.46 (0.84,0.95,0.9D 0.88
(f) (1,1,1) 2.01 (0.91,0.93,0.98 1.00

(-1,-1,-1) 2.01 (1.09,1.06,1.06 1.00
(—2,—2,-2) 205 (1.17,1.12,1.1p 0.99
(—5—-5,-5) 230 (1.42,1.30,1.29 0.96

FIG. 5. Bird’'s-eye views of the AH for the casg,/u=1.2(a),
1.5 (b), and 1.66(c) of N=4.

numerical error due to the following reasorisr when we

use a coarse grid spacing, the truncation error becomes very

large because‘\ijA” changes rapidly around~1, and a
coarse grid cannot resolve it correctlyt) we will underes-

timateM for the case where we take a small grid spacing and

as a resultl. is not sufficiently large, becaugg; A" behaves
as—r % atr—o. To estimate how much the error of the
gravitational mass is, it is appropriate to see the quantity

I(R)Ef A AT grg Tdx. (5.16
r<R

We found that I(4)/1(~)=0.88, [(5)/I(«)=0.92, and
[(6)/1(0)=0.95 irrespective of casé€a)— (f). Thus, for case

FIG. 6. Location of the AH ir9= #/8 (inner lines, =/4 (middle
lines), and the equatorial plangsuter lines for case(e) of the
time-asymmetric 3D hypersurfacer€ w=5). Solid lines denote
the result when we giv;; analytically, and dotted lines denote
that whenkK;; is obtained from numerical calculation.
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[()/167M¢=0.1, we need to take grids at least up towith each other within 0.5%. Thus, the present method is
L~5 to reduce the estimation error bf within ~1%, and  expected to work well even for fully numerical data sets of
for the casd (»)/167My=0.2, we need ~6. Furthermore, 3D hypersurfaces.

with an increase off(«), we need to take larde to keep the

error within ~1%. On the other hand, we want to take a

finer grid to avoid(l) as well as to solve Eq.3.1) with a VI. SUMMARY
sufficient accuracy, but it is restricted due (ib) and a re- _ _ _
stricted grid number. Thus, an errorefL— 2 % is unavoid- In this paper, we have described a method to determine

able unless we take a larger number of grid or we perfornthe AH on a special family of 3D hypersurfaces which has
the integral in a more sophisticated manfi£8]. However,  w-rotation symmetry around theaxis as well as the reflec-
the purpose of this paper is not to present the highly accuratéon one with respect to the equatorial plane. In the present
results fory, M, andA,y, but to demonstrate that the AH method, we solve the 2D elliptic-type equation for the AH as
finder works well. For this purpose, the above accuracythe boundary value problem in contrast with a previous work
seems enough. Hence, we do not pursue improving accura¢g]. To check whether the method works well, we have ap-
any longer in this paper. plied the 3D AH finder not only to data sets of time-
To determine the AH from Eq2.6), #(h, 6, ¢) is needed. symmetric 3D hypersurfaces which are given analytically,
So, we calculate it by interpolation from numerical data setgyt also to that of time-asymmetric 3D hypersurfaces ob-
of 4(xi Y,z which is assigned only at discrete grid points. tained numerically. In all cases, we found that the 3D AH
As a trial function ofh(6,¢), we giveh(6,¢)=1. In all " finder brought accurate results. Hence, we expect that it is
cases, the AH is determined within a small fraction of a grida|so yseful to determine the AH for a wide variety of forma-
zone in~ 10 iterations. , , tion problems of BH in numerical relativity such as coales-
In Table Ill, we show the area, the intersection of _thecence of BNS's of equal mass to be a BHJ, collapse of a

two-surface of the AH withx, y, andz axes, and the gravi- ; s :
; . . 10 : ! rotating ellipsoid to be a BH, collapse of quadrupole gravi-

tational mass in the time-asymmetric 3D hypersurface. The_,. .

results described here are calculated when we adopt the hoqtlonal waves to be a BER2], and so on. We will apply the

mogeneous grid withdx= dy=6z=0.09. As mentioned present method to determine the AH in such numerical simu-
. o lations in the near future.

above, each value will have the error 6f1—2 %. From

Table Ill, we soon recognize the following facts.
(1) Because of the purely collapsing motion of matter

[caseqa) and(d)], the coordinate radius of the AH becomes ACKNOWLEDGMENTS

larger, while the expanding motion acts oppositely. The author would like to thank K. Nakao for frequent
(2) In the case where the matter is purely collapsing or,

. ; > ~useful discussions and for helpful comments on this manu-
expandmg[cages(a) and(_d)], Fhe area of the_AH IS approxi- script, and T. Nakamura for useful discussions. Numerical
mately 16rM~. Hence, in this case, even if we start a nu-

merical simulation from such an initial data, gravitational computations were performed on YHP-715 workstations.

radiation is hardly emitted. On the other hand, if the matterThiS work was, in part, supported by a Grant-in-Aid for Cre-

has a rotation or shear moti¢oasesb) and(c)], the area is ative Basic Research of Ministry of Education, Culture, Sci-
sufficiently less than 16M?. So that, if we start a simulation ence and Sports, No. 08NPO801.
from these initial data sets, gravitational radiation may be
emitted.

Featureg(1) is qualitatively consistent with previous works APPENDIX
performed in the axisymmetric cadeD,21,18. Also, a pre-
vious work[20] showed that in the case when the BH has theTO
angular momentum, the area of the AH is always smalle
than 16rM2. Hence, the results obtained here seem reliabl

Finally, to demonstrate that the present method work
well even in the case when we obtaf; numerically, we
solve the equations fds; and y, as well as that fofy in the
case(e) of c=w=5 as an example. To solve the Poisson
equations foB;, x, and, we use the homogeneous grid of
6x=0.09 with a grid number of (101,101,51). Since we nu-
merically obtain K;;, not only #(h,0,¢), but also
Kij(h,0,¢) must be calculated by interpolation from those
assigned only at discrete grid points in determining the AH
from Eq.(2.6). In Fig. 6, we show the location of the AH in
0= /8 (inner lineg, w/4 (middle lineg, and the equatorial —he +h _
planes (outer lineg for two cases; one is the case where :hZJ_hl,J __ Ned 7 N1
K;; is analytically obtainedsolid line) and the other is the GO St T e 5¢*
case where;; is numerically calculateddotted ling. It is
found that the location of the AH in the two cases agrees
within a small fraction of a grid zone. Also, the areas agreeThus, the schematic form dfl;; becomes

Here, we briefly describe how to make the numerical code
determine the AH when the 3D hypersurfaces has the
Feflection symmetries with respect toy, y-z, and z-x
lanes. Such an AH finder will be useful in investigating the
ormation process of BH'’s in the triaxial systems such as
collapse of the triaxial ellipsoid. In the case when such sym-
metries exist, we take a grid which coversc@</2 and
0< A< /2. The boundary conditions a@=0 and =/2 are
the same as that for the case of theotation symmetry, but
the boundary conditions at=0 and /2 change to the re-
flection symmetric boundary conditions and the finite differ-
ences therdi.e., atj=1 andN,) become

(A1)
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M..= * EE * . (A2)

1

* * % *

\ * . )

In this caseM;; has only five diagonal components, so that the matrix equation can be also solved by the ILUCGS]&]ethod
as mentioned in Sec. Il.
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