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Relativistic formalism for computation of irrotational binary stars in quasiequilibrium states
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We present relativistic hydrostatic equations for obtaining irrotational binary neutron stars in quasiequilib-
rium states in the 3 1 formalism. The equations derived here are different from those previously given by
Bonazzola, Gourgoulhon, and Marck, and have a simpler and more tractable form for computation in numeri-
cal relativity. We also present hydrostatic equations for computation of equilibrium irrotational binary stars in
the first post-Newtonian ordefS0556-282(98)00914-X]

PACS numbds): 04.25.Nx, 97.80.Gm

I. INTRODUCTION tions for the irrotational fluid. We think, however, that there
were several inadequate treatments in their work. The first

Preparation of reliable theoretical models on the late inone is their definition of the irrotational condition, because
spiraling stage of binary neutron stars is one of the mosthelr irrotational condition is nothing but a necessary condi-
important issues for gravitational wave astronomy. This igion for irrotation even in the case when we assume the ex-

because they are one of promising sources for gravitationaftence 0¥ * [12]. In the general case, their condition is not

wave detectors such as the Laser Interferometric Gravitade€ntical to the irrotational condition. Second, in numerical

tional Wave Observatori IGO) [1], VIRGO [2], GEO600 relativity, we usually solve equations such das the _Ham]icl-
e - . tonian constraint, momentum constraint, and equations for
[3], and TAMA [4]. From their signals, we will get a wide ' :

ietv of phvsical inf i : i h as thei auge conditions, using spatial coordinates on the hypersur-
variely of physical information on neutron stars such as the ﬁcezt, which is perpendicular to the unit normal. For

mass, spin, an(_j so on 'f. we have a theoretmal_templa_te Ghis reason, they had to reproject their equations antoAs
them[5]. In particular, a signal from the very late inspiraling 5 resyit, their equations for determining the velocity field

stage just prior to merging may contain physically importantyaye a complicated form. Finally, in their formalism, it is
information on neutron stars, such as their radhis which  necessary to solve a complicated vector Poisson equation for
will be utilized for determining the equation of state of neu- re|ativistic cases, which should be unnecessary for an irrota-
tron starg6]. tional fluid. Although we may get correct results using their
Binary neutron stars evolve due to the radiation reactiorformalism, we had better obtain a simpler and more tractable
of gravitational waves, so that they never settle down tdormalism. The purpose in this paper is to present such a one.
equilibrium states. However, the emission time scale will be In Sec. Il, we derive hydrostatic equations for an irrota-
always longer than the orbital period outside their innermostional fluid from relativistic hydrodynamic equations. We
stable circular orbit(ISCO), so that we may consider that use a 3+1 formalism and project the hydrodynamic equa-
they are in quasiequilibrium states in their inspiraling phasdions ontoX,. Then, we impose an irrotational condition on
even near the ISCO. Motivated by this idea, there have beeh;, which agrees with the relativistic irrotational condition
several works in which the sequence of equilibrium states of12]. As a result of the projection onfb;, we obtain hydro-
binary neutron stars is computed and the sequence is rétatic equations o, and hence, they have suitable forms
garded as an ev0|uti0nary track; for examp|e, we have Oth be solved in numerical relatIVIty AlSO, in OL!r formalism,
tained corotational equilibrium states in the first post-We heed to solve only one Poisson-type equation for a scalar

obtained corotational equilibrium states in a relativistic t8king the Newtonian limit, we show that well-known New-

framework using the conformal flat approximatigg]. Up to toni_an hydrostatic equati_ons are derived from_the present f_or-
now, however, all relativistic works have been done assummal'sm' In Sec. IV! We give first post-NeWtonlan hydros_tatlc
ing a corotational velocity field9]. As pointed out previ- equatlpns for an |rrotat|onal' fluid as well as gravitational
ously[10], corotation is not an adequate assumption for th otentials to b.e solved. Section V is devoted tp asummary.
velocity field of realistic binary neutron stars, because the hroug_ho_ut th'$ papec denot(_as the speed O.f I|gh_t, and we
effect of viscosity is negligible for the evolution of neutron use units in which the gravitational constant is unity. We use

stars in a binary and, as a result, their velocity fields artﬁln'tsglzvl Il_n t_Sec. g g)r ccl)(nvznlencde an? rtehcome(;n Secs_. |
expected to be irrotationdbr nearly irrotationgl an - Lalin and reek indices denote three-dimensiona

For computation of realistic quasiequilibrium states of(3D) spau?l goglponentslt.—S)l arxi fourtQ||rnen3|§.na(J[4D)
coalescing binary neutron stars just prior to merging, Bonaztomponen 40-3), respectively. As spatial coordinates, we

zola, Gourgoulhon, and MarckBGM) [11] recently pre- use the Cartesian coordinatels=(x*,x*x°).
sented a relativistic formalism. In their formulation, they as-
sume a helicoidal Killing vector/#, and then project
relativistic hydrodynamic equations onto a hypersurface or-
thogonal to/*. After that, they impose their irrotational Since we use the-81 formalism in general relativity, we
condition on the hypersurface and derive hydrostatic equawrite the line element as

II. RELATIVISTIC FLUID EQUATIONS
IN THE 3 +1 FORMALISM
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ds’=g,,dx*dx” %V/“VMTJV

=(—a?+ BBdt2+ 2B,dx dt+ y;dx'dx, (2.1 o
= ‘Yiv[‘c/uv_uuvu/#]: 7|V

-~ ~ ut
E/U,,_UMVV(W—VM>
whereg,,, a, 8i=7v;8', andy; are the 4D metric, lapse

function, shift vector, and 3D spatial metric, respectively. 1
Using the unit normal to the 3D spatial hypersurfage =7 L/u,+hv, +“ Vv
i vp T 1 3 k v T
n“=|=,——| and n,=(—«,000, (2.2 =¥ LU, +hDi| o[ F P UuDiViE v uTVEY g,
a o

(2.10
Yij is written as
and

,2=0,,Th,n,. 2.3 ~ ~ ~
u g,u g ( ) YiI)VMV,LLuV:Vka(?’)ui - ,yivng_uov,u,vﬂ Ny (211)

Hereafter, we usé/,, and D; as the covariant derivatives whereﬁ/ denotes the Lie derivative with respect4d and
with respect tog,,, and Yij » respectlvely

We assume the energy momentum tensor of the perfect Ju; is a spatial vector defined aguy. Using these rela-
fluid as tions, the projection of E¢2.7) onto the 3D hypersurface,

becomes

P
TH=p Lhet

utu’+Pgt?, (2.4 io

(2.12

o y'2,u,+VD, U+ ®u,D;v +hD(

wherep, &, P, andu* denote the rest mass density, specific
internal energy, pressure, and four-velocity, respectively. WdVe can rewrite this equation as
assume the polytropic equation of stake=(I'—1)pe,

whereI’=1+1/n andn is the polytropic index. From the v = h (35 \/k Ky (3 3
. . . . ! +D.| =+ + —D. =0.
adiabatic condition, we also gBt=Kp", whereK is a con- WL Fo+uVE I VADC U = D ug =0
stant. For the following, we define as (2.13
Besides the conservation equation of the energy momentum
P KT dpP ; .
h=1+e+—=1+—p'1=1+ | —. (25 tensor, we have the conservation equation for rest mass den-
r-1 p sity (2.8). We note that for the case of a barotropic equation

of state such a®=Kp', Eq. (2.9 is also derived from the
From the conservation equation for the energy momentuneonservation equation of the energy momentum tensor. This

tensor, implies that if we solve Eq.2.8), we do not have to take into
account then* component of Eq(2.7). Using Eq.(2.9), Eq.
V,T#=0, (2.6) (2.8) is written as

0 0 Ju ) Oy\/iy —
we get the hydrodynamic equation as Al LApu) UV, A1+ DilpatV)=0. (2.14

~ Now, we assume thar’* is a Killing vector such that
utv,u,+V,h=0, @n v,/,+Vv,/,=0,L,u,=0 andﬁ/(puo) 0, and we write
|ts component as (£0x%,0x,0), whereQ is identified
whereU,=hu,, and we use the conservation equation forWith the orbital angular velocity with respect to a distant
rest mass density as inertial observer. We note that the fluid exists inside the light
cylinder|x|<cQ ™%, and the existence of the Killing vector
V_(put) =0, 2.8 is assumed within it. We also note that defined here is
# identical to the helicoidal Killing vector defined by BGM
[112]. If the Killing vector exists, we can derive hydrostatic
equations for the two interesting cases. One is the corota-
tional case where we simply s€t=0. Then, we get a well-

To rewrite the hydrodynamic equation, we decompa’$es

ut=ul(/#+VH), (2.9 known result ag13]
and assume that) /* is a timelike vector of its component ﬁ _ N 21
(1/"), and (2) V* is a spatial vectory#n,=0, i.e., V¥ g0~ const, (2.19
=(0V"). By using/* andV*, we get the following rela-
tions: and the continuity equation is trivially satisfied in this case.

024012-2



RELATIVISTIC FORMALISM FOR COMPUTATION Cr . .. PHYSICAL REVIEW D 58 024012

The other is the case whef®u; satisfies an “irrotational ~ ny(V,U,~V,U,) = y¢LaU,~ 74(0,V,n*+n*V T,)
condition” defined as
- - = yLLoU,— Dy (U
WijEDi(S)Uj_Dj(3>Ui:0, (2.16) Yk&n k( ,u)
and hence = yg LU, + Dy (hau®)=W,,

(2.29

©®'4;=D;¢, 2.1 ~
! ¢ .19 where we use“u,, = —hau®. From a straightforward cal-

where ¢ is a scalar field. Then, the hydrodynamic equationculation, we can rewritey, L,u, as

(2.13 is integrated to give

~ 1 - . . -
YVEHUV:—[VV,C/UV+haUODka’—( J+,/'/l)(9'(3)uk
h k al 7K j
m+<3)ukvk=const. (2.19
~ B+ )], (2.25

Note thatVX andu® are written as ) L
whered, denotes a partial derivative aiy . Hence,

1
Vk=— /K= gk —594D ¢, (2.19 1 ~ i e (B (3 pia /i
TR Wk:;[%fﬁ/uv_(ﬁ'+/J)¢91(3)Uk—(3)uj¢9k(,31+/J)

o_ 1 2 K 12 +a(ha?u®)]. (2.26

u —Z[1+h Y DyéD o],

(2.20 Using the hydrodynamic equatio®.13 and an identity
(2.21), we obtain

so that we can rewrite the left-hand side of E2.18 as

1 j j gl (3)7] (3)7]
_— ~ W= — (V4 B+ ) (=6, Ut 9 uy)
UT+(3)uka=hazuo—(/k+/3k)(3)uk- (2.21)

! (Vi+ B+ /W, . (2.27

o

By substituting Eq.(2.19 into Eq. (2.14, we get a
Poisson-type equation for determinigigas
L o Equation(2.27) implies thatW, =0 if Eq. (2.16) is satisfied.
oy _
Di(pah™'D'$)—Difpau®(/'+ B)}=0. (222  Note that to derive Eq2.27 we have not assumed the fact

H he hvdrod . . hich should b | Hlat/“ is a Killing vector. Therefore, Eq2.16) is the nec-
ence, the hydrodynamic equations which should be solve ssary and sufficient condition for the irrotational condition
for the determination of equilibrium states reduce to only;

; : n the general case. Note that £g.18) itself does not mean
two hydrostatic equation®.18 and(2.22. We do not have . oiation in general. Even for the case when a Killing vector
to solve any equations for vector potentials which were in

. ; /" exists, it is nothing but a necessary condition for irrota-
troduced in the formalism of BGNI11]. 9 y

L . L . tion
We note that the definition of irrotation in the 4D covari-

ant form should b¢12] IlI. NEWTONIAN LIMIT

®,,=PGPY(V, U, =V, u,) In the Newtonian limit, metric variables can be expanded
as
=h"%Vv,u,-V,u,)=0,
(2.23 U 4

a=l—?+0(c ), (3.0
where PE=g%+u,u*, and we use Eq2.7) to rewrite the
first line into the second line. When,,,, is vanishing initially B=0(c3) (3.2
for a fluid element, it remains zero along the trajectory of the ’
fluid element for the perfect fluidl2]. Hence,w,,,=0 is just =5+0(c7?) (3.3

ij ' .

the irrotational condition. In our present irrotational condi-
tion (2.16), Eq.(2.23 is satisfied on the 3D hypersurfaig
trivially. However, it is not trivial whether or not the projec-
tion of Eq. (2.23 to then*y, component is satisfiedPro- AU=—4mp, (3.4)
jection to then#n” component is trivially satisfiegd.We

show here that it is really guaranteed due to Ej16. By  andA is the flat Laplacian. By using'=u'/u®, the compo-
operatingn“yy to VMTJ,,—V,IJM, we get nents ofu®* which we need here are also expanded as

whereU denotes the Newtonian potential which satisfies
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°—1+1 12+u +0(c™* 3 =1 U+1 v X|+0(c® 4.1
U'=1+ =71 5v (c™), (3.9 a=l-m+al% (c™), 4.1
[ o' -3 K 1.
u=u=-+0(c), (3.6 =g Bt O(c™®), 4.2
where v2=3,v'v'. Note also that/*=(1/"/c) and V* 5
=(0\V'/c). For the corotational caseV{=0), we get the ¥ij=&ij| 1+ = U +0(c™%), 4.3
Newtonian limit of the left-hand side of EqR2.15 as ¢

h v? dP whereX and 3, are obtained from
o) -1+ —?—U'F — (3.7
full relativity ¢ E ) 3P
AX=4 2U+2 d +e+—|, 4.4
Since Vk=0, v¥ is equal to/*, andv?=R?Q0? where R? e X ()™ + e P 49
=(x1)2+(x?)2. Substituting this relation ob? into Eq.
(3.7), we get a well-known result . 7 1 .
, Bk: — zpk'i‘ E ﬁk)('i‘z Xjﬁkpj s (45)
R QZ J
f — =const. (3.8
and
For the irrotational case, the Newtonian limit of the left- _
hand side of Eq(2.18 becomes APy ==A4mpdidn, 4.6
h -
5+ T, VK AX=4wak (Ibp) XX, 4.7
u full relativity
1 v dpP ‘ KK Note that to derive these Poisson equations, we use a relation
-1tz _7_U+f 7"'; vi(=/*+v|.  in Newtonian orderp¥= g,y .

Using a post-Newtonian relation

1 2
+ |- g(Ek (&k¢N>2)

(3.9

1
In Newtonian orderp*=d,¢y, Where ¢ is expanded as au°:1+ﬁ > (dkpn)?
dn/c+0(c™?), so that we get c ok

1 dP — 2 -6
=) (OWN)Z_WJ 3 M= const + 2 dndrdon (14 U) 2 (Gebn)?| +0(c7O),
k k
(3.10 (4.9
Equation(3.10 agrees with that of BGM11]. where we expand as ¢y/c+ ¢py/c+0(c™%) and n=¢
From continuity equations in Newtonian order, we obtain+ p/p, the first post-Newtonian expansion of £g.18 be-
equations forgy as comes
pAGN+ D (Gebn= Y30 =0. (3.1 LRE AV
u

full relativity

Equation(3.11) is solved under the boundary condition,
—1+ S| p-U+5 2 (pn)?= 2 iy
2 (dpn="93p=0, (3.12
1 1
+ |~ UF ZURX= S (13U X ()
at the stellar surface. 2 2 k
1 2
IV. FIRST POST-NEWTONIAN EQUATIONS §(Ek (Okpn)? +§ &kdm&k(ﬁpN—Zk K odpn

In this section, we derive hydrostatic equations in first
post-Newtonian order. The equations for the corotational —E B
case agree with those shown in previous papéss7], so o PROKEN
that we derive here equations only for the irrotational case.
In the first post-Newtonian approximation, the metric in theThe first post-Newtonian expansion of continuity equation is
standard post-Newtonian gauge can be expand¢diss also derived as

=const. (4.9
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a result, the hydrostatic equations obtained are simple and
> di(pA)=0, (4.10  suitable for numerical relativity, compared with a previous
' formalism[11]. Also, as a natural consequence, in our for-
where malism there is no vector Poisson equation to be solved and
only a scalar Poisson equation is needed to be solved for the
_ determination of the velocity field not only for Newtonian,
A=—""+0dnt = but also for relativistic cases.
c We also give hydrostatic equations as well as Poisson
11 ~ equations for the gravitational potentials needed for the com-
_/I<§ > (9pn)?+3U | — 5d;bn— Bi+ i dbpnt - putation of irrotational equilirium states in a first post-
k Newtonian approximation. We think that as a first step to-
(4.1  ward a fully relativistic study, we had better construct post-

) ) ) Newtonian configurations for a firm investigation of the
If ¢y is obtained from Eq(3.11), Eq.(4.10 is regarded as  yg|ativistic effect on binary neutron stars. In reality, we have

an equation forppy and solved under the boundary condition peen able to obtain much information on the relativistic ef-

fect in binary neutron stars from first post-Newtonian studies

> Adip=0 (4.12  [7,16,17. Up to now, however, our attention has been paid

[ only to corotational binary neutron stars. The present formal-

ism makes it possible to extend previous studies to the irro-

tational case. As a first work, we plan to obtain incompress-

ible, irrotational equilibrium states of binary stars as we
carried out for the corotational case previoul].

Note added in proofAfter this paper was posted, the
author noticed that Teukolskyl8] presented a similar for-
malism, which is shown to be essentially the same as the
formalism given here in Ref19].

X

at the stellar surface.

Equations(4.9) and (4.10 with Poisson equation&t.4),
(4.6), (4.7), and(3.4) are the basic equations for the compu-
tation of irrotational equilibrium states in first post-
Newtonian order.

V. SUMMARY

In this paper, we have derived relativistic hydrostatic
equations for obtaining irrotationdtjuasjequilibrium con-
figurations of binary neutron stars using & 3 formalism. The author thanks M. Sasaki, T. Tanaka, and H. Asada for
In order to derive the hydrostatic equations, we first pro-helpful discussion. This work is in part supported by a Japa-
jected hydrodynamic equations orlfp and then imposed the nese Grant-in-Aid of Ministry of Education, Culture, Science
irrotational condition to obtain the hydrostatic equations. Asand Sport§Nos. 08NP0801 and 09740336
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