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Innermost stable circular orbits around relativistic rotating stars
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We investigate the innermost stable circular orbit~ISCO! of a test particle moving on the equatorial plane
around rotating relativistic stars such as neutron stars. First, we derive approximate analytic formulas for the
angular velocity and circumferential radius at the ISCO making use of an approximate relativistic solution
which is characterized by arbitrary mass, spin, mass quadrupole, current octapole and mass 24-pole moments.
Then, we show that the analytic formulas are accurate enough by comparing them with numerical results,
which are obtained by analyzing the vacuum exterior around numerically computed geometries for rotating
stars of polytropic equation of state. We demonstrate that contribution of mass quadrupole moment for deter-
mining the angular velocity and, in particular, the circumferential radius at the ISCO around a rapidly rotating
star is as important as that of spin.@S0556-2821~98!05120-0#

PACS number~s!: 04.25.Nx, 04.40.Dg
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I. INTRODUCTION

Observations of the low-mass x-ray binaries~LMXBs!
with the Rossi x-ray Timing Explorer have revealed quas
eriodic oscillations~QPOs! around a frequency of;1 kHz
@1#. At present, more than 10 sources of kHz QPOs h
been found@1#. One of the most impressive features of kH
QPOs is their very high frequency. The LMXBs are cons
ered to be systems which include a neutron star of masM
;1.4M ( , whereM ( denotes the solar mass, and the acc
tion disk around the neutron star. The Kepler frequency
the accretion disk is

f .1.185 kHzS 15 km

R D 3/2S M

1.4M (
D 1/2

, ~1.1!

whereR denotes the circumferential radius around the n
tron star. If the origin of the kHz QPOs is certain oscillatio
frequencies of the accretion disk surrounding a neutron
of low magnetic field, they must be generated at less than
Schwarzschild radii of the neutron star. This means that
kHz QPOs may bring us a chance to explore general rela
istic effects@2#.

Several authors have recently suggested that at least s
of the kHz QPOs may be related to the Kepler frequency
the innermost stable circular orbit~ISCO! of the accretion
disk around a neutron star@1#. One of the most strong rea
sons is that in many sources, the maximum frequency of
kHz QPOs is in narrow range between 1.1 and 1.2 k
although they are thought to have very different mass ac
tion rates and magnetic fields. Because of the fact that
ISCO is determined by the property of the central neut
star, but not by the properties of the accretion disk, such
the mass accretion rate, it has been suggested that the o
of the kHz QPOs of the highest frequencies may be the
pler frequency at the ISCO. If this is true, it means that
have a great opportunity to investigate general relativi
effects@3,2#.

Another remarkable feature of kHz QPOs is that they
hibit some evidences that in the center of their sources,
idly rotating neutron stars are involved as follows:~1! many
sources display two peaks of the kHz QPO, and the
0556-2821/98/58~10!/104011~10!/$15.00 58 1040
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quency difference between the twin peaks (D f ) changes
only slightly with time although the frequency of each pe
changes@1#; ~2! some sources which possess twin peaks a
exhibit very coherent oscillations of several hundred Hz
x-ray bursts@1#, and the frequencies change little with tim
during the bursts. Furthermore, they are approximately eq
to or twiceD f . Since the spin frequency of a neutron star
the only candidate which changes only slightly on short ti
scales, the origin of the frequency difference between
twin peaks of QPOs and the oscillation frequencies in
x-ray bursts seem to correspond to the spin frequencies~or
twice them! of neutron stars@1#. This means that QPO
sources include rapidly rotating neutron stars.

Since the ISCO is determined by the geometry around
star, it is important to ask if the geometry around a neut
star can be approximated by that around a black hole. If
electric charge is neutral, stationary black holes must be
the Kerr type due to the uniqueness theorem@4#. Kerr black
holes have mass, spin, quadrupole moment and so on
multipole moments higher than the quadrupole are expres
in terms of the massM and the spin angular momentum
J5S15qM2 (uqu,1) as M2l5M ( iqM )2l and S2l 21
52 iM ( iqM )2l 21 ( l 51,2,3,...)1 @5#, whereMl and Sl de-
note the mass and current moments, respectively. This m
that the geometry outside the black hole horizon is expres
only in terms ofM and q. As a result, the ISCO is deter
mined solely by them. However, this is not the case for n
tron stars. In the neutron star case, multipole moments hig
than and including the quadrupole do not depend on the m
and spin in such a simple manner, and they are determ
when the equation of state of the neutron star is given.

The purpose of this paper is to point out the significan
of the multipole moments~in particular, the mass quadrupo
moment! of rapidly rotating neutron stars in determining th
ISCO around them. This is due to the following fact: In th
case of a Kerr black hole, the magnitude of the quadrup
moment is denoted byM252q2M3 @5#, anduM2u is always

1In this paper, we use units ofG515c, whereG andc are the
gravitational constant and speed of light.
©1998 The American Physical Society11-1
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smaller thanM3. In this case, the effect of the quadrupo
moment is not important except in the caseq;1. However,
in the case of a rotating neutron star,uM2 /q2M3u may be
much larger than unity;10, and hence for rapidly rotatin
neutron stars which seem to be located at the center of Q
sources,uM2u may be larger thanqM3 for the caseq*0.1
@6#. In such a case, the effect due to the quadrupole mom
is as important as that due to the spin.

The paper is organized as follows. In Sec. II, we der
approximate analytic formulas for the angular velocity a
circumferential radius of the ISCO around a rotating obj
characterized by its mass, spin angular momentum, m
quadrupole, current octapole, and mass 24-pole moments. In
Sec. III, we perform numerical computations for obtaini
stationary, axisymmetric spacetimes of rotating stars,
making use of the numerical results, we demonstrate tha
accuracy of our formulas derived in Sec. II are accura
Section IV is devoted to a summary.

II. APPROXIMATE ANALYTIC FORMULAS
FOR THE ANGULAR VELOCITY

AND CIRCUMFERENTIAL RADIUS AT ISCO

A. Basic equations

The line element of the vacuum exterior outside a stati
ary, axisymmetric rotating object is generally written as@7#

ds252F~dt2vdw!21
1

F
@e2g~dr21dz2!1r2dw2#.

~2.1!

Throughout this paper, we assume that the spacetime
reflection symmetry with respect to the equatorial planez
50, so thatF, v, andg are functions ofr and uzu.

Our purpose is to derive approximate formulas for t
angular velocity and circumferential radius at the ISCO o
test particle on the equatorial plane around a rotating obj
In the case when the test particle stays on the equat
plane (z50), geodesic equations can be integrated to gi

dt

dt
5

Egww1l gtw

g2
, ~2.2!

dw

dt
5

Egtw1l gtt

g2
, ~2.3!

grrS dr

dt D 2

5211E2
gww

g2
12El

gtw

g2
1l 2

gtt

g2

[2V~r!, ~2.4!

whereE andl denote the specific energy and specific an
lar momentum of the test particle.gtt52F, gtw5Fv, gww

52Fv21r2/F, and g2[gtw
2 2gttgww (g25r2 in the

present line element!. For circular orbits, relations of the an
gular velocityV, E, and l are derived from the condition
V505dV/dr as
10401
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dw

dt
5

2gtw,r1A~gtw,r!22gtt,rgww,r

gww,r
, ~2.5!

E52
gtt1gtwV

A2gtt22gtwV2gwwV2
, ~2.6!

l 5
gtw1gwwV

A2gtt22gtwV2gwwV2
. ~2.7!

For simplicity, we only consider prograde orbits in this p
per. A circular orbit is stable~unstable! if

d2V

dr2 5
1

g2
S d2g2

dr2 2E2
d2gww

dr2 22El
d2gtw

dr2 2l 2
d2gtt

dr2 D
~2.8!

is positive~negative!. Hence, the coordinate radiusr andV
at the ISCO are determined from the condition whe
d2V/dr2 is vanishing.

Note that Eq.~2.8! is independent of metric functiong.
Also, the angular velocityV and the circumferential radiu
(Agww[R) are independent ofg. Thus, we only needF and
v in the following.

B. Metric from the Ernst potential

A stationary axisymmetric vacuum geometry is com
pletely determined by the Ernst potential@8#, which is de-
fined as

E5F1 ic5
Ar21z22j

Ar21z21j
, ~2.9!

whereF52gtt andj is a complex potential. If we knowc,
v is calculated as

v52 Èr r8

F2

]c

]z
dr8U

constantz

. ~2.10!

Thus, once we knowj, we have all the necessary informa
tion.

j has the property that it can be expanded as@9,10#

j5(
j 50

`

(
k50

`

a2 j ,k

r2 j zk

~r21z2!2 j 1k , ~2.11!

whereaj ,k are complex constants in which information of th
multipole moments of spacetime is completely contain
Note thataj ,k is nonzero only for non-negative, evenj and
non-negativek. Also, because of reflection symmetry wit
respect to the equatorial plane,aj ,k is real for evenk, and
pure imaginary for oddk. Note that for investigation of the
ISCO on the equatorial plane, we only needaj ,0 andaj ,1 .

Fodor, Hoenselaers, and Perjes~FHP! @9# show that all
the components ofaj ,k are derived by the following recur
sive relation
1-2
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ar ,s125
1

~s11!~s12! F2~r 12!2ar 12,s

1 (
k,l ,p, j

ak,lar 2k2p,s2 l 2 j* $ap, j~p21 j 224p25 j

22pk22 j l 22!1ap12,j 22~p12!~p1222k!

1ap22,j 12~ j 12!~ j 1122l !%G , ~2.12!

where the sum is taken for 0<k<r , 0< l<s11,
0<p<r 2k, and 21< j <s2 l @10#, and aj ,k* denotes the
complex conjugate ofaj ,k . As pointed out in Ref.@10#, it can
be shown thatar ,s12 (s>0) is a function ofaj ,0 andaj 21,1
with j <r 1s12. This means that if we knowaj ,0 and aj ,1
for j >0, the entire spacetime metric~and of course, the met
ric on the equatorial plane! are completely determined. Not
that if we knowaj ,0 up to j 52n andaj ,1 up to j 52n22, we
can calculatea0,k up to k52n. Conversely, if we knowa0,k
up tok52n, we can calculateaj ,0 up to j 52n andaj ,1 up to
j 52n22.

In principle, we can calculate terms ofaj ,k up to arbitrary
large j andk using Eq.~2.12!. In practice, however, we hav
to truncate higher terms. To access an appropriate trunca
point, we can make use of the solution for slowly rotati
black holes of the massM and the angular momentumJ
(5S1)!M2. In this case,

j5
Mr

Ar21M2
1

izrJ

~r21M2!3/21O~z2!, ~2.13!

where we have neglected terms ofO(J2/M4). Note thatr is
related to the Schwarzschild radial coordinater s as r
5Ar s(r s22M ). The Schwarzschild coordinate radius of t
ISCO is r s56M (12A8/27J/M2), so that the radius of the
ISCO in r is given by

r ISCO5A24M2
10J

3M
. ~2.14!

We have investigated how the estimated values ofr ISCO dif-
fer from the above one by expandingj in terms ofO(M /r)
as

j512
M2

2r2 1
3M4

8r4 2
5M6

16r6 1
35M8

128r82
63M10

256r101 i
zJ

r2

3S 12
3M2

2r2 1
15M4

8r4 2
35M6

16r6 1
315M8

128r8 D1O~r212!.

~2.15!

We have found that in the case when we take up toO(r26),
O(r28), and O(r210) terms, the errors inr ISCO are about
431024, 1025 and 431027, respectively, for the coeffi-
cient of M , and about 231023, 1024 and 431026, respec-
tively, for the coefficient ofJ/M . The order of magnitude o
the errors inV ISCO have turned out to be almost the same
10401
on

s

those inr ISCO. Thus, we expect that this method will gene
ate a fairly accurate approximate formula even if we inclu
the higher multipole moments. In the following, we takeaj ,0
up to j 510 andaj ,1 up to j 58, i.e., we take into account a
the terms up toO(r210) consistently. In other word, we
calculatea0,k up to k510, and neglecta0,k of k>11.

C. Results

Our strategy for determining the ISCO is as follows. Fir
we assume that the spacetime is characterized by masM ,
spin angular momentumJ(5S1)5qM2, mass quadrupole
M252Q2M3, current octapole momentsS352q3M4, and
mass 24-pole M45Q4M5, and neglect the higher multipol
moments. Note thatq, Q2 , q3 , and Q4 are positive for a
rotating star in a prograde spin.

In the case of a rotating neutron star, we may assumq
;O(e1), Q2;O(e2), q3;O(e1e2), Q4;O(e2

2), where
e1 ,e2!1, becauseq and Q2 are expected to be less tha
unity. For a slowly rotating neutron star,Q2;O(q2), so that
e2;O(e1

2). In this case, Q2;O(e1
2), q3;O(e1

3), Q4

;O(e1
4). However, for a rapidly rotating neutron star,Q2

can be as large asq, so that whenever the terms proportion
to q2 make a significant contribution, we should also ta
into account the terms proportional toQ2

2, Q4 , qq3 , and so
on. This is the reason why we take into accountS3 andM4 .

Hereafter, we expand all the quantities by means oe
[e1 by formally settingq→eq, Q2→e2Q2 , q3→e3q3 , and
Q4→e4Q4 , and retain all the terms up toO(e4) consis-
tently. Thus, the formulas derived below are accurate up
O(e1

4) for a slowly rotating neutron star. Even for a rapid
rotating neutron star, the formulas include all the terms
O(e1), O(e2), O(e1

2), O(e2
2), andO(e1e2). Hence, they are

still accurate toO(Q2
2).

As mentioned in the previous subsection, we needa0,k up
to k510. Relation between multipole moments anda0,k for
0<k<10 have been already given by FHP@9#. Hence, by
using them, we can calculatea2 j ,0 (1< j <5) and a2 j ,1
(1< j <4) up to O(e4) using Eq.~2.12! @11#. ~The explicit
forms of a0,k , a2 j ,0 and a2 j ,1 are shown in Appendix A.!
Oncej is determined up toO(r210), F andv are straight-
forwardly obtained from Eqs.~2.9! and~2.10! in the follow-
ing form:

F511(
j 51

11

CF, j S M

r D j

1O~r212!, ~2.16!

v5(
j 53

11

Cv, j

M j 21

r j 1O~r212!, ~2.17!

whereCF, j and Cv, j are functions ofq, Q2 , q3 , and Q4 .
Substituting these equations intod2V/dr250, we rewrite
Eq. ~2.8! in the form

(
i 50

4

e iAi~r!50, ~2.18!
1-3
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where the coefficientsAi are independent ofe but depend on
q, Q2 , q3 , Q4 , andr. These coefficients can be explicitl
written out by substituting Eqs.~2.16! and ~2.17! into Eq.
~2.8! @making use of Eqs.~2.6! and ~2.7!# and gathering in
powers ofe. We then look for a solution in the form

r5(
i 50

4

e ici , ~2.19!

where we know thatc05A24M andc15210qM/3. Impos-
ing that Eq.~2.18! holds in each order ofe, it is rewritten
into three algebraic equations forc2 , c3 , andc4 as

1

2

d2A0

dr2 c1
21

dA0

dr
c21

dA1

dr
c11A250, ~2.20!

1

6

d3A0

dr3 c1
31

d2A0

dr2 c1c21
dA0

dr
c31

1

2

d2A1

dr2 c1
2

1
dA1

dr
c21

dA2

dr
c11A350, ~2.21!

1

24

d4A0

dr4 c1
41

1

2

d3A0

dr3 c1
2c21

1

2

d2A0

dr2 ~c2
212c1c3!

1
dA0

dr
c41

1

6

d3A1

dr3 c1
31

d2A1

dr2 c1c21
dA1

dr
c3

1
1

2

d2A2

dr2 c1
21

dA2

dr
c21

dA3

dr
c11A450, ~2.22!

whereAk and their derivatives are evaluated atr5c0 . From
these algebraic equations we obtain

c2.~21.41671q211.07648Q2!M ,

c3.~21.45081q311.60313qQ220.32561q3!M ,

c4.~21.87941q412.74953q2Q220.37568Q2
2

10.09377Q420.70086qq3!M . ~2.23!

Using these approximate solutions, we reach approxim
expressions for the angular velocity and circumferential
dius of the ISCO,V ISCO andRISCO, as follows:

V ISCO5
1

6A6M
~110.74846q10.78059q220.23429Q2

10.98094q320.64406qQ210.07432q3

11.38118q421.41729q2Q210.12798Q2
2

20.02129Q410.25028qq3!, ~2.24!
10401
te
-

RISCO56M ~120.54433q20.22619q210.17989Q2

20.23002q310.26296qQ220.05317q3

20.29693q410.44546q2Q220.06249Q2
2

10.01544Q420.11310qq3!. ~2.25!

For the case of Kerr metric,Q25q2, q35q3, andQ45q4,
we obtain

V ISCO5
1

6A6M
~110.74846q

10.54630q210.41120q310.32085q4!,

~2.26!

RISCO56M ~120.54433q

20.04630q220.02023q320.01162q4!.

~2.27!

On the other hand, the exact Kerr solution gives@12#

V ISCO
Kerr 5

1

6A6M
„110.74846q

10.54630q210.41108q310.31991q41O~q5!…,

~2.28!

RISCO
Kerr 56M „120.54433q

20.04630q220.02016q320.01110q41O~q5!….

~2.29!

Thus, the error of the coefficients in our approximate form
las of V ISCO and RISCO is less than 1024 for O(e2) terms,
less than 1023 for O(e3) terms, and;1022 for O(e4) terms.
Hence, for slowly rotating neutron stars (q,0.1), our for-
mulas are accurate enough. Even for very rapidly rotat
neutron stars ofq,Q2;0.5, we may expect that they wil
yield very accurate values.

We note that in Eqs.~2.24! and ~2.25!, the signs of coef-
ficients of the terms includingQ2 such asQ2 , qQ2 and
q2Q2 are opposite to those ofqk (k51 – 4) terms. As shown
in Ref. @6#, Q2 /q2 is always larger than unity for a rotatin
neutron star, and henceQ2 may be ofO(q) for rapidly ro-
tating neutron stars ofq*0.1. This implies that for rapidly
rotating neutron stars, the effect due to theqn terms is sig-
nificantly suppressed by that due toQ2 . Thus, we conclude
that the effect of the quadrupole is important in determin
the ISCO even whenq;0.1. On the other hand, the coeffi
cients of q3 and Q4 are smaller than those ofq and Q2 .
Thus, their contributions are small.

The formulas ofE and l at the ISCO are shown in Ap
pendix B.
1-4
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III. NUMERICAL STUDY

To confirm the accuracy of the formulas derived in S
II, we compare them with numerical solutions. We nume
cally construct stationary, axisymmetric spacetimes of re
tivistic rotating stars with a polytropic equation of state usi
Komatsu, Eriguchi, and Hachisu method@13#. Then, we es-
timateV ISCO andRISCO as well as the multipole moments o
the numerically generated spacetimes. It is desirable to
clude all the multipole moments up toQ4 , and compare our
analytic formulas with the numerical results. However, ac
rate numerical calculation ofQ4 is difficult. In this section,
we simply setQ45aQ2

4. For the Newtonian incompressibl
case~Maclaurin spheroid case!, a515/7, and for Newtonian
compressible case, we finda,15/7. Because of genera
relativistic effects, stars are more centrally condensed t
those in the Newtonian case, so that we expect thata in
general relativity is smaller than that in the Newtoni
theory, i.e., 0,a&2. Hence, we simply seta51. Fortu-
nately, the coefficients ofQ4 in V ISCO andRISCO are small,
so that our rough treatment does not affect the result mu
In fact, we also seta50 and 2, but our conclusion is no
changed at all.

A. Basic equations

We consider the energy momentum tensor of an id
fluid,

Tms5rbS 11«1
P

rb
Dumus1Pgms , ~3.1!

whererb , P, «, um, andgms are the baryon rest mass de
sity, pressure, specific internal energy, four velocity, a
spacetime metric. We adopt the polytropic equation of st

P5Krb
G5~G21!rb«; G511

1

n
, ~3.2!

whereK andn are the polytropic constant and the polytrop
index.

We only consider the case when stars uniformly rot
around the z-axis. Hence, we setur5uu50 and uw

5u0Vs , whereVs is the spin angular velocity of the rota
ing star. In this case, the fluid equations of motion are ea
integrated to give@14#

h2

~u0!2 52h2~gtt12gtwVs1gwwVs
2!

5const, ~3.3!

whereh511«1P/rb511G«.
Following Butterworth and Ipser@15#, we write the line

element as

ds252e2ndt21r 2 sin2u B2e22n~dw2vdt!2

1e2z22n~dr21r 2du2!, ~3.4!
10401
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wheren, B, z, andv are field functions depending onr and
u. We present the field equations for these variables
briefly describe our numerical method in Appendix C.

Once the field variables are computed, the ISCO on
equatorial plane is found making use of Eq.~2.8! together
with Eqs. ~2.5!–~2.7!. To examine the accuracy of our ap
proximate analytic formulas derived in Sec. II, we also ne
to estimate the multipole moments. ForM and q, we have
the formulas as@15#

M5E d3x†e2zrbB@2h~u0!22e22n$11«~22G!%#

12r 2sin2u~Vs2v!vB3~u0!2e2z24nrbh‡, ~3.5!

q5
1

M2 E d3xr2sin2u~Vs2v!B3~u0!2e2z24nrbh. ~3.6!

For Q2 and q3 , we estimate them by using the asympto
behaviors ofn andv. For r→`, n, v andB behaves as@15#

n→2
M

r
1

B0M

3r 3 1
Q2M3

r 3 P2~y!1O~r 24!, ~3.7!

v→
2qM2

r 3 2
6qM3

r 4 1
6

5 F82
3B0

M2 G qM4

r 5

2
q3M4

r 5 ~5y221!1O~r 26!, ~3.8!

B→11
B0

r 2 1O~r 24!, ~3.9!

where y5cosu, P2(y)5(3y221)/2, andB0 is a constant
which is 2M2/4 for spherical cases. When we numerica
obtainn, v, andB, we can extract information ofQ2 andq3
at a large radiusr @M near the outer numerical bounda
(r 5r max) as

Q255
r 3

M3 E
0

1

dyP2~y!n, ~3.10!

q352
21r 5

16M4 E
0

1

dy~5y221!~12y2!v. ~3.11!

We evaluateQ2 andq3 at various large radii, and find tha
Q2 quickly converges asr→r max. This suggests that the er
ror for estimation ofQ2 is very small~we guess it is less than
1%!. This is mainly because the coefficient ofO(r 24) part in
n is not large. On the other hand, convergence ofq3 at r
→r max is slow because the coefficient ofO(r 26) part inv is
large @15#. To obtainq3 accurately, it is desirable to attac
the outer numerical boundary asr max@M, but to do that we
need to take many grid points and hence need a long c
putational time. To save computational time, we use here
extrapolation method to estimateq3 ; i.e., we calculateq3 at
several large radii which are not near the outer boundaryr
1-5
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;3rmax/4), and extrapolate true value ofq3 at r→` by as-
suming thatq3 behaves asq3(r )5q3(`)1C/r for the large
radii, whereC is a constant. Since this method is rough,
guess that the error ofq3 may be;10% in this method.
However, the large error inq3 does not affect the following
analysis much because the coefficients ofq3 terms inV ISCO
andRISCO are fortunately small. The important quantities
our analysis areM , q andQ2 . We mention that we have als
evaluatedM andq by using

M52r E
0

1

dyn, ~3.12!

q5F12
3M

r
1

3

5 S 82
3B0

M2 D G21 3r 3

4M2 E
0

1

dy~12y2!v,

~3.13!

and confirmed thatM calculated by Eqs.~3.5! and~3.12! and
J calculated by Eqs.~3.6! and ~3.13!, respectively, agree
very well.

B. Results

As the polytropic index, we setn51. In Fig. 1, we show
the relation betweenrb,0 (rb at r 50) and M for the case
n51. Note that in the figure, we plot nondimensional qua
tities rb,0K

n and MK2n/2. The lower and upper solid line
denote the relations for the spherical star and for the rota
star at the mass shed limit, respectively. The filled squa
denote data sets that are used for comparison with our
lytic formulas. The dotted line is the critical line abov
which the ISCO ceases to exist. For sufficiently largerb,0 ,
stars are unstable against radial gravitational collapse@16#.
The dashed line divides the stable and unstable branc
The left-hand side of it is the stable region.~Here, for judg-
ing the stability against the gravitational collapse, we ha
applied the turning point method shown in Ref.@17#.! Since

FIG. 1. Relation between mass (MK2n/2) and density atr 50
(rb,0K

n) for n51 polytrope. Lower and upper solid lines deno
the relations for the spherical star and for the rotating star at
mass shed limit. Dotted line~with open circles! divides two regions
where the ISCO exists or not: It exists below the line. Dashed
divides the stable and unstable branches: The left-hand side i
stable region. Filled squares denote data sets which are compa
our analytic formulas.
10401
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unstable stars are not realized in nature, we exclude num
cal data in the unstable region.

In Table I, we show all the data we use in our analysis.
pointed out in Ref.@6#, Q2 /q2 is always greater than unity
~For the data in Table I, 2&Q2 /q2&4.)

In Fig. 2, we show

DV~ l !56A6M @VISCO
numerical2VISCO~ l !#,

D r~ l !5
1

6M
@RISCO

numerical2RISCO~ l !#, ~3.14!

as a function ofQ2 . Here, V ISCO( l ) and RISCO( l ) (1< l
<4) denote the analytic formulas in which we include term
up toO(e l). We also defineDV

Kerr andD r
Kerr in which we use

the analytic relations for the Kerr metric. The open circle
crosses, filled circles, open triangles and open squares de
Da

Kerr , Da(1), Da(2), Da(3) and Da(4) (a5V or r ), re-
spectively.

From Fig. 2, we find apparently that the Kerr formulas f
the ISCO are not appropriate at all. The formulaRISCO(1) is
as bad as the Kerr formula, butV ISCO(1) is fairly good. The
latter feature seems accidental: Since the relationQ2;aq2

with a;2 – 4 holds, cancellations betweenq2 andQ2 terms,
betweenq3 and qQ2 terms, and amongq4, q2Q2 and Q4
terms occur.@In contrast, ifQ2;q2, RISCO(1) will be bad,
while V ISCO(1) will be good. If Q2;10q2, both formulas
will not be good at all.#

It should be stressed that for smallQ2 , DV
Kerr and D r

Kerr

@also D r(1)# are roughly proportional toQ2 , while DV(2)
andD r(2) remain very small. Recalling that in the Kerr fo
mulasV ISCO

Kerr andRISCO
Kerr , the effect ofQ2 as an independen

variable is absent, this feature implies a substantial effec
Q2 on the determination of the ISCO around neutron st
even forq;0.1.

We find the errors of the formulasV ISCO(2) andRISCO(2)
are always very small for smallQ2,0.2 (q&0.2 in this
case!. For largeQ2.0.2, however, the errors gradually in
crease. This indicates that the effect of the terms ofO(Q2

2)
~such asQ4) is not negligible. Therefore, it should be ne
essary to correctly take into account the terms ofO(Q2

2), in
order to give an appropriate formula for very rapidly rotati
neutron stars. Note, however, that Fig. 2 also indicates
Da (a5V or r ) adequately converges to zero by addi
higher order terms ine. Thus, unlessq,Q2*1, an appropri-
ate formula for very rapidly rotating neutron stars of largeq
andQ2 can be derived along the line presented in this pap

IV. SUMMARY

In this paper, we have investigated the ISCO of a t
particle moving on the equatorial plane around a rotat
object. We have derived fairly accurate approximate form
las for the angular velocity and circumferential radius of t
ISCO including mass, spin, quadrupole, current octap
mass 24-pole moments of a rotating object. Our formula
show that the effect of quadrupole moment is important
determining the angular velocity and, in particular, the c

e

e
the
d to
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TABLE I. Numerical data forn51 polytrope which we adopt in Sec. III. Note thatRe denotes the
circumferential radius at the stellar surface on the equatorial plane. BecauseMVs([x) is an invariant
quantity irrespective of scaling ofK, we can calculate the spin angular frequency of stars from the follow
data approximately as 370 Hz(x/0.016)(1.4M ( /M ).

rb,0K
n MK2n/2 ReK

2n/2 VsK
n/2 q Q2 q3 RISCO/6M V ISCO6A6M

0.200 0.158 0.870 0.061 9.4831022 3.5331022 6.931023 0.953 1.068
0.217 0.160 0.852 0.064 9.4331022 3.1931022 6.131023 0.953 1.069
0.236 0.162 0.833 0.067 9.3831022 2.9131022 5.431023 0.953 1.069
0.257 0.163 0.814 0.070 9.3431022 2.6631022 4.831023 0.952 1.070
0.280 0.164 0.795 0.073 9.3131022 2.4131022 4.431023 0.952 1.070
0.305 0.164 0.776 0.076 9.2831022 2.2231022 4.031023 0.952 1.070
0.206 0.160 0.869 0.098 1.5031021 8.4531022 2.631022 0.931 1.105
0.224 0.162 0.851 0.103 1.4931021 7.6631022 2.331022 0.930 1.106
0.243 0.163 0.832 0.107 1.4931021 6.9931022 2.131022 0.929 1.108
0.265 0.164 0.813 0.112 1.4831021 6.3631022 1.831022 0.928 1.109
0.289 0.165 0.794 0.116 1.4731021 5.8231022 1.731022 0.927 1.110
0.314 0.165 0.775 0.121 1.4731021 5.3631022 1.531022 0.927 1.111
0.222 0.163 0.863 0.144 2.1231021 1.5331021 6.631022 0.908 1.145
0.241 0.165 0.844 0.150 2.1131021 1.3931021 5.931022 0.906 1.149
0.262 0.166 0.825 0.156 2.1031021 1.2731021 5.331022 0.904 1.152
0.285 0.166 0.806 0.163 2.1031021 1.1731021 4.831022 0.902 1.154
0.310 0.167 0.787 0.170 2.0931021 1.0731021 4.331022 0.901 1.157
0.237 0.166 0.859 0.181 2.6031021 2.1131021 1.131021 0.891 1.176
0.257 0.167 0.840 0.189 2.5931021 1.9331021 9.931022 0.888 1.181
0.280 0.168 0.820 0.197 2.5831021 1.7731021 8.931022 0.885 1.186
0.304 0.168 0.801 0.205 2.5731021 1.6331021 8.131022 0.883 1.190
0.231 0.167 0.876 0.206 3.0331021 2.8631021 1.731021 0.882 1.196
0.251 0.168 0.857 0.214 3.0131021 2.6131021 1.631021 0.877 1.203
0.272 0.169 0.838 0.223 3.0031021 2.4031021 1.431021 0.873 1.210
0.295 0.170 0.818 0.232 2.9931021 2.2131021 1.331021 0.870 1.216
0.249 0.172 0.883 0.258 3.7131021 3.8431021 2.931021 0.862 1.237
0.270 0.173 0.863 0.269 3.7031021 3.5431021 2.631021 0.856 1.247
0.292 0.173 0.844 0.279 3.6831021 3.2731021 2.431021 0.851 1.257
0.274 0.176 0.887 0.307 4.2831021 4.5331021 3.931021 0.844 1.276
0.294 0.177 0.869 0.318 4.2631021 4.2231021 3.531021 0.837 1.288
on

ap

r-
e
is

ng
a

o

cumferential radius of the ISCO for rapidly rotating neutr
stars ofQ2*q @6#.

In a recent paper, Miller, Lamb, and Cook@2# performed
a numerical computation for analyzing the ISCO around r
idly rotating neutron stars, and pointed out thatV ISCO and in
particularRISCO are not correctly determined by the first o
der analytic treatment inq. Our present study clarifies th
reason for inaccuracy of the first order formula which
mainly due to the neglection of the quadrupole moment.
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APPENDIX A: COEFFICIENTS FOR THE ERNST
POTENTIAL

FHP @9# give

a0,05M , a0,15 iJ, a0,25M2 ,

a0,35 iS3 , a0,45M41
M20M

7
,

a0,552 i
JM20

21
1

M30M

3
,

a0,652
M20M

3

33
1

5M20M2

231

2
4iM 30J

33
1

8M31M

33
1

6M40M

11
,

a0,75
19iM 20M

2J

429
2

15M30M
3

143
1M8O~e5!,
1-7
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a0,85
M20M

5

143
1

53M20MJ2

3003
2

311M20M2M2

3003

1
36iM 30M

2J

143
2

3M3

13
~M311M40!1M9O~e5!,

a0,952
43iM 20M

4J

2431
1

7M30M
5

221
1M10O~e5!,

a0,1052
7M20M

7

4199
1

4423M20M
4M2

138567

2
202M20M

3J2

12597
2

462iM 30M
4J

4199

1
28M5

323
~M311M40!1M11O~e5!, ~A1!

where M205MM21J2, M305 i (S3M2M2J),
M3152S3J2M2

2, andM405M4M1S3J @9#.
Using Eq.~2.12!, a2 j ,0 (1< j <5) anda2 j ,1 (1< j <4) up

to O(e4) are calculated as

a2,052
M3

2
~12Q2!,

a4,05
M5

56
~21110q2252Q2121Q4!,

a6,05M7S 2
5

16
2

313q2

924
1

4717Q2

3696

1
289q2Q2

1848
2

38Q2
2

77
2

151Q4

176
1

17q3q

66 D ,

FIG. 2. DV andD r as functions ofQ2 for n51 polytrope. Open
circles, crosses, filled circles, open triangles and open square
noteDa

Kerr , Da(1), Da(2), Da(3) andDa(4) (a5V or r ), respec-
tively.
10401
a8,05M9S 35

128
1

31303q2

64064
2

101373Q2

64064
1

32171q4

384384

2
22513q2Q2

27456
1

57535Q2
2

34944
1

5571Q4

4576
2

3343q3q

6864 D ,

a10,05M11S 2
63

256
2

12974415q2

20692672
1

153744405Q2

82770688

2
6074105q4

22284416
1

1686890165q2Q2

869092224
2

2883979925Q2
2

869092224

2
1154583Q4

739024
1

2221047q3q

2956096 D , ~A2!

and

a2,15
3iM 4

2
~2q1q3!,

a4,15 iM 6S 15q

8
1

15q3

28
2

29qQ2

28
2

13q3

4 D ,

a6,15 iM 8S 2
35q

16
2

3763q3

2002
1

95213qQ2

24024
1

30743q3

6864 D ,

a8,15 iM 10S 315q

128
1

579957q3

155584
2

154403qQ2

19448
2

876263q3

155584 D .

~A3!

APPENDIX B: FORMULAS OF E AND l AT THE ISCO

From Eqs.~2.6! and~2.7! with an approximate formula o
r ISCO shown in Sec. II,E and l at the ISCO are derived a

EISCO50.9428120.03208q20.02975q2

10.00794Q220.0341q310.0198qQ2

20.0019q320.0440q410.0404q2Q220.0033Q2
2

10.0005Q420.0062qq3 , ~B1!

l ISCO

M
53.464120.9428q20.4444q2

10.1879Q220.3953q310.2996qQ220.0392q3

20.4470q410.4944q2Q220.0505Q2
2

10.0093Q420.0926qq3 . ~B2!

On the other hand, exact solutions for the Kerr case@12# are
expanded as

EISCO
Kerr 50.9428120.03208q20.02182q2

20.01633q320.01294q4, ~B3!

de-
1-8
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l ISCO
Kerr

M
53.4641020.94281q20.25660q2

20.13531q320.08791q4. ~B4!

Hence, as in the case ofV ISCO andRISCO, the error of coef-
ficients is less than 1024 for O(e2) terms,;1023 for O(e3)
terms, and;1022 for O(e4) terms.

If accretion of matter occurs from the ISCO to the cent
rotating body, the value ofq of the central star increases a

dq5
m

M S l ISCO

M
22qEISCOD , ~B5!

wherem is the rest mass of the accreting matter. Using E
~B1! and ~B2!, an approximate formula fordq is given as

dq5
m

M
~3.464122.8284q20.3802q2

10.1879Q220.3358q310.2837qQ220.0392q3

20.3788q410.4548q2Q220.0505Q2
2

10.0093Q420.0887qq3!. ~B6!

Thus we obtain the following conclusions from Eqs.~B1!,
~B2!, and~B6!: If accretion of matter occurs from the ISCO
the effect ofQ2 are that~1! the maximum energy releas
efficiency of accreting matter slightly decreases, and that~2!
the rate of increase in the angular momentum anddq of
central body is increased.

APPENDIX C: FIELD EQUATIONS FOR COMPUTING
ROTATING STARS AND THE NUMERICAL

METHOD

In this appendix, we show field equation forn, v, B, and
z for obtaining axially symmetric rotating stars, and brie
mentioned our numerical method to solve them. The fi
equations are as follows@15#:

n ,rr 1
2

r
n ,r1

1

r 2 $n ,yy~12y2!22yn ,y%

54pe2zrb@2h~u0!22$11~22G!«%e22n#

1
1

2
e24nB2~12y2!$r 2v ,r

2 1v ,y
2 ~12y2!%

2
B,r

B
n ,r2

1

Br2 B,yn ,y~12y2!, ~C1!

v̂ ,rr 1
4

r
v̂ ,r1

1

r 2 $v̂ ,yy~12y2!24yv̂ ,y%

5216pe2zrbh~u0!2~12v̂ !

1S 4n ,r2
3B,r

B D v̂ ,r1
12y2

r 2 S 4n ,y2
3B,y

B D v̂ ,y ,

~C2!
10401
l

s.

d

B,rr 1
3

r
B,r1

1

r 2 $B,yy~12y2!23yB,y%516pBe2z22nP,

~C3!

j ,y5@~B1B,r r !2~12y2!1$By2B,y~12y2!%2#21

3F ~B1B,r r !$2e24nv ,yv ,r r
3B3~12y2!2/2

1rB ,ry~12y2!2B,r ry12n ,yn ,r rB~12y2!%

2
1

2
$By2B,y~12y2!%

3$e24nB3r 2~12y2!„v ,r
2 r 22v ,y

2 ~12y2!…/22B,rr r
2

2B,r r 22Bn ,r
2 r 21B,yy~12y2!23yB,y12n ,y

2

3~12y2!B%G , ~C4!

where instead ofv, we introducev̂[vVs
21 becausev

}Vs for slowly rotating cases.
We solve Poisson type equations forn, v(v̂), andB as

the boundary value problem. That is, we solve these eq
tions imposing boundary conditions~3.7!–~3.9! at r 5r max
.10M , regularity condition atr 50 andu50, and reflection
symmetry conditions atu5p/2. On the other hand, the
equation forz is solved using second order Runge-Ku
method imposing the boundary condition atu50 as
z5 ln B @15#.

Using field variables, Eq.~3.3! is rewritten as

~11nKrb
1/n!2@2e2n1Vs

2~12v̂ !2B2e22nr 2 sin2 u#

5C~5const!. ~C5!

Here, C, K, and Vs are constants determined in iteratio
which is carried out in the following manner@13#.

~1! First of all, we fix the coordinate radii of stellar su
faces at equator and pole. Also, we fix the value ofrb at r
50.

~2! We give a trial density configuration forrb .
~3! We solve field equations~C1!–~C4!.
~4! Since we have constraints imposed at procedure~1!,

we can determineC, K, andVs using Eq.~C5!.
~5! Using Eq. ~C5! with C, K, and Vs determined at

procedure~4!, we calculate a new trial configuration forrb .
~6! Return to~2!, and repeat procedures~2!–~5! until a

sufficient convergence is achieved.
Numerical computation is typically performed takin

(Nr ,Nu)5(800,80) grid points, whereNr and Nu denote
grid points for 0,r<r max and 0,u,p/2. We use homoge-
neous grids inr andy5cosu. We check our numerical cod
by comparing our numerical results for non-dimension
quantitiesMK2n/2, JK2n, RK2n/2, andVsK

n/2 with another
results presented previously in Ref.@16# for the casen51.
We find that our numerical results agree well with those
Ref. @16# ~inconsistency is less than 1%!.
1-9
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