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Relativistic formalism for computation of irrotational binary stars in quasiequilibrium states
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We present relativistic hydrostatic equations for obtaining irrotational binary neutron stars in quasiequilib-
rium states in the 311 formalism. The equations derived here are different from those previously given by
Bonazzola, Gourgoulhon, and Marck, and have a simpler and more tractable form for computation in numeri-
cal relativity. We also present hydrostatic equations for computation of equilibrium irrotational binary stars in
the first post-Newtonian order.@S0556-2821~98!00914-X#

PACS number~s!: 04.25.Nx, 97.80.Gm
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I. INTRODUCTION

Preparation of reliable theoretical models on the late
spiraling stage of binary neutron stars is one of the m
important issues for gravitational wave astronomy. This
because they are one of promising sources for gravitatio
wave detectors such as the Laser Interferometric Grav
tional Wave Observatory~LIGO! @1#, VIRGO @2#, GEO600
@3#, and TAMA @4#. From their signals, we will get a wide
variety of physical information on neutron stars such as th
mass, spin, and so on if we have a theoretical templat
them@5#. In particular, a signal from the very late inspiralin
stage just prior to merging may contain physically importa
information on neutron stars, such as their radius@5#, which
will be utilized for determining the equation of state of ne
tron stars@6#.

Binary neutron stars evolve due to the radiation react
of gravitational waves, so that they never settle down
equilibrium states. However, the emission time scale will
always longer than the orbital period outside their innerm
stable circular orbit~ISCO!, so that we may consider tha
they are in quasiequilibrium states in their inspiraling pha
even near the ISCO. Motivated by this idea, there have b
several works in which the sequence of equilibrium state
binary neutron stars is computed and the sequence is
garded as an evolutionary track; for example, we have
tained corotational equilibrium states in the first po
Newtonian approximation @7#; Baumgarte et al. have
obtained corotational equilibrium states in a relativis
framework using the conformal flat approximation@8#. Up to
now, however, all relativistic works have been done assu
ing a corotational velocity field@9#. As pointed out previ-
ously @10#, corotation is not an adequate assumption for
velocity field of realistic binary neutron stars, because
effect of viscosity is negligible for the evolution of neutro
stars in a binary and, as a result, their velocity fields
expected to be irrotational~or nearly irrotational!.

For computation of realistic quasiequilibrium states
coalescing binary neutron stars just prior to merging, Bon
zola, Gourgoulhon, and Marck~BGM! @11# recently pre-
sented a relativistic formalism. In their formulation, they a
sume a helicoidal Killing vectorl m, and then project
relativistic hydrodynamic equations onto a hypersurface
thogonal to l m. After that, they impose their irrotationa
condition on the hypersurface and derive hydrostatic eq
0556-2821/98/58~2!/024012~5!/$15.00 58 0240
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tions for the irrotational fluid. We think, however, that the
were several inadequate treatments in their work. The
one is their definition of the irrotational condition, becau
their irrotational condition is nothing but a necessary con
tion for irrotation even in the case when we assume the
istence ofl m @12#. In the general case, their condition is n
identical to the irrotational condition. Second, in numeric
relativity, we usually solve equations such as the Ham
tonian constraint, momentum constraint, and equations
gauge conditions, using spatial coordinates on the hyper
face S t , which is perpendicular to the unit normalnn. For
this reason, they had to reproject their equations ontoS t . As
a result, their equations for determining the velocity fie
have a complicated form. Finally, in their formalism, it
necessary to solve a complicated vector Poisson equatio
relativistic cases, which should be unnecessary for an irr
tional fluid. Although we may get correct results using th
formalism, we had better obtain a simpler and more tracta
formalism. The purpose in this paper is to present such a

In Sec. II, we derive hydrostatic equations for an irro
tional fluid from relativistic hydrodynamic equations. W
use a 311 formalism and project the hydrodynamic equ
tions ontoS t . Then, we impose an irrotational condition o
S t , which agrees with the relativistic irrotational conditio
@12#. As a result of the projection ontoS t , we obtain hydro-
static equations onS t , and hence, they have suitable form
to be solved in numerical relativity. Also, in our formalism
we need to solve only one Poisson-type equation for a sc
field for the determination of the vector field. In Sec. II
taking the Newtonian limit, we show that well-known New
tonian hydrostatic equations are derived from the present
malism. In Sec. IV, we give first post-Newtonian hydrosta
equations for an irrotational fluid as well as gravitation
potentials to be solved. Section V is devoted to a summ
Throughout this paper,c denotes the speed of light, and w
use units in which the gravitational constant is unity. We u
units c51 in Sec. II for convenience and recoverc in Secs.
III and IV. Latin and Greek indices denote three-dimensio
~3D! spatial components~1–3! and four dimensional~4D!
components~0–3!, respectively. As spatial coordinates, w
use the Cartesian coordinatesxk5(x1,x2,x3).

II. RELATIVISTIC FLUID EQUATIONS
IN THE 3 11 FORMALISM

Since we use the 311 formalism in general relativity, we
write the line element as
© 1998 The American Physical Society12-1
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ds25gmndxmdxn

5~2a21bkb
k!dt212b idxidt1g i j dxidxj , ~2.1!

wheregmn , a, b i5g i j b
j , andg i j are the 4D metric, lapse

function, shift vector, and 3D spatial metric, respective
Using the unit normal to the 3D spatial hypersurfaceS t ,

nm5S 1

a
,2

b i

a D and nm5~2a,0,0,0!, ~2.2!

g i j is written as

gmn5gmn1nmnn . ~2.3!

Hereafter, we use¹m and Di as the covariant derivative
with respect togmn andg i j , respectively.

We assume the energy momentum tensor of the per
fluid as

Tmn5rF11«1
P

r Gumun1Pgmn, ~2.4!

wherer, «, P, andum denote the rest mass density, spec
internal energy, pressure, and four-velocity, respectively.
assume the polytropic equation of stateP5(G21)r«,
where G5111/n and n is the polytropic index. From the
adiabatic condition, we also getP5KrG, whereK is a con-
stant. For the following, we defineh as

h511«1
P

r
511

KG

G21
rG21511E dP

r
. ~2.5!

From the conservation equation for the energy momen
tensor,

¹mTn
m50, ~2.6!

we get the hydrodynamic equation as

um¹mũn1¹nh50, ~2.7!

where ũn5hun , and we use the conservation equation
rest mass density as

¹m~rum!50. ~2.8!

To rewrite the hydrodynamic equation, we decomposeum as

um5u0~ l m1Vm!, ~2.9!

and assume that~1! l m is a timelike vector of its componen
(1,l i), and ~2! Vm is a spatial vector,Vmnm50, i.e., Vm

5(0,Vi). By using l m and Vm, we get the following rela-
tions:
02401
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g i
nl m¹mũn

5g i
n@Ll ũn2ũm¹nl m#5g i

nFLl ũn2ũm¹nS um

u0 2VmD G
5g i

nFLl ũn1h¹nS 1

u0D1ũm¹nVmG
5g i

nLl ũn1hDi S 1

u0D1 ~3!ũkDiV
k1g i

nhsũsVm¹nhm

~2.10!

and

g i
nVm¹mũn5VkDk

~3!ũi2g i
nhsũsVm¹mhn , ~2.11!

whereLl denotes the Lie derivative with respect tol m and
(3)ũi is a spatial vector defined asg i

kũk . Using these rela-
tions, the projection of Eq.~2.7! onto the 3D hypersurfaceS t
becomes

u0Fg i
nLl ũn1VkDk

~3!ũi1
~3!ũkDiV

k1hDi S 1

u0D G1Dih50.

~2.12!

We can rewrite this equation as

g i
nLl ũn1Di S h

u0 1 ~3!ũkV
kD1Vk~Dk

~3!ũi2Di
~3!ũk!50.

~2.13!

Besides the conservation equation of the energy momen
tensor, we have the conservation equation for rest mass
sity ~2.8!. We note that for the case of a barotropic equat
of state such asP5KrG, Eq. ~2.8! is also derived from the
conservation equation of the energy momentum tensor. T
implies that if we solve Eq.~2.8!, we do not have to take into
account thenm component of Eq.~2.7!. Using Eq.~2.9!, Eq.
~2.8! is written as

a@Ll ~ru0!1ru0¹ml m#1Di~rau0Vi !50. ~2.14!

Now, we assume thatl m is a Killing vector such that
¹ml n1¹nl m50, Ll ũn50 andLl (ru0)50, and we write
its component as (1,2Vx2,Vx1,0), whereV is identified
with the orbital angular velocity with respect to a dista
inertial observer. We note that the fluid exists inside the lig
cylinder uxku!cV21, and the existence of the Killing vecto
is assumed within it. We also note thatl m defined here is
identical to the helicoidal Killing vector defined by BGM
@11#. If the Killing vector exists, we can derive hydrostat
equations for the two interesting cases. One is the cor
tional case where we simply setVi50. Then, we get a well-
known result as@13#

h

u0 5const, ~2.15!

and the continuity equation is trivially satisfied in this cas
2-2
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The other is the case where(3)ũi satisfies an ‘‘irrotational
condition’’ defined as

Wi j [Di
~3!ũ j2D j

~3!ũi50, ~2.16!

and hence

~3!ũi5Dif, ~2.17!

wheref is a scalar field. Then, the hydrodynamic equat
~2.13! is integrated to give

h

u0 1 ~3!ũkV
k5const. ~2.18!

Note thatVk andu0 are written as

Vk52l k2bk1
1

hu0 gklDlf, ~2.19!

u05
1

a
@11h22gklDkfDlf#1/2,

~2.20!

so that we can rewrite the left-hand side of Eq.~2.18! as

h

u0 1 ~3!ũkV
k5ha2u02~ l k1bk!~3!ũk . ~2.21!

By substituting Eq.~2.19! into Eq. ~2.14!, we get a
Poisson-type equation for determiningf as

Di~rah21Dif!2Di$rau0~ l i1b i !%50. ~2.22!

Hence, the hydrodynamic equations which should be sol
for the determination of equilibrium states reduce to o
two hydrostatic equations~2.18! and~2.22!. We do not have
to solve any equations for vector potentials which were
troduced in the formalism of BGM@11#.

We note that the definition of irrotation in the 4D cova
ant form should be@12#

vmn5Ps
mPl

n~¹mun2¹num!

5h21~¹mũn2¹nũm!50,
~2.23!

wherePs
m5gs

m1usum, and we use Eq.~2.7! to rewrite the
first line into the second line. Whenvmn is vanishing initially
for a fluid element, it remains zero along the trajectory of
fluid element for the perfect fluid@12#. Hence,vmn50 is just
the irrotational condition. In our present irrotational cond
tion ~2.16!, Eq. ~2.23! is satisfied on the 3D hypersurfaceS t
trivially. However, it is not trivial whether or not the projec
tion of Eq. ~2.23! to thenmgk

n component is satisfied.~Pro-
jection to the nmnn component is trivially satisfied.! We
show here that it is really guaranteed due to Eq.~2.16!. By
operatingnmgk

n to ¹mũn2¹nũm , we get
02401
d

-

e

nmgk
n~¹mũn2¹nũm!5gk

nLnũn2gk
n~ ũm¹nnm1nm¹nũm!

5gk
nLnũn2Dk~nmũm!

5gk
nLnũn1Dk~hau0![Wk ,

~2.24!

where we usenmũm52hau0. From a straightforward cal-
culation, we can rewritegk

nLnũn as

gk
nLnũn5

1

a
@gk

nLl ũn1hau0Dka2~b j1l j !] j
~3!ũk

2 ~3!ũ j]k~b j1l j !#, ~2.25!

where]k denotes a partial derivative onS t . Hence,

Wk5
1

a
@gk

nLl ũn2~b j1l j !] j
~3!ũk2 ~3!ũ j]k~b j1l j !

1]k~ha2u0!#. ~2.26!

Using the hydrodynamic equation~2.13! and an identity
~2.21!, we obtain

Wk5
1

a
~Vj1b j1l j !~2] j

~3!ũk1]k
~3!ũ j !

5
1

a
~Vj1b j1l j !Wk j . ~2.27!

Equation~2.27! implies thatWk50 if Eq. ~2.16! is satisfied.
Note that to derive Eq.~2.27! we have not assumed the fa
that l m is a Killing vector. Therefore, Eq.~2.16! is the nec-
essary and sufficient condition for the irrotational conditi
in the general case. Note that Eq.~2.18! itself does not mean
irrotation in general. Even for the case when a Killing vec
l m exists, it is nothing but a necessary condition for irro
tion.

III. NEWTONIAN LIMIT

In the Newtonian limit, metric variables can be expand
as

a512
U

c2 1O~c24!, ~3.1!

bk5O~c23!, ~3.2!

g i j 5d i j 1O~c22!, ~3.3!

whereU denotes the Newtonian potential which satisfies

DU524pr, ~3.4!

andD is the flat Laplacian. By usingv i[ui /u0, the compo-
nents ofum which we need here are also expanded as
2-3
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u0511
1

c2 H 1

2
v21UJ 1O~c24!, ~3.5!

ui5ui5
v i

c
1O~c23!, ~3.6!

where v25( iv
iv i . Note also thatl m5(1,l i /c) and Vm

5(0,Vi /c). For the corotational case (Vi50), we get the
Newtonian limit of the left-hand side of Eq.~2.15! as

F h

u0G
full relativity

→11
1

c2 F2
v2

2
2U1E dP

r G . ~3.7!

Since Vk50, vk is equal tol k, and v25R2V2 where R2

5(x1)21(x2)2. Substituting this relation ofv2 into Eq.
~3.7!, we get a well-known result

2
R2V2

2
2U1E dP

r
5const. ~3.8!

For the irrotational case, the Newtonian limit of the le
hand side of Eq.~2.18! becomes

F h

u0 1 ~3!ũkV
kG

full relativity

→11
1

c2 F2
v2

2
2U1E dP

r
1(

k
vk~2l k1vk!G .

~3.9!

In Newtonian order,vk5]kfN , where f is expanded as
fN /c1O(c23), so that we get

1

2 (
k

~]kfN!22U1E dP

r
2(

k
l k]kfN5const.

~3.10!

Equation~3.10! agrees with that of BGM@11#.
From continuity equations in Newtonian order, we obta

equations forfN as

rDfN1(
k

~]kfN2l k!]kr50. ~3.11!

Equation~3.11! is solved under the boundary condition,

(
k

~]kfN2l k!]kr50, ~3.12!

at the stellar surface.

IV. FIRST POST-NEWTONIAN EQUATIONS

In this section, we derive hydrostatic equations in fi
post-Newtonian order. The equations for the corotatio
case agree with those shown in previous papers@14,7#, so
that we derive here equations only for the irrotational ca
In the first post-Newtonian approximation, the metric in t
standard post-Newtonian gauge can be expanded as@15#
02401
t
l

e.

a512
U

c2 1
1

c4 FU2

2
1XG1O~c26!, ~4.1!

bk5
1

c3 b̂k1O~c25!, ~4.2!

g i j 5d i j F11
2

c2 UG1O~c24!, ~4.3!

whereX and b̂k are obtained from

DX54prS 2U12(
k

~]kfN!21«1
3P

r D , ~4.4!

b̂k52
7

2
Pk1

1

2 S ]kx1(
j

xj]kPj D , ~4.5!

and

DPk524pr]kfN , ~4.6!

Dx54pr(
k

~]kfN!xk. ~4.7!

Note that to derive these Poisson equations, we use a rela
in Newtonian order,vk5]kfN .

Using a post-Newtonian relation

au0511
1

2c2 (
k

~]kfN!21
1

c4 F2
1

8 S (
k

~]kfN!2D 2

1(
k

]kfN]kfPN2~h1U !(
k

~]kfN!2G1O~c26!,

~4.8!

where we expandf as fN /c1fPN/c31O(c25) and h5«
1P/r, the first post-Newtonian expansion of Eq.~2.18! be-
comes

F h

u0 1 ~3!ũkV
kG

full relativity

→11
1

c2 Fh2U1
1

2 (
k

~]kfN!22(
k

l k]kfNG
1

1

c4 F2hU1
1

2
U21X2

1

2
~h13U !(

k
~]kfN!2

2
1

8 S (
k

~]kfN!2D 2

1(
k

]kfN]kfPN2(
k

l k]kfPN

2(
k

b̂k]kfNG5const. ~4.9!

The first post-Newtonian expansion of continuity equation
also derived as
2-4
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(
i

] i~rAi !50, ~4.10!

where

Ai52l i1] ifN1
1

c2

3H 2l i S 1

2 (
k

~]kfN!213U D 2h] ifN2b̂ i1] ifPNJ .

~4.11!

If fN is obtained from Eq.~3.11!, Eq. ~4.10! is regarded as
an equation forfPN and solved under the boundary conditio

(
i

Ai] ir50 ~4.12!

at the stellar surface.
Equations~4.9! and ~4.10! with Poisson equations~4.4!,

~4.6!, ~4.7!, and~3.4! are the basic equations for the comp
tation of irrotational equilibrium states in first pos
Newtonian order.

V. SUMMARY

In this paper, we have derived relativistic hydrosta
equations for obtaining irrotational~quasi!equilibrium con-
figurations of binary neutron stars using a 311 formalism.
In order to derive the hydrostatic equations, we first p
jected hydrodynamic equations ontoS t and then imposed the
irrotational condition to obtain the hydrostatic equations.
A
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a result, the hydrostatic equations obtained are simple
suitable for numerical relativity, compared with a previo
formalism @11#. Also, as a natural consequence, in our fo
malism there is no vector Poisson equation to be solved
only a scalar Poisson equation is needed to be solved for
determination of the velocity field not only for Newtonian
but also for relativistic cases.

We also give hydrostatic equations as well as Pois
equations for the gravitational potentials needed for the co
putation of irrotational equilirium states in a first pos
Newtonian approximation. We think that as a first step
ward a fully relativistic study, we had better construct po
Newtonian configurations for a firm investigation of th
relativistic effect on binary neutron stars. In reality, we ha
been able to obtain much information on the relativistic
fect in binary neutron stars from first post-Newtonian stud
@7,16,17#. Up to now, however, our attention has been pa
only to corotational binary neutron stars. The present form
ism makes it possible to extend previous studies to the i
tational case. As a first work, we plan to obtain incompre
ible, irrotational equilibrium states of binary stars as w
carried out for the corotational case previously@16#.

Note added in proof. After this paper was posted, th
author noticed that Teukolsky@18# presented a similar for-
malism, which is shown to be essentially the same as
formalism given here in Ref.@19#.
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