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Innermost stable circular orbits around relativistic rotating stars
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We investigate the innermost stable circular ofEBCO) of a test particle moving on the equatorial plane
around rotating relativistic stars such as neutron stars. First, we derive approximate analytic formulas for the
angular velocity and circumferential radius at the ISCO making use of an approximate relativistic solution
which is characterized by arbitrary mass, spin, mass quadrupole, current octapole and-pelssn®oments.

Then, we show that the analytic formulas are accurate enough by comparing them with numerical results,
which are obtained by analyzing the vacuum exterior around numerically computed geometries for rotating
stars of polytropic equation of state. We demonstrate that contribution of mass quadrupole moment for deter-
mining the angular velocity and, in particular, the circumferential radius at the ISCO around a rapidly rotating
star is as important as that of sp[80556-282(98)05120-(

PACS numbes): 04.25.Nx, 04.40.Dg

[. INTRODUCTION guency difference between the twin pealssf() changes
only slightly with time although the frequency of each peak
Observations of the low-mass x-ray binari@sMXBs) changeg1]; (2) some sources which possess twin peaks also
with the Rossi x-ray Timing Explorer have revealed quasip-exhibit very coherent oscillations of several hundred Hz in
eriodic oscillations(QPOs around a frequency of-1kHz  x-ray bursts[1], and the frequencies change little with time
[1]. At present, more than 10 sources of kHz QPOs havejuring the bursts. Furthermore, they are approximately equal
been found1]. One of the most impressive features of kHz tg or twice Af. Since the spin frequency of a neutron star is
QPOs is their very high frequency. The LMXBs are consid-ihe only candidate which changes only slightly on short time
ered to be systems which include a neutron star of MSS gcgles; the origin of the frequency difference between the
~1.4M, whereMg denotes the solar mass, and the accréyyin peaks of QPOs and the oscillation frequencies in the
tion disk a_lroun_d the neutron star. The Kepler frequency °§<-ray bursts seem to correspond to the spin frequer(cies
the accretion disk is twice them) of neutron starg1]. This means that QPO
M )1/2 sources include rapidly rotating neutron stars.

(1.1 Since the ISCO is determined by the geometry around the
star, it is important to ask if the geometry around a neutron

whereR denotes the circumferential radius around the neu—Star can be approximated by that around a black hole. If the

tron star. If the origin of the kHz QPOs is certain oscillation '?r:zclir:acrrcthag?jdz ?g?;?lbr?itajf::g R:ZEE ég? IKejrrmbuI;E:I? e of
frequencies of the accretion disk surrounding a neutron stgr yp . N )
oles have mass, spin, quadrupole moment and so on, but

of low magnetic field, they must be generated at less than te ; X
Schwarzschild radii of the neutron star. This means that th@mlt'pOIe moments higher than the quadrupole are expressed

kHz QPOs may bring us a chance to explore general relati\/jn:tgri]s l\% th(T Tnjf)M aa':snthhe: :/Ip(l? sln)%ylaarmrgomentum

istic effects[2]. I=S,=gM" (]q|<1) 2=M(q Sa1 -1
Several authors have recently suggested that at least sorme_ M (igM) (1=1.23,.)" [5], whereM, and$§ de-

of the kHz QPOs may be related to the Kepler frequency apote the mass and current moments, respecjuvely. This means

the innermost stable circular orbitSCO) of the accretion that the geometry outside the black hole horizon 1S expressed

disk around a neutron stat]. One of the most strong rea- only In telrrlns Oﬂ\r/l] andg. As a re;ul_t, the ISCO IS ?eter-

sons is that in many sources, the maximum frequency of thg1ined solely by them. However, this is not the case for neu-

kHz QPOs is in narrow range between 1.1 and 1.2 kHzlron stars. Inth(_a neutron star case, multipole moments higher

although they are thought to have very different mass accret-han and |_nclud|ng th_e guadrupole do not depend on the mass

tion rates and magnetic fields. Because of the fact that th@?}d sp;]n in such a simple manr?er, and they are determined

ISCO is determined by the property of the central neutron’ en the equation Of state Of.t € neutron star is given.

star, but not by the properties of the accretion disk, such as, 1€ Purpose of this paper is to point out the significance

the mass accretion rate, it has been suggested that the origﬁflthe multipole momentéin particular, the mass quadrupole

of the kHz QPOs of the highest frequencies may be the Ke' omenj of rapidly rotating neutron stars in d_etermlnlng the

pler frequency at the ISCO. If this is true, it means that welSCO around them. This is due to th_e following fact: In the

have a great opportunity to investigate general relativisti€@S€ ©f @ Kerr black hole, th% msagnltude of the quadrupole

effects[3,2]. moment is denoted byl ,= —q°M? [5], and|M,| is always
Another remarkable feature of kHz QPOs is that they ex-

hibit some evidences that in the center of their sources, rap-

idly rotating neutron stars are involved as follow&) many ln this paper, we use units &=1=c, whereG andc are the

sources display two peaks of the kHz QPO, and the fregravitational constant and speed of light.

15 km) 312

f=1.185 kH{ R

1.4M

0556-2821/98/58.0)/10401110)/$15.00 58 104011-1 ©1998 The American Physical Society



MASARU SHIBATA AND MISAO SASAKI PHYSICAL REVIEW D 58 104011

smaller thanM 3_. In this case, th(_a effect of the quadrupole dp  —0e,t \/(gw,p)z—gtt,pgw,p

moment is not important except in the cape 1. However, Q ar , (2.9

in the case of a rotating neutron sték),/q?M?3| may be Yoo

much larger than unity- 10, and hence for rapidly rotating

neutron stars which seem to be located at the center of QPO

sources|M,| may be larger thamM? for the caseq=0.1

[6]. In such a case, the effect due to the quadrupole moment

is as important as that due to the spin. tq. 0
The paper is organized as follows. In Sec. I, we derive /= Gte ™ 9eo )

approximate analytic formulas for the angular velocity and V- 9tt‘29t¢9—g¢¢92

circumferential radius of the ISCO around a rotating object

characterized by its mass, spin angular momentum, madsor simplicity, we only consider prograde orbits in this pa-

quadrupole, current octapole, and maésple moments. In  Per. A circular orbit is stabléunstablg if

Sec. lll, we perform numerical computations for obtaining

Ottt G2

E-- .
\/_ Ot — 29t(pQ - g<p(p92

(2.6

(2.7)

stationary, axisymmetric spacetimes of rotating stars, and 4°V _ 1 dzgz_E2 d’g,, 2/ dzgttp_/z d®gy
making use of the numerical results, we demonstrate that the dp? g, | dp? dp? ~dp? 7 dp?
accuracy of our formulas derived in Sec. Il are accurate. 2.9

Section 1V is devoted to a summary.
is positive(negative. Hence, the coordinate radigsand ()

at the ISCO are determined from the condition where
d?Vv/dp? is vanishing.

Note that Eq.(2.8) is independent of metric functiom.
Also, the angular velocity) and the circumferential radius
A. Basic equations (v/9,,=R) are independent of. Thus, we only nee& and

The line element of the vacuum exterior outside a station® '" the following.

ary, axisymmetric rotating object is generally written[@$

II. APPROXIMATE ANALYTIC FORMULAS
FOR THE ANGULAR VELOCITY
AND CIRCUMFERENTIAL RADIUS AT ISCO

B. Metric from the Ernst potential

ds?= —F(dt— wde)2+ E[GZY(dpqdzszZd@Z]_ A stationary axisymmetric vacuum geometry is com-
F pletely determined by the Ernst potent[&], which is de-
2D fined as

Throughout this paper, we assume that the spacetime has /p2+22_§
reflection symmetry with respect to the equatorial plane E=F+iy= —— (2.9
=0, so thatF, w, andy are functions of and|z|. U ansd

Our purpose is to derive approximate formulas for the . ,
angular velocity and circumferential radius at the 1SCO of avhereF=—g, and&is a complex potential. If we know,
test particle on the equatorial plane around a rotating object? i calculated as
In the case when the test particle stays on the equatorial

- i i i i pp' dy
plane ¢=0), geodesic equations can be integrated to give o=-| = Edp (2.10
ﬂ_ Eg(P‘P—i—/gt(P (2 2) constantz
dr ' ' Thus, once we know, we have all the necessary informa-
92
tion.
de Egu+/0y £ has the property that it can be expanded%40|
_—=—, 2.3
dT gz ( ) [ £ 2j ok
pz
o =2 & g @
gpp(d—p) — g2 g, Jw 29t
T 92 92 92 wherea; , are complex constants in which information of the
multipole moments of spacetime is completely contained.
=—V(p), (24 Note thata; , is nonzero only for non-negative, evgrand

non-negativek. Also, because of reflection symmetry with
whereE and/” denote the specific energy and specific angurespect to the equatorial plane,, is real for evenk, and
lar momentum of the test particlg=—F, gi,=F o, g4, pure imaginary for oddk. Note that for investigation of the
=—Fw?+p?F, and gzzgf(P—gngW (g,=p? in the ISCO on the equatorial plane, we only need anda; ;.
present line elementFor circular orbits, relations of the an- Fodor, Hoenselaers, and PerjgHP) [9] show that all
gular velocity(), E, and/ are derived from the conditions the components oé; , are derived by the following recur-
V=0=dV/dp as sive relation
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= @ | = 2
ar,s+2 (S+1)(S+2) (r+2) ar+2,s

2 WA kpst- {3, (PTH]~4p—5]

—2pk=2jl =2)+a,2j - 2(p+2)(p+2—2k)

tap_gj42(j +2)(j+1-2D}], (2.12

where the sum is taken for Ok=r, O=<l|=ss+1,
Os<p=<r—k, and —1<j<s—I [10], and af, denotes the
complex conjugate od; , . As pointed out in Ref.10], it can
be shown thag, s, , (s=0) is a function ofa; ; anda;_; ;
with j<r+s+2. This means that if we know, , and a; ;

for j=0, the entire spacetime metiiand of course, the met-
ric on the equatorial planere completely determined. Note

that if we knowa; o up toj =2n anda;  up toj=2n-2, we
can calculateagy up tok=2n. Conversely, if we knowagy
up tok=2n, we can calculata; o up toj=2n anda; , up to
j=2n—-2.

In principle, we can calculate terms af , up to arbitrary
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those inp;sco. Thus, we expect that this method will gener-
ate a fairly accurate approximate formula even if we include
the higher multipole moments. In the following, we teke,

up toj=10 anda; ; up toj =8, i.e., we take into account all
the terms up toO(p 19 consistently. In other word, we
calculateagy up tok=10, and neglechg) of k=11.

C. Results

Our strategy for determining the ISCO is as follows. First,
we assume that the spacetime is characterized by Mass
spin angular momenturd(=S;)=qM?, mass quadrupole
M,=—Q,M?3, current octapole momeng&=—q;M*, and
mass 2-pole M ,=Q,M?, and neglect the higher multipole
moments. Note that], Q,, q;, and Q, are positive for a
rotating star in a prograde spin.

In the case of a rotating neutron star, we may assgme
~O(e1), Q2~O(ez), 4s~O(erez), Qu~O(e3), where
€1,6,<<1, becausey and Q, are expected to be less than
unity. For a slowly rotating neutron sta,~ O(q?), so that
€,~0(e3). In this case, Q,~O(e3), g3~0(€l), Qg
~O(e‘1‘). However, for a rapidly rotating neutron stap,
can be as large ag so that whenever the terms proportional

largej andk using Eq.(2.12. In practice, however, we have to g2 make a significant contribution, we should also take
to truncate higher terms. To access an appropriate truncatiQRig account the terms proportional @, Q,, qgz, and so
point, we can make use of the solution for slowly rotatingyn This is the reason why we take into accoSgandM, .

black holes of the mas®l and the angular momentuth
(=S,)<M?2. In this case,

£= Mp  _ izpd ,+0(22), (213

T ME (PP MD)T

where we have neglected terms®§J2/M*#). Note thatp is
related to the Schwarzschild radial coordinatg as p

=rg(rs—2M). The Schwarzschild coordinate radius of the

Hereafter, we expand all the quantities by meanse of
= ¢, by formally settingg— €q, Q,— €2Q,, g;— €°q3, and
Q,—€*Q,, and retain all the terms up t@(e*) consis-
tently. Thus, the formulas derived below are accurate up to
O(e‘ll) for a slowly rotating neutron star. Even for a rapidly
rotating neutron star, the formulas include all the terms of
O(e;), O(e,), O(€), O(€2), andO(e;€,). Hence, they are
still accurate ta0(Q3).

As mentioned in the previous subsection, we nagdup

ISCO isrg=6M(1— 8/27/M?), so that the radius of the to k=10. Relation between multipole moments amgj, for

ISCO inp is given by

10J

pisco= V2AM — = (2.14

We have investigated how the estimated valueg,fg dif-
fer from the above one by expandiggn terms ofO(M/p)
as

M2 3M* 5M% 35M% 63M1°0 zJ

¢= 1 o 2T B T 16yt T 1280 2560 T 2
1o 3M2+ 15m* 35M6+ 315m° +0(p-12
202 ' 8p%  16p° | 128° p )
(2.15

We have found that in the case when we take u@fp ©),

O(p~8), andO(p 19 terms, the errors ipsco are about
4x10°4 105 and 4x10 7, respectively, for the coeffi-
cient of M, and about X103, 10 % and 4x 10 ®, respec-

tively, for the coefficient ofl/M. The order of magnitude of
the errors inQ) sco have turned out to be almost the same as

0=<k=10 have been already given by FH®]. Hence, by
using them, we can calculata,j, (1<j<5) and ay;,
(1<j=<4) up toO(e* using Eq.(2.12 [11]. (The explicit
forms of agy, ayj 0 and ay;; are shown in Appendix A.
Once¢ is determined up t®(p 1%, F andw are straight-
forwardly obtained from Eq92.9) and(2.10 in the follow-
ing form:

11

M\
F=1+>, CF,J-(?) +0(p~ 13, (2.16
=1
11 Mj_l
W=, Coj 5 +0(p™ 1), (2.17
=3

whereCg; andC,,; are functions oft, Q,, g3, andQ,.
Substituting these equations intfV/dp?=0, we rewrite
Eqg. (2.8 in the form

4
;o € Ai(p)=0, (2.18
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MASARU SHIBATA AND MISAO SASAKI

where the coefficientd; are independent of but depend on

g, Q,, g3, Q4, andp. These coefficients can be explicitly

written out by substituting Eq92.16 and (2.17) into Eq.
(2.8) [making use of Eqs(2.6) and (2.7)] and gathering in
powers ofe. We then look for a solution in the form

4
pZ_ZO ec;, (2.19

where we know that,= \24M andc;= —10qM/3. Impos-
ing that EqQ.(2.18 holds in each order 0§, it is rewritten
into three algebraic equations fog, c3, andc, as

1d?A, , dA
> gzt g
2 dp dp

101+A2=0,

. (2.20

cy+

1d3A, , d?A,
6 dp ——ci+ dp —7C1Crt ——

N dA; N
dp €2

olA0 1d%A;
dp 372 g7 1

2
E01+A3:O,

(2.20)
1 d*A, 1 d3A, 1 d?A,
24 dp? 1 2 dp? Cfcz+§ﬁ(cg+2cl%)

dAo

+——Cyt+ =
dp *

1 d?A, 2 dA,
M T APy

1d%A; , d?A

dA,
S ci+ rra CiCo+

dp3

_301+A4:0,

dp (2.22

Co+

whereA, and their derivatives are evaluatedpat c,. From
these algebraic equations we obtain

Cy=(—1.416712+1.07648,)M,
Ca=(—1.450813+1.603131Q,— 0.325615) M,

c,=(—1.87941"+2.74952°Q,— 0.3756 &5

+0.09371,— 0.70086]03) M.

(2.23

PHYSICAL REVIEW D 58 104011

Risco=6M(1—0.5443%—0.22619°+ 0.1798D,
—0.23002)3+0.26296/Q,— 0.053175
—0.296931*+ 0.44546)°Q,— 0.0624D3

+0.01544,—0.1131@|qs). (2.29
For the case of Kerr metri@Q,=0q?, g;=0q°, andQ,=q?,
we obtain
Qisco= 1 (1+0.74846
ISCO 6\/6|\/| .
+0.5463@%+ 0.4112@°>+ 0.3208%]%),
(2.26
R|SCO:6M(1_054433]
—0.0463@2—0.02023°—0.01162%).
(2.27

On the other hand, the exact Kerr solution giy2]

Kerr

1

Qisco= %

+0.5463@%+0.41108°+ 0.31994*+ O(q®)),
(2.28

(1+0.74844

Kerr

RKET = 6M (1—0.54433

—0.0463@2—0.02016>— 0.0111@*+ O(q®)).
(2.29

Thus, the error of the coefficients in our approximate formu-
las of Qsco and Rigco is less than 10* for O(€?) terms,
less than 102 for O(€®) terms, and~ 102 for O(e*) terms.
Hence, for slowly rotating neutron starg<0.1), our for-
mulas are accurate enough. Even for very rapidly rotating
neutron stars of],Q,~0.5, we may expect that they will
yield very accurate values.

We note that in Eqs2.24) and(2.25), the signs of coef-
ficients of the terms including, such asQ,, qQ, and

Using these approximate solutions, we reach approximatg®Q. are opposite to those of (k=1-4) terms. As shown
expressions for the angular velocity and circumferential rain Ref. [6], Q,/qg? is always larger than unity for a rotating

dius of the ISCO{)|5co andRsco, as follows:

(1+0.7484@)+ 0.78059°— 0.2342®),

1
Qisco= ———
S€9" 6 /6M
+0.98094;°— 0.64406,Q,+ 0.07432),
+1.38118— 1.41729Q,+0.12798)5

—0.02129),+ 0.25028/75), (2.24

neutron star, and hend@, may be ofO(q) for rapidly ro-
tating neutron stars aj=0.1. This implies that for rapidly
rotating neutron stars, the effect due to tifeterms is sig-
nificantly suppressed by that due @ . Thus, we conclude
that the effect of the quadrupole is important in determining
the ISCO even wheg~0.1. On the other hand, the coeffi-
cients ofg; and Q, are smaller than those af and Q.
Thus, their contributions are small.

The formulas ofE and/ at the ISCO are shown in Ap-
pendix B.
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. NUMERICAL STUDY wherev, B, ¢, andw are field functions depending anand
. . . 6. We present the field equations for these variables and
To confirm the accuracy of the formulas derived in Sec., . . . . .

briefly describe our numerical method in Appendix C.

Il, we compare them with numerlcal spluuons. We NUMET- " 5nce the field variables are computed, the ISCO on the
cally construct stationary, axisymmetric spacetimes of rela-

tivistic rotating stars with a polytropic equation of state usingequatOrIaI plane is found malqng use of H@.9 together
. . ; with Egs. (2.5—(2.7). To examine the accuracy of our ap-

Komatsu, Eriguchi, and Hachisu methfitB]. Then, we es- . . . )
timate O andR as well as the multipole moments of proxmate analytic fo_rmulas derived in Sec. Il, we also need

ISCO ISCO ; . X . to estimate the multipole moments. Pdr and ¢, we have
the numerically generated spacetimes. It is desirable to NG & formulas a§15]
clude all the multipole moments up @,, and compare our
analytic formulas with the numerical results. However, accu-
rate numerical calculation d@, is difficult. In this section, M =f d3x[e*ppB[2h(u®)?—e 2"{1+&(2-T)}]
we simply setQ,= Q3. For the Newtonian incompressible
case(Maclaurin spheroid ca$ea = 15/7, and for Newtonian +2r2sirt0(Q— w) wB3(u®)?e2~*4p,h], (3.5
compressible case, we find<<15/7. Because of general
relativistic effects, stars are more centrally condensed than
those in the Newtonian case, so that we expect that
general relativity is smaller than that in the Newtonian
theory, i.e., &< a=<2. Hence, we simply setx=1. Fortu-
nately, the coefficients 0D, in Q,sco andR;sco are small, For Q; andqs, we estimate them by using the asymptotic
so that our rough treatment does not affect the result muctehaviors ofv andw. Forr—, », w andB behaves apl5]
In fact, we also setv=0 and 2, but our conclusion is not
changed at all.

1
9=z f d3xr?sirf0(Q— w)B3(u®)?e?~*"p h. (3.6

M ByM Q,M3
V—>—T+%+i—3P2(y)+O(r’4), (3.7

A. Basic equations

2qM?  6qM?3 6[ 3130}q|\/|4

We consider the energy momentum tensor of an ideal w3 —r—4+§ “ M2l 5
fluid,
M4
P - (5y2-1)+o(r ), @9
T.o=Pb l+8+g U,Uu,+Pg,q, (3.1 r
By 4
wherepy,, P, €, u#, andg,, are the baryon rest mass den- B—1+ Tz+0(r ), (3.9

sity, pressure, specific internal energy, four velocity, and

spacetime metric. We adopt the polytropic equation of Statewherey=cose P,(y)=(3y2—1)/2, andB, is a constant
which is —M?/4 for spherical cases. When we numerically

3.2 obtainv, w, andB, we can extract information @@, andqs

1
P=Kpl=(T'-1)ppe; TI'=1+-, . :
Po=( JPpe n at a large radiug>M near the outer numerical boundary

(r=rmad as
whereK andn are the polytropic constant and the polytropic 3
index.
We only consider the case when stars uniformly rotate QZ_SW fo dyP(y)v, (310
around the z-axis. Hence, we setu'=u’=0 and u®
=u%Q,, where(), is the spin angular velocity of the rotat- 21Ir® (1 ) 5
ing star. In this case, the fluid equations of motion are easily 3=~ TeM? fo dy(5y*—=1)(1-y9w.  (3.1)

integrated to givé14]

2 We evaluateQ, andg; at various large radii, and find that

-2 2
w2=" h*(9u+ 20100+ gyel2s) Q, quickly converges as—r .. This suggests that the er-
ror for estimation ofQ, is very small(we guess it is less than
= const, (3.3 1%). This is mainly because the coefficient®@tr ~*) part in
v is not large. On the other hand, convergenceygfat r
whereh=1+¢g+P/p,=1+Ts. — T max 1S Slow becquse the coefficie_ntlﬁf(r‘?) partinw is
Following Butterworth and IpsefL5], we write the line large[15]. To ob_tamqg accurately, it is desirable to attach
element as the outer numerical boundary ag,M, but to do that we
need to take many grid points and hence need a long com-
d?=— e?"dt?+r2 sirf9 B2 2"(dp— wdt)? putational time. To save computational time, we use here an
extrapolation method to estimatg; i.e., we calculate; at
+e?¢72v(dr?+r2d#?), (3.4  several large radii which are not near the outer boundary (
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L L L R RO unstable stars are not realized in nature, we exclude numeri-
L _ cal data in the unstable region.
8 In Table I, we show all the data we use in our analysis. As
L pointed out in Ref[6], Q,/q? is always greater than unity.
g B (For the data in Table |, 2Q,/q%<4.)
'§ 16 — In Fig. 2, we show
- Aa(D)=6VBM[QEEE" - Qsco D],
A4 —
- | | | 1 numerical
[ A R I A R A A B B Ar(l):m[RISCO —RiscaD 1, (3.19
0 A 2 3 4
Pro K

as a function ofQ,. Here, Qscol) and Rise(l) (1=<I

FIG. 1. Relation between masMK ~™?) and density at=0 . . . :
(ps.oK™ for n=1 polytrope. Lower and upper solid lines denote =<4) denote the analytic formulas in which we include terms
’ Kerr Kerr : H
andA ;=" in which we use

the relations for the spherical star and for the rotating star at th&/P toO(e'). We also definé
mass shed limit. Dotted lin@vith open circles divides two regions ~ the analytic relations for the Kerr metric. The open circles,
where the ISCO exists or not: It exists below the line. Dashed linecrosses, filled circles, open triangles and open squares denote
divides the stable and unstable branches: The left-hand side is thek®", Ax(1), Ax(2), Ax(3) andA,(4) (@=Q orr), re-
stable region. Filled squares denote data sets which are comparedspectively.
our analytic formulas. From Fig. 2, we find apparently that the Kerr formulas for
the ISCO are not appropriate at all. The formBRigco1) is
~3rmad4), and extrapolate true value qf atr—o by as-  as bad as the Kerr formula, bfisco(1) is fairly good. The
suming thaty; behaves ag3(r) =qs() +C/r for the large latter feature seems accidental: Since the rela@on- ag?
radii, whereC is a constant. Since this method is rough, wewith «~2—4 holds, cancellations betweghandQ, terms,
guess that the error af; may be ~10% in this method. betweeng® and qQ, terms, and among®, 9?Q, and Q,
However, the large error ig; does not affect the following terms occur[ln contrast, ifQ,~q?, Risco(1) will be bad,
analysis much because the coefficientsjpterms inQsco ~ While Q,5c(1) will be good. If Q,~10g?, both formulas
andR,gco are fortunately small. The important quantities in will not be good at all|
our analysis aré1, g andQ,. We mention that we have also It should be stressed that for sm&h, A" and A"

evaluatedM andq by using [also A,(1)] are roughly proportional t&Q,, while Aq(2)
andA,(2) remain very small. Recalling that in the Kerr for-
M = —rfldyv (3.12 mulasQi§¢o andRigco, the effect ofQ, as an independent
0 ' variable is absent, this feature implies a substantial effect of

Q, on the determination of the ISCO around neutron stars
3M 3 3B\ | 13 [1 ) even forq~0.1.
qz[l— - g( 8- W” YTV fo dy(1-y9e, We find the errors of the formuld® sc(2) andRgco2)
(3.13 are always very small for smal,<0.2 (q=<0.2 in this
' case. For largeQ,>0.2, however, the errors gradually in-

and confirmed tha¥l calculated by Eqg3.5) and(3.12 and ~ crease. This indicates that the effect of the term@()Q%)
J calculated by Egs(3.6) and (3.13, respectively, agree (such asQ,) is not negligible. Therefore, it should be nec-
very well. essary to correctly take into account the term©¢03), in
order to give an appropriate formula for very rapidly rotating
B. Results neutron stars. Note, however, that Fig. 2 also indicates that
o ) A, (a=Q or r) adequately converges to zero by adding
As the polytropic index, we set=1. In Fig. 1, we show  hjgher order terms i Thus, unless|,Q,=1, an appropri-
the relation betweepy o (p, atr=0) andM for the case gate formula for very rapidly rotating neutron stars of lacge

n=1. Note that in the 5izgure, we plot nondimensional quan-andQ, can be derived along the line presented in this paper.
tities pp (K" and MK ™", The lower and upper solid lines

denote the relations for the spherical star and for the rotating V. SUMMARY

star at the mass shed limit, respectively. The filled squares '

denote data sets that are used for comparison with our ana- In this paper, we have investigated the ISCO of a test
lytic formulas. The dotted line is the critical line above particle moving on the equatorial plane around a rotating
which the ISCO ceases to exist. For sufficiently lapgg, object. We have derived fairly accurate approximate formu-
stars are unstable against radial gravitational colldfé¢  las for the angular velocity and circumferential radius of the
The dashed line divides the stable and unstable branchekSCO including mass, spin, quadrupole, current octapole,
The left-hand side of it is the stable regidilere, for judg- mass 2-pole moments of a rotating object. Our formulas

ing the stability against the gravitational collapse, we haveshow that the effect of quadrupole moment is important for
applied the turning point method shown in REf7].) Since  determining the angular velocity and, in particular, the cir-
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TABLE |. Numerical data forn=1 polytrope which we adopt in Sec. Ill. Note thRt denotes the
circumferential radius at the stellar surface on the equatorial plane. Beb&Osé= y) is an invariant
quantity irrespective of scaling &, we can calculate the spin angular frequency of stars from the following
data approximately as 370 Hg/0.016)(1.M o /M).

Pb,oKn MK~"2 ReK_n/2 QsKn/2 q Q; a3 Riscd6M lecoe\/éM
0.200 0.158 0.870 0.061 9480 2 3.53x10°2 6.9x10°%  0.953 1.068
0.217 0.160 0.852 0.064 94302 3.19x10°2 6.1x10°%  0.953 1.069
0.236 0.162 0.833 0.067 9.380 2 291x10 2 54x10 % 0.953 1.069
0.257 0.163 0.814 0.070 9.340 2 2.66x10 2 4.8x10 3% 0.952 1.070
0.280 0.164 0.795 0.073 9.310°2 241102 4.4x10°% 0.952 1.070
0.305 0.164 0.776 0.076 9.2802 222102 4.0x10 % 0.952 1.070
0.206 0.160 0.869 0.098 1800 ' 845102 26x102 0.931 1.105
0.224 0.162 0.851 0.103 1490 ! 7.66<10°2 2.3x10°2  0.930 1.106
0.243 0.163 0.832 0.107 1490 ! 6.99<10°2 2.1x10°2  0.929 1.108
0.265 0.164 0.813 0.112 1480 ! 6.36x10°2 1.8<x10°2 0.928 1.109
0.289 0.165 0.794 0.116 1440 ! 5.82<10°2 1.7x10°2  0.927 1.110
0.314 0.165 0775 0.121 1440 ! 5.36x10°2 1.5x10°2 0.927 1.111
0.222 0.163 0.863 0.144 2.XxA0 ' 1.53x10 ! 6.6x102 0.908 1.145
0.241 0.165 0.844 0150 2.XxH0 ! 1.39x10° ! 59x10°2  0.906 1.149
0.262 0.166 0.825 0.156 2.0 ' 1.27x10°! 5.3x10°2  0.904 1.152
0285 0.166 0.806 0.163 2.x00 ! 1.17x10° ! 4.8x10°2  0.902 1.154
0.310 0.167 0.787 0.170 2890 ! 1.07x10°! 4.3x10°2 0.901 1.157
0.237 0.166 0.859 0.181 28BAO0 ! 2.11x10°! 1.1x10°! 0.891 1.176
0.257 0.167 0.840 0.189 2540 ! 1.93x10°! 9.9x10°2 0.888 1.181
0.280 0.168 0.820 0.197 2580 ! 1.77x10°! 89x10°2 0.885 1.186
0.304 0.168 0.801 0.205 2540 ! 1.63x10°! 8.1x10°2 0.883 1.190
0.231 0.167 0.876 0.206 3.830 ' 2.86x10 ' 1.7x10° % 0.882 1.196
0.251 0.168 0.857 0.214 3810*' 2.61x10°! 1.6x10°! 0.877 1.203
0.272 0.169 0.838 0.223 3800 ' 240x10 ! 1.4x10' 0.873 1.210
0295 0.170 0.818 0.232 2890 ! 221x10! 1.3x10!' 0.870 1.216
0.249 0.172 0.883 0.258 3.X1N0 ! 3.84x10°! 29x10°! 0.862 1.237
0.270 0.173 0.863 0.269 3.XA0 ! 3.54<10°! 2.6x10°! 0.856 1.247
0.292 0.173 0.844 0.279 3880 ! 3.27x10! 24x10°! 0.851 1.257
0.274 0.176 0.887 0.307 4.280 ! 4.53<10°! 3.9x10° ! 0.844 1.276
0.294 0.177 0.869 0.318 4.260 ! 4.22x10°! 35x10°! 0.837 1.288

cumferential radius of the ISCO for rapidly rotating neutron APPENDIX A: COEFFICIENTS FOR THE ERNST
stars ofQ,=q [6]. POTENTIAL

In a recent paper, Miller, Lamb, and Cof&| performed FHP[9] give
a numerical computation for analyzing the ISCO around rap-

idly rotating neutron stars, and pointed out tfhtco and in A00=M, @1=1J, ap2=My,
particularR,;sco are not correctly determined by the first or- MM
der analytic treatment ig. Our present study clarifies the ap3=iS3, ags=M,+ 20 ,
reason for inaccuracy of the first order formula which is ' ' 7
mainly due to the neglection of the quadrupole moment. IMyy  MgoM
G711 T
ACKNOWLEDGMENTS N M oM ® L SMaM
: : , : 06 33 231
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FACOM VX/4R in the data processing center of National 4iM3z] 8Mz M 6MyM
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in part supported by a Japanese Grant-in-Aid of Ministry of
Education, Culture, Science and Spdft®s. 08NP0801 and _19MyM2J 18MggM® o
09740336. 80,7~ 229 143 | M®°0(e>),
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0 #-#g-};gigg;g!::'é é;lﬂl R MO 35 31303 101373, 32171*
s e, Tt RER T 80 64064 64064 = 384384
g -1 f—oKerr "o ._f _ 2251312(?2 57535?% 55710, _ 334339
= <0(e) o E 34944 = 4576 6864 |’
.15 —_00((-:3) ° 7
= 20(e) 3
= =0 ° o] 12974415> 153744408,
-2 e | L e b A a-lOOZMll___ +
A B : 256 20692672 82770688
08 . 607410%" 16868901662Q, 28839799282
08 |- Cex 22284416 869092224 869092224
< o oB . 115458%), 222104T5q o
2 & LT 739024 2956096 |’ (A2)
oF ffm"aa::““ 3
b b b v er A and
0 A .2 3 4
Qe 3im*

FIG. 2. Ay andA, as functions of), for n=1 polytrope. Open
circles, crosses, filled circles, open triangles and open squares de-
note AK®™, A, (1), AL(2), Ax(3) andA,(4) (@a=Q orr), respec-

ap = T(_Cﬁ'%),

tively.

. M oM° . 53M20MJ2_ 31IM M ,M?
087 143 3003 3003

+36iM3°M2J Sl M a1+ M g0) + M20O( €8
143 13( 31t My (€7),

43IM M4 TMgM?®

— + 10, 5
Ao 2431 221 TMTO(e),

7MoM’
40,107~ 72799

4423M ,M*M,
138567

202M,M33? 462 M 3M*4J

12597 4199

5

323

(M31+ My + MHMO(€), (A1)

where M o=MM,+J2, M3o=1(SsM —M,J),
Mg;=—S3J— M3, andM 4=M4M + S;J [9].
Using Eq.(2.12), ayj o (1=<]=<5) anday; ; (1<j<4) up
to O(e*) are calculated as
M3
a0~ — 7(1_Q2),

5
as 0= %(2“ 100°2—52Q,+21Q,),

5 3137 4711,
- 7 —_—
260=M'| =76~ 924 * 3696

289°Q, 38Q7 151, 179
1848 77 176 66 |’

(15, 156 2Q, 1%
41 8 28 28 4 )
_ el 35 3763° 95213)Q, 30743y,
1= T 76 T 2002 T 24024 6864 |’
/3150 579957° 1544031Q, 876263
g1~ 128 © 155584 19448 155584 |
(A3)

APPENDIX B: FORMULAS OF E AND /# AT THE ISCO

From Eqgs.(2.6) and(2.7) with an approximate formula of
pisco shown in Sec. IIE and/ at the ISCO are derived as

Eisco=0.942810.03208— 0.0297%)
+0.00794),—0.0341+0.01981Q,
—0.0019);— 0.044@1*+ 0.0404)?Q,— 0.00335
+0.000%),— 0.0062q3, (B1)

//ISCO

M 3.4641-0.9428)— 0.4444°

+0.1879Q,—0.3953°+ 0.2996)Q, — 0.0392)5
—0.447@*+0.4944°Q,— 0.050%3
+0.0093,—0.092@;. (B2)

On the other hand, exact solutions for the Kerr ddsg are
expanded as

Efeli=0.94281 0.03208— 0.02182)2
—0.016333—0.01294%, (B3)
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oKerr
~ ISCO

M

=3.46410- 0.94281— 0.2566@

—0.13531%-0.08794*. (B4)

Hence, as in the case 6f5co andRsco, the error of coef-
ficients is less than 10 for O(e?) terms,~ 102 for O(€°)
terms, and~10 2 for O(e*) terms.

PHYSICAL REVIEW D 58 104011
3 1 2 {—2v
Bt =B+ 2{Byy(1-y*)~3yB,}= 16mBe?2"P,
(C3
£y=[(B+B,r)%(1-y*)+{By-B (1-y»)}’]*

X|(B+B, r){—e "w 0,r*B3(1-y??2

If accretion of matter occurs from the ISCO to the central

rotating body, the value af of the central star increases as

M /lsco

5q:m (W‘Zqusco )

(BS)

whereu is the rest mass of the accreting matter. Using Egs.

(B1) and(B2), an approximate formula fofq is given as

5q= %(3.4641—2.8284}—0.3802}2

+0.1879Q,—0.3358°+0.283%Q,— 0.0392),
—0.3788)"+0.4548)°Q,— 0.050%3

+0.0093,— 0.088703). (B6)

Thus we obtain the following conclusions from EdB1),
(B2), and(B6): If accretion of matter occurs from the ISCO,
the effect ofQ, are that(1) the maximum energy release
efficiency of accreting matter slightly decreases, and (Pat
the rate of increase in the angular momentum aaqdof
central body is increased.

APPENDIX C: FIELD EQUATIONS FOR COMPUTING
ROTATING STARS AND THE NUMERICAL
METHOD

In this appendix, we show field equation farw, B, and

¢ for obtaining axially symmetric rotating stars, and briefly

+1B 1y (1-y?) =B ry +2v v rB(1-y?)}

1 2
—5{By=B(1-y)}
x{e #"BU2(1-y?) (w2r?— w?(1-y?)2—B 1
~B,r—2B12r7+B ,,(1-y) ~3yB +2/7,

X (1-y?)B}|, (C4)

where instead ofw, we introducew=w ' becausew
« ()¢ for slowly rotating cases.

We solve Poisson type equations farw(w), andB as
the boundary value problem. That is, we solve these equa-
tions imposing boundary condition8.7)—(3.9) at r =r
>10M, regularity condition at =0 and6=0, and reflection
symmetry conditions ah= /2. On the other hand, the
equation for{ is solved using second order Runge-Kutta
method imposing the boundary condition #=0 as
(=InB[15].

Using field variables, Eq.3.3) is rewritten as

(1+nKpM?[ —e?"+ Q2(1- 0)?B2%e2"r? sir? 6]

=C(=cons}. (CH

mentioned our numerical method to solve them. The fieldiere, C, K, and ()¢ are constants determined in iteration

equations are as followd5]:
2 1 ,
Vit FV,r+ r_Z{V,yy(l_y )_Zyv,y}
=47e*p [2h(u%)2—{1+(2-T)ele 2]

1
+5e”YBA1-y?){r2w’ + wi(1-y?)}

B, 1 ,

— B Y BrzByry(l-y ) (Cy
N s
ot T w,t r_i{w,yy(l_y )_4yw,y}
=—16meXpph(u®)3(1— )
3B,|. 1-y? 3B, -

+|4v,— B )w'r-i- 2 (41/'),——8 wy,
(C2

which is carried out in the following mannégt3].

(1) First of all, we fix the coordinate radii of stellar sur-
faces at equator and pole. Also, we fix the valuepgfat r
=0.

(2) We give a trial density configuration far, .

(3) We solve field equation€C1)—(C4).

(4) Since we have constraints imposed at procedlye
we can determin€, K, and()¢ using Eq.(C5).

(5) Using Eq.(C5 with C, K, and ()¢ determined at
procedurg4), we calculate a new trial configuration fpy, .

(6) Return to(2), and repeat procedurd8)—(5) until a
sufficient convergence is achieved.

Numerical computation is typically performed taking
(N, ,N,)=(800,80) grid points, wher®, and N, denote
grid points for O<r=<r o, and 0< #<7/2. We use homoge-
neous grids im andy=cosé. We check our numerical code
by comparing our numerical results for non-dimensional
quantitiesMK ~"2, JK™", RK™"2 and)K"? with another
results presented previously in R¢16] for the casen=1.
We find that our numerical results agree well with those in
Ref.[16] (inconsistency is less than 1%
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