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We perform fully general relativistic simulations of rotating stellar core collapse in three spatial
dimensions. The hydrodynamic equations are solved using a high-resolution shock-capturing scheme. A
parametric equation of state is adopted to model collapsing stellar cores and neutron stars following
Dimmelmeier et al. The early stage of the collapse is followed by an axisymmetric code. When the stellar
core becomes compact enough, we start a three-dimensional simulation adding a bar-mode nonaxisym-
metric density perturbation. The axisymmetric simulations are performed for a wide variety of initial
conditions changing the rotational velocity profile, parameters of the equations of state, and the total mass.
It is clarified that the maximum density, the maximum value of the compactness, and the maximum value
of the ratio of the kinetic energy T to the gravitational potential energyW (� � T=W) achieved during the
stellar collapse and bounce depend sensitively on the velocity profile and the total mass of the initial core
and equations of state. It is also found that for all the models with a high degree of differential rotation, a
funnel structure is formed around the rotational axis after the formation of neutron stars. For selected
models in which the maximum value of � is larger than �0:27, three-dimensional numerical simulations
are performed. It is found that the bar-mode dynamical instability sets in for the case that the following
conditions are satisfied: (i) the progenitor of the stellar core collapse should be rapidly rotating with the
initial value of 0:01 & � & 0:02, (ii) the degree of differential rotation for the velocity profile of the initial
condition should be sufficiently high, and (iii) a depletion factor of pressure in an early stage of collapse
should be large enough to induce a significant contraction to form a compact stellar core for which an
efficient spin-up can be achieved surmounting the strong centrifugal force. As a result of the onset of the
bar-mode dynamical instabilities, the amplitude of gravitational waves can be by a factor of �10 larger
than that in the axisymmetric collapse. It is found that a dynamical instability with the m � 1mode is also
induced for the dynamically unstable cases against the bar mode, but the perturbation does not grow
significantly and, hence, it does not contribute to an outstanding amplification of gravitational waves. No
evidence for fragmentation of the protoneutron stars is found in the first few 10 msec after the bounce.
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I. INTRODUCTION

One of the most important issues of hydrodynamic
simulations in general relativity is to clarify stellar core
collapse to a neutron star or a black hole. The formation of
neutron stars and black holes is among the most promising
sources of gravitational waves. This fact has stimulated
numerical simulations for the stellar core collapse [1–12].
However, most of these works have been done in the
Newtonian framework and in the assumption of axial
symmetry. As demonstrated in [10,12], general relativistic
effects modify the dynamics of the collapse and the gravi-
tational waveforms significantly in the formation of neu-
tron stars. Thus, the simulation should be performed in the
framework of general relativity. The assumption of axial
symmetry is appropriate for the case that the rotating
stellar core is not rapidly rotating. However, for the suffi-
ciently rapidly rotating cases, nonaxisymmetric instabil-
ities may grow during the collapse and the bounce [7]. As a
result, the amplitude of gravitational waves may be in-
creased significantly.

To date, there has been no general relativistic work for
the stellar core collapse in three spatial dimensions. Three-
dimensional simulations of the stellar core collapse have
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been performed only in the framework of Newtonian grav-
ity [4,7]. Hydrodynamic simulations for gravitational col-
lapse or for the onset of nonaxisymmetric instabilities of
rotating neutron stars in full general relativity have been
performed so far [13–17], but no simulation has been done
for the rotating stellar core collapse to a neutron star or a
black hole. In this paper, we present the first numerical
results of three-dimensional simulations for rapidly rotat-
ing stellar core collapse in full general relativity.

Three-dimensional simulation is motivated by two ma-
jor purposes. One is to clarify the criterion for the onset of
nonaxisymmetric dynamical instabilities during the col-
lapse, and the outcome after the onset of the instabilities.
So far, a number of numerical simulations have illustrated
that rapidly rotating stars in isolation and in equilibrium
are often subject to nonaxisymmetric dynamical instabil-
ities not only in Newtonian theory [18–28], but also in
post-Newtonian approximation [29], and in general rela-
tivity [15]. These simulations have shown that the dynami-
cal bar-mode instabilities set in (i) when the ratio of the
kinetic energy T to the gravitational potential energy W
(hereafter � � T=W) is larger than �0:27 or (ii) when the
rotating star is highly differentially rotating, even for ��
0:27 [28]. As a result of the onset of the nonaxisymmetric
-1  2005 The American Physical Society
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instabilities, a bar and spiral arms are formed which can
redistribute an angular momentum profile and change the
density profile of the star. Also, a burst-type and subse-
quent quasiperiodic gravitational waves with a high am-
plitude can be emitted in the case of rapidly rotating
neutron stars [15,22,28]. However, the numerical simula-
tions have been performed mostly for isolated rotating stars
in equilibrium. To our knowledge, [7] is only one published
paper in which the nonaxisymmetric dynamical instabil-
ities during stellar core collapse have been investigated. In
[7], the authors performed Newtonian simulations for a few
models and indicated that the dynamical instability sets in
only for the case where the value of � exceeds much
beyond 0.27. Such condition is satisfied only when the
progenitor of the collapse is rapidly and highly differen-
tially rotating and the depletion of the internal energy in an
early stage of the collapse is large enough to produce a very
compact core for which a significant spin-up can be
achieved surmounting the strong centrifugal force [6].

Although the previous Newtonian work [7] indicated a
criterion for the onset of nonaxisymmetric dynamical in-
stabilities, many unclear points still remain unsolved as
follows. First, in the Newtonian analysis [7], the authors
adopted a parametric equation of state, and performed
simulations changing its own parameters. They found
that for the onset of the nonaxisymmetric instability during
collapse, a soft equation of state with �1 � 1:28 and �2 �
2:5 is necessary (see Sec. II B for the definition of �1 and
�2). Unfortunately, in the equations of state that they
adopted, the maximum gravitational mass for cold spheri-
cal neutron stars in general relativity becomes � 1:3M�

(see Table I), which is too small to be adopted as a
plausible equation of state in general relativistic simula-
tions since the maximum mass of neutron stars for a given
equation of state should be larger than � 1:44M� which is
the precisely determined mass of a neutron star in
PSRB1913 � 16 [30]. A study with more plausible equa-
tions of state is required.

Second, the authors in [7] focus little on the instabilities
associated with m � 2 bar mode, although it is the fastest
growing mode of the nonaxisymmetric dynamical insta-
TABLE I. Maximum baryon rest mass, ADM mass, and the
corresponding central density for spherical neutron stars of cold,
parametric equations of state (11) for several choices of �1 and
�2. The first three sets of �1 and �2 are adopted in the paper. The
fourth set of the equation of state which is used in Refs. [6,7] is
too soft and the maximum ADM mass for cold, spherical neutron
stars is too small to be adopted as a realistic parameter set.

�1 �2 M
�M�� M�M�� 	c �g=cm
3�

1.3 2.5 1.810 1.600 2:87� 1015

1.32 2.25 1.754 1.623 2:39� 1015

1.28 2.75 1.869 1.597 3:18� 1015

1.28 2.5 1.486 1.298 4:42� 1015
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bilities for equilibrium stars in most cases. (Here, m de-
notes the azimuthal quantum number.) Thus, the criterion
for the onset of the bar-mode instabilities are not still clear.
Also, they paid little attention to the bar-mode dynamical
instabilities for highly differentially rotating cases such as
those recently reported in [28]. This instability can set in
even for a small value of �< 0:27. This implies that for
highly differentially rotating initial conditions, attention
should be also paid for small values of �.

Third, in general relativity, the collapsed core can reach
a more compact state than that simulated in the Newtonian
theory due to the fact that self-gravity becomes stronger
[10]. As a result, more efficient spin-up will be achieved.
Therefore, the probability for the onset of nonaxisymmet-
ric dynamical instabilities would be underestimated in the
Newtonian simulation. This suggests that a general rela-
tivistic analysis may be crucial for the study of nonaxisym-
metric dynamical instabilities.

Finally, in [7], the mass of the stellar core adopted is set
to be in a narrow range between 1.5 and 1:7M�. According
to the theory of stellar evolutions, in a very massive star of
low metallicity with the initial mass 50M� & M &

100M�, the produced iron core may become 2–3M� [31–
33]. This indicates that the mass of the core in nature may
be in a wide range between �1M� and �3M�. With the
increase of the mass, the self-gravity becomes stronger,
and hence, the collapsed stellar core can reach a more
compact state for which a spin-up may be enhanced effec-
tively. Thus, the larger core mass may increase the proba-
bility for the onset of nonaxisymmetric dynamical
instabilities.

Motivated by the questions mentioned above, we per-
form general relativistic simulations choosing rapidly and
highly differentially rotating massive stars with plausible
equations of state and with a wide mass range. Following
[7], we adopt a parametric equation of state. However, we
choose sets of the parameters in which the maximum
Arnowitt-Deser-Misner (ADM) mass of a cold spherical
neutron star becomes � 1:6M�. With this setting, we
choose the mass of the stellar core in the range between
�1:5 and �3M�. Furthermore, we pay particular attention
to the bar-mode instabilities which are likely to be the
fastest growing mode.

Another major role of three-dimensional simulations for
the stellar core collapse is to determine the amplitude and
the characteristic frequency of gravitational waves in the
case that the nonaxisymmetric dynamical instabilities set
in. Axisymmetric numerical simulations have clarified that
the amplitude of gravitational waves emitted in the stellar
core collapse is at most several �10	23 at a distance of
10 Mpc (e.g., [10]), and the frequency is between 100 Hz
and 1 kHz. Although the frequency is in the most sensitive
band of the laser-interferometric gravitational wave detec-
tors [34], the value of the amplitude is too small to be
detected if the stellar core collapse occurs outside our local
-2
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group of galaxies. In the three-dimensional process, on the
other hand, the amplitude is often by a factor of �10 larger
than that in the axisymmetric phenomena because of the
increase of the degree of asymmetry. Hence, if the non-
axisymmetric instabilities set in, the stellar core collapse
may become a much stronger emitter of gravitational
waves than that considered so far.

This paper is organized as follows. In Sec. II, we briefly
review our formulation of general relativistic simulation,
equations of state adopted in this paper, and methods for
extraction of gravitational waves. In Sec. III, initial con-
ditions and computational setting are described. In Sec. IV,
numerical results of axisymmetric simulations are pre-
sented paying attention to the value of � and to the profiles
of the density and the angular velocity of the outcomes. In
Sec. V, numerical results of three-dimensional simulations
are presented, clarifying the criterion for the onset of bar-
mode dynamical instabilities. Gravitational waveforms
emitted in the growth of the bar-mode dynamical instabil-
ities are also presented. Section VI is devoted to a sum-
mary. Throughout this paper, we adopt the geometrical
units in which G � c � 1 where G and c are the gravita-
tional constant and speed of light, respectively.
II. FORMULATION

A. Summary of basic equations and implementations

We perform hydrodynamic simulations in full general
relativity using the same formulation as in [35,36], to
which the reader may refer for details and basic equations.
The fundamental variables for the hydrodynamics are 	:
rest-mass density, ": specific internal energy, P: pressure,
u�: four velocity, and

vi �
dxi

dt
�
ui

ut
; (1)

where subscripts i; j; k; . . . denote x, y, and z, and � the
spacetime components. As the fundamental variables to be
evolved in the numerical simulations, we define a weighted
density 	
, a weighted four-velocity ûi, and a specific
energy density ê as

	
 � 	we6�; (2)

û i � hui; (3)

ê � hw	
P
	w

; (4)

where e� denotes the conformal factor, w � �ut, and h �
1� "� P=	. Here, ê is computed from T��n�n�=�	w�
where T�� and n� denote the energy-momentum tensor
and a timelike unit normal vector. General relativistic
hydrodynamic equations are solved using a high-resolution
shock-capturing scheme [35,37]. In axisymmetric and
three-dimensional simulations, the cylindrical and
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Cartesian coordinates are used, respectively. The details
of our hydrodynamic code are described in [35].

For the following, we define the total baryon rest mass,
internal energy, and rotational kinetic energy of the system
as

M
 �
Z
d3x	
; (5)

U �
Z
d3x	
"; (6)

T �
1

2

Z
d3x	
û’v’; (7)

where M
 is the conserved quantity. The definitions of U
and T agree with those for axisymmetric rotating stars in
equilibrium [38]. In the axisymmetric case, the angular
momentum J is a conserved quantity, and defined by

J �
Z
d3x	
û’: (8)

Note that in the nonaxisymmetric case, the equation of J
has a different form (e.g., [13]).

The fundamental variables for the geometry are �: lapse
function, �k: shift vector, $ij: three-metric, $ � e12� �

det�$ij�: trace of the three-metric, ~$ij � e	4�$ij: confor-
mal three-metric, and Kij: extrinsic curvature. We evolve
~$ij, �, ~Aij � e	4��Kij 	 $ijKk

k�, and the trace of the
extrinsic curvature Kk

k together with the three auxiliary
variables Fi � (jk@j ~$ik with an unconstrained free evolu-
tion code as in [13,35,39,40]. The Einstein equations are
solved in the Cartesian coordinates. In the axisymmetric
case, the Cartoon method is used [41,42]. In both cases, the
equatorial reflection symmetry is assumed. The outer
boundary conditions we adopt are the same as in the
previous papers (e.g., [13,35,40]).

As the slicing condition, we impose an ‘‘approximate’’
maximal slice condition (Kk

k � 0) which is the same as that
adopted in previous papers (e.g., [13,15,40]). As the spatial
gauge condition, we adopt a hyperbolic gauge condition
[36,43] in which we solve

@t�k � ~$kl�Fl � �t@tFl�; (9)

where �t denotes a time step in numerical computation.
During numerical simulations, violations of the

Hamiltonian constraint and conservation of mass and an-
gular momentum are monitored as code checks. Numerical
results for several test calculations, including stability and
collapse of nonrotating and rotating neutron stars, have
been described in [35]. The axisymmetric code has been
used for simulations of stellar core collapse to neutron stars
and black holes, producing numerically convergent results
[12]. The three-dimensional code has been used particu-
larly for simulations of merger of binary neutron stars
[36,40]. In [36], the details of the latest implementation
-3
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are described, and we illustrate that accurate and conver-
gent numerical results on the outcomes after the merger as
well as on gravitational waveforms can be obtained with
the present code.

B. Equations of state

A parametric equation of state is adopted following
Müller and his collaborators [6,10]. In this equation of
state, one assumes that the pressure consists of the sum
of polytropic and thermal parts as

P � PP � Pth: (10)

The polytropic part is given by PP � KP�	�	��	� where KP
and � are not constants but functions of 	. This part
corresponds to the cold (zero-temperature) part of the
equation of state. In this paper, we follow [10] for the
choice of KP�	� and ��	�: For the density smaller than
the nuclear density which is defined as 	nuc �
2� 1014 g=cm3, � � �1�� const� is set to be & 4=3, and
for 	  	nuc, � � �2�� const�  2. Thus,

PP �
�
K1	�1 ; 	 � 	nuc;
K2	

�2 ; 	  	nuc;
(11)

where K1 and K2 are constants. Since PP should be con-
tinuous, the relation, K2 � K1	

�1	�2
nuc , is required.

Following [6,10], the value of K1 is fixed to be 5� 1014

in the cgs unit. With this choice, a realistic equation of state
for 	 < 	nuc, in which the degenerate pressure of electrons
is dominant, is approximated. Since the specific internal
energy should be continuous at 	 � 	nuc, the polytropic
specific internal energy "P is defined as

"P �

8<
:

K1
�1	1

	�1	1; 	 � 	nuc;

K2
�2	1

	�2	1 �
��2	�1�K1	

�1	1
nuc

��1	1���2	1�
; 	  	nuc:

(12)

With this setting, a realistic equation of state for cold
nuclear matter is mimicked for an appropriate choice of
�1 and �2.

An advantage of the parametric equations of state is that
we can investigate the dependence of the dynamics of
stellar collapse on the equations of state systematically
and very easily by changing the values of �1 and �2
appropriately. A more realistic simulation with a realistic
equation of state should be performed at the goal in this
research field. However, the equations of state for 	 > 	nuc
are not still well known. Also, because of complexity of the
microphysical processes, in simulations with such realistic
equations of state, it is often not easy to extract essential
physical properties of stellar core collapse such as key
quantities that determine the maximum density in the
collapse, the collapse time scale, the maximum value of
T=W, the profiles of the density and angular velocity of
formed protoneutron stars, T=W of formed protoneutron
stars, nonaxisymmetric dynamical stabilities, and ampli-
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tude of gravitational waves. Simulations with the para-
metric equations of state are helpful to systematically
answer these questions.

In this paper, we choose ��1;�2� � �1:3; 2:5�, (1.32,
2.25), and (1.28, 2.75). In Table I, we list the maximum
mass and the corresponding density at the center for the
three sets of �1 and �2 with 	nuc � 2� 1014 g=cm3. In all
three cases, the maximum ADM mass becomes about
1:6M� which is a reasonable value for neutron stars [44].
As a default, we set �1 � 1:3 and �2 � 2:5 in the follow-
ing. In a previous Newtonian three-dimensional simulation
[7], a different set as �1 � 1:28 and �2 � 2:5 is chosen,
and the authors have found that only for such a small value
of �1, nonaxisymmetric dynamical instabilities are in-
duced. The choice of this set is acceptable in the
Newtonian framework, but in general relativity it should
not be adopted because with this choice, the maximum
mass of a cold spherical neutron star becomes about
1:3M�, which is too small for the maximum mass. Such
a choice should be excluded in general relativistic
simulations.

The thermal part of the pressure Pth plays an important
role in the case that shocks are generated. Pth is related to
the thermal energy density "th � "	 "P as

Pth � ��th 	 1�	"th: (13)

For simplicity, the value of �th, which determines the
strength of shocks, is chosen to be equal to �1�� 1:3�.
Our previous numerical work [12] showed that the results
depend very weakly on the value of �th as far as it is in the
range between �1:3 and 5=3.

For the simulation, first, equilibrium rotating stars with
� � 4=3 polytrope are given. Then, the simulations are
started with equations of state (10). Since the value of the
adiabatic index is slightly decreased from � � 4=3 to
�1�<4=3�, the collapse is triggered. The equilibrium states
are computed adopting the polytropic equation of state

P � K0	4=3; (14)

whereK0 is the adiabatic constant. In this paper,K0 is set to
be 5� 1014, 7� 1014, and 8� 1014 cm3=s2=g1=3. The
latter two are adopted to increase the mass of the progeni-
tor of stellar collapse: For the � � 4=3 polytrope, the mass
(both the baryon rest mass and the ADM mass) of the stars
is approximately written as 4:555�K0=G�3=2 g, which de-
pends very weakly on the rotational velocity profile [44]
(cf. Table II). This implies that for K14 �
K0=10

14 cm3=s2=g1=3 � 5, 7, and 8, the mass is about
1.5, 2.5, and 3M�, respectively. Thus, for K14  7, the
total mass of the system is much larger than the maximum
allowed mass of the cold spherical neutron stars chosen in
this paper � 1:6M�.

For K0 � Kdeg � 5� 10
14 cm3=s2=g1=3 which is

chosen in previous papers [6,10,12], a soft equation of
state governed only by the electron degenerate pressure
-4



TABLE II. Quantities for selected sets of the initial conditions and the results of collapse are listed. K0, M
, P0�� 2.=�a�, Re, and
	Max are shown in units of cm3=s2=g1=3, M�, sec, km, and g=cm3, respectively. Here, 	Max and �Min are the maximum and minimum
achieved during the whole evolution. �init and �max denote the initial value of T=W and the maximum value of T=�T �U� achieved
during the collapse. The baryon rest mass M
 is nearly equal to the ADM mass M for all the models. In the last column, the outcomes
for �1 � 1:3, �2 � 2:5, and 	nuc � 2� 1014 g=cm3 are shown. Here, NS, O-A, and O-B denote that the outcomes are neutron star,
oscillating star with the maximum density larger than 	nuc, and oscillating star of subnuclear density, respectively. Note that for
K0 � 8� 1014 �cgs� and A! 1, any star collapses to a black hole and that for K0 � 6� 1014 �cgs�, any star does not collapse to a
black hole.

Model A K0 M
 �init J=M2 P0 Re �Min 	Max �max Outcome

M5a1 1 5� 1014 1.503 0.008 91 1.235 1.53 2:27� 103 0.76 6:6� 1014 0.11 NS
M5c1 0.1 5� 1014 1.545 0.017 7 1.201 0.127 1:48� 103 0.79 3:2� 1014 0.28 O-A
M5c2 0.1 5� 1014 1.521 0.012 4 1.028 0.155 1:50� 103 0.74 5:0� 1014 0.28 O-A ! NS
M5c3 0.1 5� 1014 1.496 0.007 30 0.784 0.212 1:53� 103 0.71 6:6� 1014 0.21 NS
M7a1 1 7� 1014 2.476 0.008 86 1.045 1.53 2:68� 103 0.57 1:1� 1015 0.10 NS
M7a2 1 7� 1014 2.458 0.006 49 0.888 1.77 2:16� 103 0.56 1:1� 1015 0.081 NS
M7a3 1 7� 1014 2.449 0.005 26 0.792 1.97 2:06� 103 � � � � � � � � � BH
M7a4 1 7� 1014 2.438 0.003 67 0.663 2.33 1:98� 103 � � � � � � � � � BH
M7b1 0.25 7� 1014 2.579 0.021 8 1.423 0.370 1:88� 103 0.82 7:9� 1013 0.26 O-B
M7b2 0.25 7� 1014 2.545 0.017 7 1.283 0.411 1:87� 103 0.73 2:6� 1014 0.29 O-A
M7b3 0.25 7� 1014 2.514 0.013 8 1.134 0.466 1:87� 103 0.65 4:8� 1014 0.29 NS
M7b4 0.25 7� 1014 2.495 0.011 3 1.027 0.515 1:86� 103 0.62 6:4� 1014 0.26 NS
M7b5 0.25 7� 1014 2.451 0.005 43 0.712 0.744 1:85� 103 0.55 1:1� 1015 0.16 NS
M7b6 0.25 7� 1014 2.434 0.003 21 0.547 0.969 1:85� 103 0.52 1:4� 1015 0.10 NS
M7c1 0.1 7� 1014 2.579 0.021 9 1.126 0.111 1:72� 103 0.70 3:8� 1014 0.31 O-A
M7c2 0.1 7� 1014 2.544 0.017 7 1.018 0.127 1:75� 103 0.61 6:0� 1014 0.33 O-A
M7c3 0.1 7� 1014 2.505 0.012 7 0.871 0.155 1:78� 103 0.51 9:2� 1014 0.30 NS
M7c4 0.1 7� 1014 2.505 0.009 94 0.773 0.179 1:79� 103 0.46 1:2� 1015 0.27 NS
M7c5 0.1 7� 1014 2.464 0.007 28 0.664 0.213 1:81� 103 0.42 1:4� 1015 0.22 NS
M7c6 0.1 7� 1014 2.439 0.003 92 0.489 0.296 1:83� 103 0.42 1:4� 1015 0.14 NS
M7c7 0.1 7� 1014 2.427 0.002 32 0.377 0.389 1:83� 103 0.44 1:7� 1015 0.088 NS
M8a1 1 8� 1014 3.016 0.008 84 0.978 1.54 2:86� 103 � � � � � � � � � BH
M8c1 0.1 8� 1014 3.187 0.026 3 1.151 0.0984 1:82� 103 0.70 3:0� 1014 0.31 O-A
M8c2 0.1 8� 1014 3.141 0.021 9 1.055 0.111 1:84� 103 0.59 5:4� 1014 0.34 O-A
M8c3 0.1 8� 1014 3.099 0.017 6 0.953 0.128 1:87� 103 0.47 8:4� 1014 0.35 O-A
M8c4 0.1 8� 1014 3.052 0.012 7 0.815 0.156 1:90� 103 0.29 1:5� 1015 0.30 NS
M8c5 0.1 8� 1014 3.010 0.008 14 0.657 0.200 1:93� 103 � � � � � � � � � BH
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is approximated well [44,45]. On the other hand, the
radiation pressure is also approximated by the � � 4=3
polytropic equation of state. Thus, by choosing K0 >Kdeg,
we may consider that the pressure is composed of the sum
of the electron degenerate pressure and the radiation pres-
sure with the ratio Kdeg to Krad � K0 	 Kdeg as

P � Kdeg	4=3 � Krad	4=3: (15)

In the simulation, K1 is related to Kdeg by K1 �

Kdeg	
4=3	�1
0 where we set 	0 � 1 g=cm3. The specific

internal energy is given by

" � 3K0	1=3; (16)

and the pressure at the initial stage is written as

P � 3��1 	 1�K0	
4=3; (17)

implying that for �1 < 4=3, the pressure is depleted by
024014
�4	 3�1� � 4%–16% for �1 � 1:32–1:28 at the initial
stage. Namely, in this setting, with the smaller value of
�1, the pressure for a given value of 	 < 	nuc becomes
smaller, and also, the deletion factors of the pressure and
the internal energy at the initial condition are larger. As
shown in Secs. IV and V, the effect associated with the
small change in �1 significantly modifies the dynamics of
the collapse and the stability against nonaxisymmetric
dynamical deformation.

C. Wave extraction methods

We extract gravitational waves using two methods. One
is a gauge-invariant wave extraction method in which we
perturbatively compute the Moncrief variables in a flat
spacetime background [46] as we have used in our series
of papers (e.g., [47]). To compute them, first, we split $ij
into ,ij �

P
lm-

lm
ij in the spherical polar coordinates,

where ,ij is the flat metric and -lmij is given by
-5
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-lmij �

0@H2lmYlm h1lm@3Ylm h1lm@’Ylm

 r2�KlmYlm �GlmWlm� r2GlmXlm

 
 r2sin23�KlmYlm 	GlmWlm�

1A

�

0@ 0 	Clm@’Ylm= sin3 Clm@3Ylm sin3

 r2DlmXlm= sin3 	r2DlmWlm sin3

 
 	r2DlmXlm sin3

1A: (18)
Here, 
 denotes the symmetric components. The quantities
H2lm, h1lm, Klm,Glm, Clm, andDlm are functions of r and t,
and are calculated by performing integrals over a two-
sphere of a given coordinate radius (see [39] for details).
Ylm is the spherical harmonic function, and Wlm and Xlm
are

Wlm �

�
�@3�2 	 cot3@3 	

1

sin23
�@’�2

�
Ylm;

Xlm � 2@’�@3 	 cot3�Ylm:
(19)

The gauge-invariant variables of even and odd parities are
defined by

RElm�t; r� �


2�l	 2�!
�l� 2�!

s
f4k2lm � l�l� 1�k1lmg; (20)

ROlm�t; r� �


2�l� 2�!
�l	 2�!

s �
Clm
r

� r@rDlm

�
; (21)

where

k1lm � Klm � l�l� 1�Glm � 2r@rGlm 	 2
h1lm
r
; (22)

k2lm �
H2lm
2

	
1

2

@
@r

�rfKlm � l�l� 1�Glmg�: (23)

Using the gauge-invariant variables, the energy luminos-
ity and the angular momentum flux of gravitational waves
can be defined by

dE
dt

�
r2

32.

X
l;m

�j@tRElmj
2 � j@tROlmj

2�; (24)

dJ
dt

�
r2

32.

X
l;m

�jm�@tRElm�R
E
lmj � jm�@tROlm�R

O
lmj�: (25)

The total radiated energy and angular momentum are
calculated by

�E�t� �
Z t

0
dt
dE
dt
; �J�t� �

Z t

0
dt
dJ
dt
: (26)

In this paper, we pay attention only to even-parity modes
with l � 2 which are the dominant modes.

To search for the characteristic frequencies of gravita-
tional waves, the Fourier spectra are computed by
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&R I
lm�f� �

Z tf

ti
e2.iftRIlmdt; (27)

where I denotes E and O. In the analysis, tf is chosen as the
time at which the simulation is stopped. Before t < robs
where robs denotes a radius at which gravitational waves
are extracted, no waves propagate to robs, so that we choose
ti � robs.

Using the Fourier spectrum, the energy power spectrum
is written as

dE
df

�
.
4
r2

X
l2;m0

f2�j &RElm�f�j
2 � j &ROlm�f�j

2� �f > 0�;

(28)

where for m � 0, we define

&R I
lm �


j &RIlm�f�j

2 � j &RIl	m�f�j
2

q
�m> 0�: (29)

Note that in deriving Eq. (28), we use the relation
j &RIlm�	f�j � j &RIlm�f�j.

Computation of gravitational waves is also carried out in
terms of a quadrupole formula which is described in
[12,48]. As shown in [48], a kind of quadrupole formula
can provide an approximate gravitational waveform from
oscillating compact stars. The quadrupole formula is, in
particular, useful when the amplitude of gravitational
waves is smaller than the numerical noise because in
such case, it is difficult to extract gravitational waves
from the metric in the wave zone.

In quadrupole formulas, we compute gravitational
waves from

hij �
�
Pi

kPj
l 	
1

2
PijP

kl
��
2

r
d2	Ikl
dt2

�
; (30)

where	Iij and Pi
j � (ij 	 ninj (ni � xi=r) denote a trace-

free quadrupole moment and a projection tensor.
In fully general relativistic and dynamical spacetimes,

there is no unique definition for the quadrupole moment Iij.
Following [12,48], we choose the formula as

Iij �
Z
	
x

ixjd3x: (31)

Then, using the continuity equation, we can compute the
first time derivative as

_I ij �
Z
	
�vixj � xivj�d3x: (32)
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To compute )Iij, we carried out the finite differencing of the
numerical result for _Iij.

In this paper, we focus only on l � 2 mass quadrupole
modes. Then, the gravitational waveforms are described by

h� �
1

r

� )Ixx 	 )Iyy
2

�1� cos23� cos�2’�

� )Ixy�1� cos
23� sin�2’�

�

�
)Izz 	

)Ixx � )Iyy
2

�
sin23

�
; (33)

h� �
2

r

�
	
)Ixx 	 )Iyy
2

cos3 sin�2’� � )Ixy cos3 cos�2’�
�
;

(34)

in the quadrupole formula, and

h� �
1

r

" 
5

64.

s
fR22��1� cos

23� cos�2’�

� R22	�1� cos23� sin�2’�g �


15

64.

s
R20sin23

#
;

(35)

h� �
2

r


5

64.

s
�	R22� cos3 sin�2’� � R22	 cos3 cos�2’��;

(36)

in the gauge-invariant wave extraction where

R22� �
RE22 � RE2	2

2
p r; R20 � RE20r: (37)

For derivation of h� and h�, we assume that the wave part
of the spatial metric in the wave zone is written as

dl2 � dr2 � r2��1� h��d32 � sin23�1	 h��d’2

� 2 sin3h�d3d’�; (38)

and set Ixz � Iyz � RE2�1 � 0 since we assume the reflec-
tion symmetry with respect to the equatorial plane.

In the following, we present

A� � )Ixx 	 )Iyy; (39)

A� � 2 )Ixy; (40)

A0 �
2 )Izz 	 )Ixx 	 )Iyy

2
; (41)

in the quadrupole formula, and as the corresponding var-
iables,

R� �


5

16.

s
R22�; (42)
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R� �


5

16.

s
R22	; (43)

R0 �


15

64.

s
R20; (44)

in the gauge-invariant wave extraction method. These pro-
vide the amplitude of a given mode measured by an ob-
server located in the most optimistic direction.

III. SETTING

A. Initial conditions for axisymmetric simulation

Rotating stellar cores in equilibrium with the � � 4=3
polytropic equation of state [Eq. (14)] are prepared for the
initial conditions. Following [10,12], the maximum density
is chosen as 	max � 1010 g=cm3 irrespective of the veloc-
ity profile and the value of K0.

The velocity profiles of equilibrium rotating stellar cores
are given according to a popular relation [10,49,50]

utu’ � $2d��a 	��; (45)

where � � v’ denotes the angular velocity, �a is that
along the rotational axis, and $d is a constant. In the
Newtonian limit, the rotational profile is written as

� � �a
$2d

$2 �$2d
: (46)

Thus, $d indicates the steepness of differential rotation.
Since the compactness of the initial data adopted in this
paper is not so large with M=R� 10	3, where R denotes a
stellar radius, that general relativistic effects are weak. As a
result, the profile of the rotational angular velocity is
approximately written by Eq. (46). In the following, we
adopt rigidly rotating models in which $d ! 1, and dif-
ferentially rotating models with A � $d=Re � 0:25 and
0.1, where Re is the coordinate radius at the equatorial
surface. The ratio of the angular velocity at the equatorial
surface to �a is � 1=17 and 1=101 for A � 0:25 and 0.1,
indicating that Eq. (46) is approximately satisfied. We pay
particular attention to the case with high degrees of differ-
ential rotation in this paper, since in the collapse, a large
value of � can be achieved only for such cases. Indeed, a
study for presupernova evolution of rotating massive stars
[51] indicates that the velocity profile of the iron core just
before the onset of collapse may be differentially rotating.

As introduced in Sec. I, the ratio (� � T=W) of the
rotational kinetic energy T to the gravitational potential
energy W is often referred to in the following. In general
relativity, W is defined by [38]

W � M
 �U� T 	M: (47)

Here, W is defined to be positive. For stable rotating stars
in equilibrium with � � 4=3, M
 is nearly equal to M.
Thus,
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W � U� T; and � �
T

U� T
: (48)

Even in the dynamical evolution, M
 is the conserved
quantity and M is approximately conserved in the case
that luminosity of gravitational waves is small. Thus, if
other components of the energy such as the kinetic energy
associated with radial velocity are small, the above ap-
proximate relation for � in terms of U and T may be used
even in the dynamical spacetime [see also the discussion
around Eq. (54)].

In Table II, several quantities for the models adopted in
the present numerical computation are summarized. In the
first column, we describe the name of each model. We refer
to the models with �K14; A� � �5;1�, (5, 0.1), �7;1�, (7,
0.25), (7, 0.1), �8;1�, and (8, 0.1) as M5a, M5c, M7a, M7b,
M7c, M8a, and M8c, respectively.

For the rigidly rotating case with A! 1, the magnitude
of the angular velocity has to be smaller than the Kepler
angular velocity at the equatorial surface. This restricts the
maximum value of � to be smaller than � 0:0089 for all
the values of K0. This implies that the angular velocity for
models M5a1, M7a1, and M8a1 is approximately maxi-
mum among the rigidly rotating cases for a given value of
K0. The final outcome of M8a1 is a black hole. This
implies that any star with �K14; A� � �8;1� collapses to a
black hole because the mass is too large and the angular
momentum is too small to halt the collapse. On the other
hand, for K14 � 6, any star does not collapse to a black
hole since the mass is not large enough. The detail on the
criterion of the formation of a black hole is also described
in the companion paper [52].

B. Method of axisymmetric simulation

During the collapse, the maximum density increases
from 1010 g=cm3 to �1015 g=cm3 in the neutron star for-
mation and to � 1015 g=cm3 in the black hole formation.
This implies that the characteristic length scale of the
system varies by a factor of * 100. In the early phase of
the collapse which proceeds in a nearly homologous man-
ner, we may follow the collapse with a relatively small
number of grid points by moving the outer boundary
inward while decreasing the grid spacing, without increas-
ing the grid number by a large factor. As the collapse
proceeds, the central region shrinks more rapidly than the
outer region does and, hence, a better grid resolution is
necessary to accurately follow such a rapid collapse in the
central region. On the other hand, the location of the outer
boundaries should not be changed by a large factor to avoid
discarding the matter in the outer envelopes.

To compute such a collapse accurately while saving the
CPU time efficiently, a regridding technique as described
and used in [12,53] is adopted. The regridding is carried
out whenever the characteristic radius of the collapsing star
decreases by a factor of a few. At each regridding, the grid
024014
spacing is decreased by a factor of 2. All the quantities in
the new grid are calculated using the cubic interpolation.
To avoid discarding the matter in the outer region, we also
increase the grid number at the regridding, keeping a rule
that the discarded baryon rest mass has to be less than 1%
of the total.

Specifically, N and L in the present work are chosen
using a relativistic gravitational potential defined by*c �
1	 �c �*c > 0�, which is �0:01 at t � 0. Here, �c de-
notes the central value of the lapse function. Since *c is
approximately proportional to M=R, *	1

c can be used as a
measure of the characteristic length scale for the regrid-
ding. Typically, the value of N is chosen monitoring the
magnitude of *c in the following manner; for *c � 0:04,
we set N � 420; for 0:04 � *c � 0:1, we set N � 700;
for 0:1 � *c � 0:2, we set N � 1200; and for 0:2 � *c,
we set N � 1800, and keep this number until the termi-
nation of the simulations. Note that at t � 0, the equatorial
radius is covered by 400 grid points in this case. With this
setting, the total discarded fraction of the baryon rest mass
which is located outside new regridded domains is & 1%.
The grid spacing in N � 1800 is �0:6 km for a differ-
entially rotating initial condition and �0:6–0:8 km for
rigidly rotating cases. A previous work [12] illustrates
that with these grid resolutions a convergent result is
obtained for most cases.

Nevertheless, we should be very careful in judging black
hole formation since the criterion for the black hole for-
mation near a threshold depends sensitively on the strength
of shocks that are formed when the density around the
central region exceeds 	nuc. The shocks in numerical
simulations in general become stronger with improving
the grid resolutions. This implies that a black hole may
be spuriously formed in a coarse grid resolution in which
the strength of the shocks is underestimated. To avoid such
misjudging, in the case that a black hole is likely to be
formed, we perform simulations with a finer grid resolution
as follows: for *c � 0:04, we set N � 620; for 0:04 �
*c � 0:1, we set N � 1020; for 0:1 � *c � 0:2, we set
N � 1700; and for 0:2 � *c, we set N � 2500. Note that
at t � 0, the equatorial radius is covered by 600 grid points
in this case. If we find a convergent result on the black hole
formation in both resolutions, we judge that the black hole
is formed.

Simulations for each model with the typical grid reso-
lution are performed for 40 000–50 000 time steps. The
required CPU time for one model is about 20 h using four
processors of FACOM VPP5000 at the data processing
center of the National Astronomical Observatory of
Japan, and about 10 h using eight processors of NEC
SX6 at the data processing center of ISAS in JAXA.

C. Method of three-dimensional simulation

Since computational resources are restricted and we
cannot take the grid number per one direction as large as
-8
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that in the axisymmetric case, it is not a good idea to
perform three-dimensional simulations from the initial
conditions with 	max � 1010 g=cm3. To save computa-
tional time, we always follow the early stage of the col-
lapse using the axisymmetric code. After the collapse
proceeds sufficiently, we change to the three-dimensional
code. In preparing the initial conditions of three-
dimensional computations, numerical results of the axi-
symmetric simulations are used. In the early stage of
collapse at which the value of � of the collapsing star is
still not very large ( & 0:2), nonaxisymmetric dynamical
instabilities will not be induced. For highly differentially
rotating cases, nonaxisymmetric instabilities could be in-
duced even with a low value of � [28]. However in such
cases, the growth time of the nonaxisymmetric instabilities
would be much longer than the collapse time scale [28].
Therefore, the method that we adopt is appropriate.

Specifically, the initial condition for the three-
dimensional simulations is prepared when the central value
of the lapse function becomes �c � 0:8 in the axisymmet-
ric simulations. (For some case in which the minimum
value of �c is slightly larger than 0.8, we choose the value
as 0.85.) Since our major purpose in the three-dimensional
simulations is to investigate the nonaxisymmetric dynami-
cal stability of the collapsing star, we add a nonaxisym-
metric density perturbation to the axisymmetric state.
Associated with this change, the metric should be also
perturbed, but we do not know how to do this. For this
reason, we adopt a very simple method for setting the
initial conditions as follows.

First, we note that for �c  0:8, the magnitude of ~$ij 	
(ij is very small ( � 0:01) for all the components, and
hence, the spatial hypersurface is approximately confor-
mally flat. Also, the trace of the extrinsic curvature is
nearly equal to zero because of our choice of the slicing
condition. Thus, in setting the initial conditions of the
three-dimensional simulations, we assume that the three-
hypersurface is conformally flat and Kk

k � 0 for simplic-
ity. Then, we determine the conformal factor and the trace-
free extrinsic curvature using the constraint equations. In
this case, for a solution of the constraint equations, we need
only to extract 	
, ê, and ûi from the numerical results of
the axisymmetric simulations in the following method.

In the first step, we solve the momentum constraint
equation using York’s procedure [54]. Setting

Â ij � ~Aij 
6 � @iWj � @jWi 	

2
3(ij@kWk; (49)

where Wk is a three-vector, the momentum constraint is
written as

�flatWi �
1
3@i@jWj � 8.	
ûi; (50)

where �flat is the flat Laplacian. Since 	
 and ûi are given,
this equation is solved by a standard procedure (e.g., [13])
to give the trace-free part of the extrinsic curvature.
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In the next step, the Hamiltonian constraint equation is
solved. In the conformally flat spatial hypersurface, the
equation for the conformal factor  is written as

�flat � 	2.	
ê 	1 	
 	7

8
ÂijÂ

ij: (51)

Since 	
 and ê were given, and Âij was already computed
in the first step,  is also computed by a standard procedure
often used in the initial value problem.

The simulations were performed using a fixed uniform
grid and assuming reflection symmetry with respect to the
equatorial plane. The typical grid size is �2N � 1; 2N �
1; N � 1� for �x; y; z�, and we adopt N � 156, 188, and
220. The grid covers the region 	L � x � L, 	L � y �
L, and 0 � z � L where L is the location of the outer
boundaries along each axis. For a given model, we take the
identical value of L irrespective of the value of N. The grid
spacing�x � L=N is chosen to be larger than that adopted
in the corresponding axisymmetric simulation because of
restricted computational resources for the three-
dimensional case. In the case of N � 156, we choose the
grid spacing twice as large as that of the corresponding
axisymmetric simulations. The typical computation is per-
formed with N � 188, and to check the convergence, the
value of N is varied. For models in which a bar-mode
instability sets in, simulations are performed with N �
220.

The value of L is much smaller than that of the axisym-
metric simulation. This implies that we discard the matter
located in the outer region of the collapsing core.
Specifically, we discarded the matter outside a sphere of
radius � r0 by the rule

	
�new� � 	
�axisymmetric� �
1

e�r	r0�=(r � 1
; (52)

where r0 � 0:95L and (r � 2�x. In this method, the
fraction of the discarded baryon mass located for r > r0
is about 10%–20% (compare Tables II and IV).

In this paper, we focus primarily on the dynamical
stability against m � 2 bar-mode deformation, since it is
expected to be the fastest growing mode. Specifically, we
superimpose a density perturbation in the form

	
 � 	
�new�

�
1� 0:4

x2 	 y2

L2

�
: (53)

To check that the bar-mode perturbation grows for dynami-
cally unstable models even when the initial configuration is
nearly axisymmetric, we also performed simulations with-
out adding nonaxisymmetric perturbation besides random
numerical noises for selected unstable models. We found
that in such cases, the bar-mode perturbation indeed grows
although it takes more computational time to follow the
growth.

In the case that the equations of state are very soft, the
degree of the differential rotation is very high, and the
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value of � is large enough ( * 0:14) for a collapsed star,
m � 1 modes may grow faster than the m � 2 mode
[55,56]. In the formation of neutron stars in which 	max >
	nuc, the equation of state is stiff, and hence, the m � 1
mode may not be very important. On the other hand, in the
formation of oscillating stars, equations of state can be soft
for 	max <	nuc. However, the values of � in such a phase
of subnuclear density are not very large. Thus, it is ex-
pected that even if the m � 1 mode becomes unstable, the
perturbation may not grow as significantly as found in
[55,56]. Hence, we do not pay particular attention to this
mode in this paper. Since nonaxisymmetric numerical
noises are randomly included at t � 0, in some models,
the m � 1 mode grows as found in Sec. V. However, the
amplitude of the perturbation is indeed not as large as that
for m � 2.

Since we assume the conformal flatness in spite of the
fact that the conformal three-metric is slightly different
from zero in reality, a small systematic error is introduced
in setting the initial data. Moreover, we discard the matter
located in the outer region of the collapsing core according
to Eq. (52). This could also introduce a systematic error. To
confirm that the magnitude of such error induced by these
approximate treatments is small, we compare the results in
the three-dimensional simulations with those in the axi-
symmetric ones. We have found that the results agree well
each other and the systematic error is not very large. This
will be illustrated in Sec. V (cf. Fig. 13).

Simulations for each model with the grid size (441, 441,
221) (N � 220) were performed for about 15 000 time
steps. The required CPU time for computing one model
is about 30 h using 32 processors of FACOM VPP 5000 at
(a)

FIG. 1. Evolution of (a) �c and 	max and (b) � � T=�T �U� for m
curves), M7c5 (long-dashed curves), and M7c6 (dotted-dashed curv
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the data processing center of the National Astronomical
Observatory of Japan.
IV. NUMERICAL RESULTS OF
AXISYMMETRIC SIMULATIONS

A. Outcomes

In the last column of Table II, we summarize the out-
comes of stellar core collapse in the axisymmetric simula-
tions for �1 � 1:3 and �2 � 2:5. They are divided into
three types: black hole, neutron star, and oscillating star for
which the maximum density inside the star is not always
larger than 	nuc. For given values of K0� 7� 1014 cgs�
and A, a black hole is formed when the initial value of �
(hereafter �init) is smaller than critical values that depend
on A. As described in Sec. III A,� in the collapse is defined
by

� �
T

T �U
: (54)

In the dynamical spacetime with M
 � M for � � 4=3, W
would be approximately written as

W � U� T � Tother; (55)

where Tother denotes a partial kinetic energy obtained by
subtracting the rotational kinetic energy from the total.
Thus, T=W should be approximated by T=�U� T �
Tother�, but we do not know how to appropriately define
Tother. Fortunately, it would be much smaller than T at the
initial state, at the maximum compression at which the spin
of the collapsing star becomes maximum, and in a late
phase when the outcome relaxes to a quasistationary state.
(b)

odels M7c1 (solid curves), M7c2 (dotted curves), M7c3 (dashed
es). The dotted horizontal line denotes � � 0:27.
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This implies that using the definition of (54), the maximum
value and a final relaxed value of � will be computed
approximately. In other phases, � computed by Eq. (54)
gives an overestimated value.

In Fig. 1, we show the evolution of the central value of
the lapse function (�c), the maximum value of the density
(	max), and � for models M7c1, M7c2, M7c3, M7c5, and
M7c6. In the following, we denote the maximum density
and minimum value of the lapse achieved in the whole
evolution as 	Max and �Min, respectively. On the other
hand, the maximum density at a given time is denoted by
	max.

Figure 1 shows that for most cases, the value of 	Max
becomes larger than 	nuc. However, with the increase of
�init, it decreases significantly. Also, for several cases, 	max
drops below 	nuc soon after it reaches the maximum. Such
oscillating stars for which the values of 	max oscillate
between 	1�>	nuc� and 	2�<	nuc� are referred to as type
O-A in Table II. On the other hand, if �init is not very large
and neither is the maximum value of � (hereafter �max), a
neutron star or a black hole is formed. Here, the formation
of a neutron star implies that 	max achieved after the stellar
collapse is always larger than 	nuc. Formation of a black
hole implies that we confirm the formation of the apparent
horizon.

In Figs. 2(a) and 2(b), we show �Min, 	Max, and �max for
various values of �init. For �init * 0:02 with K0 �
7� 1014 cgs, 	Max is smaller than 	nuc, and the resulting
star is quasiradially oscillating with the subnuclear density.
Such stars are referred to as O-B in Table II.

Figure 1 and Table II show that initial high degrees of
differential rotation with A � 0:25 and 0.1 have an effect
(a)

FIG. 2. (a) �Min and 	Max and (b) �max for various values of �init. In
triangles, and crosses denote models M5c, M7a, M7b, M7c, and M
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for preventing black hole formation. (Compare the parame-
ters among the models with K0 � 7� 1014 cgs.) For the
rigidly rotating cases, the stars with �init & 0:005 collapse
to a black hole. On the other hand, the stars with �init �
0:003 do not collapse to a black hole but form a neutron
star for A � 0:1 and 0.25. This is simply because the stars
with such high degrees of differential rotation have a large
centrifugal force near the rotational axis, and hence, even
in the case that the global value �init is small, the effective
local value of the centrifugal force would be large enough
to prevent cores from collapsing to a black hole.

B. Evolution of � for �1 � 1:3 and �2 � 2:5

Figures 1 and 2 indicate that with the increase of �init,
�Min (	Max) increases (decreases). The value of �max is
larger for the larger value of �init as far as �init & 0:02.
However, the amplification factor �max=�init is smaller for
the larger value of�init. This is because in the collapse with
the large values of �init, strong centrifugal force prevents
the maximum value of compactness (or maximum density
or maximum value of the gravitational potential) from
being increased by a large factor. Spin can be increased
by a larger factor for a star which gains a larger compact-
ness. Therefore, for stars of approximately identical mass,
the amplification factor �max=�init should be smaller for
the larger value of �init.

The typical value of �max=�init is 10–20 for rigidly
rotating cases and for differentially rotating cases with
�init * 0:015. A naive estimation predicts that T /
J2=�MR2� and W / M2=R, and hence, � / J2=�M3R�.
Thus, � seems to be proportional to the inverse of the
(b)

both panels, the solid triangles, solid circles, open squares, open
8c, respectively. The dotted line in (b) denotes �max � 0:27.
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stellar radius in the condition that the mass and the angular
momentum of the system are conserved. Since the charac-
teristic stellar radius changes by a factor of �100 during
the collapse, we may predict that � also increases by
2 orders of magnitude. However, this does not occur. The
reason for the rigidly rotating case is that although the core
radius decreases to �10 km in the collapse, the outer
region of the star which possesses a large fraction of the
angular momentum does not collapse to such a small radius
due to the strong centrifugal force. The reason for the
highly differentially rotating cases with a high value of
�init * 0:015 is that the centrifugal force near the rota-
tional axis is so strong that the collapse is halted before the
stellar radius becomes �10 km. For low values of �init &

0:01, the rotational velocity in the outer region is small, and
also, the centrifugal force in the central region is not as
strong as that for �init * 0:015. As a result, the stellar
components that enclose a large fraction of the angular
momentum can collapse to small radii, and hence, � can
increase by a factor of * 30.

For given values of K0 and �init, the value of �max is
larger for higher degrees of differential rotation. This
suggests that stellar cores with a higher degree of differ-
ential rotation may be more subject to nonaxisymmetric
dynamical instabilities. For the identical value of �init,
�max is larger for higher-mass stellar cores with a larger
value of K0 in the case of highly differentially rotating
cores. (Compare, e.g., the solid triangle, the open triangle,
and the cross in Fig. 2(b); more specifically, compare the
results for models M5c1, M7c2, and M8c3, for which the
values of �init are approximately the same as 0:0177, but
�max is larger for larger mass.) The reason for this behavior
is that the stars of higher mass can reach a more compact
state during the collapse, and as a result, their spins can be
increased by a larger factor and so can �. On the other
hand, for rigidly rotating cases, this feature is not very
outstanding.

An interesting point is that the value of �max has a
maximum around �init � 0:018 for A � 0:1 and 0.25: For
�init & 0:018, �max is an increase function of �init, reflect-
ing the initial magnitude of the spin. However, for �init *

0:018, �max is a decrease function. The reason is that the
centrifugal force of the rotating stars with �init * 0:018 is
so strong that the collapse is halted before the stellar core
becomes compact enough. This feature is also reflected in
Fig. 2(a) from which we find that the value of �Min is an
increase function of �init.

As reviewed in Sec. I, nonaxisymmetric dynamical in-
stabilities of rotating stars in equilibrium set in when the
value of � becomes larger than �0:27. If we assume that
the collapsing stars with �max * 0:27 are dynamically
unstable, Fig. 2(b) suggests that the conditions for the onset
of the instabilities will be the following: (i) the progenitor
of the collapse should be highly differentially rotating with
A & 0:25; (ii) the progenitor has to be moderately rapidly
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rotating with 0:01 & �init & 0:02; (iii) the progenitor star
has to be massive enough.

However, it should be kept in mind that the condition
�max > 0:27 is satisfied only for a few msec during the
stellar collapse. This indicates that if the growth time scale
of nonaxisymmetric instabilities is not as short as a few
msec, the system may remain nearly axisymmetric. Thus,
the condition �max * 0:27 does not have to be the criterion
for the onset of nonaxisymmetric dynamical instabilities in
dynamical systems. The examples are shown in Sec. V.
C. Profiles of density and angular velocity for �1 � 1:3
and �2 � 2:5

In [21], Tohline and Hachisu illustrated that the stars
with toroidal density profiles are dynamically unstable
against a bar-mode perturbation even if � is much smaller
than 0.27. Also in [28], we indicated that not only the value
of � but also the degree of differential rotation is a key
parameter for determining the nonaxisymmetric stability
of rotating stars. Thus, here, we focus on the profiles of the
density and the rotational angular velocity of the outcomes
in the stellar collapse.

In Figs. 3–5, we display the snapshots of the density
contour curves, velocity vectors in the x-z plane, density
profiles along the x and z axes, and rotational angular
velocity profiles as a function of the radial coordinate in
the equatorial plane at the time slices that the maximum
completion is achieved and the system relaxes to an ap-
proximately quasistationary state for models M7c1, M7c3,
and M7c6. These figures clarify how the outcomes are
changed with the varying �init for (approximately) identi-
cal values of A and M. Panels (a), (b), and (c) show that for
the larger values of �init, the shape of the outcome is more
toruslike. Numerical studies for nonaxisymmetric dynami-
cal instabilities in rapidly rotating stars in equilibrium have
illustrated that toruslike stars are often unstable [21,22,28].
This indicates that the models such as M7c1–M7c3 in
which toruslike structures are formed are candidates for
the onset of nonaxisymmetric dynamical instabilities even
when the value of � is smaller than �0:27.

The panels (d) in Figs. 3–5 show that all the outcomes of
the collapse are differentially rotating. The degree of the
differential rotation is very large for the cylindrical radius
$ * 10 km as � / $	( with (� 1:9–2:0, reflecting the
initial profile. In the inner region of $ & 10 km, the rota-
tional angular velocity does not change as steeply as that
for $ � 10 km. This also seems to reflect the initial rota-
tional velocity profile for which � is nearly constant for
$ & $d. However, except for the very inner region, the
star is totally differentially rotating, in particular, in the
outer region, for any models of A � O�0:1�. The results
indicate that the initial rotational velocity profile is re-
flected in the outcome. Thus, if the progenitor of the
collapse is highly differentially rotating, the outcomes
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will be always so and, as a result, be candidates for the bar-
mode dynamical instabilities [28].

In Figs. 5(c) and 5(d), we display together the profiles of
the density and the rotational angular velocity for model
M7a2 (dotted curves) at t � 121:3 msec at which the out-
come has already relaxed to a quasistationary state.
Figure 5(c) shows that the outcome is a spheroid, not a
toruslike object (i.e., the central density is highest). This is
a characteristic property in the collapse with rigidly rotat-
(a)

(c)

FIG. 3. (a),(b) The density contour curves for 	 for model M7c1 at
	=	max � e	0:3j for j � 1; 2; 3; . . . ; 20, where 	max denotes the max
Vectors indicate the local velocity field �vx; vz�, and the scale is show
and z axes at t � 116:0 (solid curves) and 118.3 msec (dashed curv
coordinate in the equatorial plane.

024014
ing initial conditions [52]. Figure 5(d) shows that the rota-
tional angular velocity in the inner region is approximately
flat and thus the high-density part of the protoneutron star
is approximately rigidly rotating. The outer region of $ *

10 km, on the other hand, is differentially rotating, but the
rotational angular velocity falls off in proportional to $	(

with (� 1:4–1:5; i.e., the profile is approximately that of
Kepler’s law, and hence, the degree of differential rotation
in this case is smaller than that for differentially rotating
(b)

(d)

t � 116:0 and 118.3 msec. The solid contour curves are drawn for
imum of 	 at the given times, which are found from Fig. 1(a).
n in the upper right-hand corner. (c) Density profiles along the x

es). (d) The same as (c) but for angular velocity along the radial
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initial conditions. More details about the outcomes in the
rigidly rotating initial conditions are found in [52].

From the density contour curves, it is found that for all
the differentially rotating models, the column density in-
tegrated along the rotational axis is much smaller than that
along the equatorial plane after shocks sweep the matter.
Namely, a funnel is formed around the rotational axis even
in the absence of a black hole. This is due to the facts that
the total mass around the rotational axis is initially small
because of a high degree of differential rotation for the
initial condition and that the formed shocks are strongest
(a)

(c)

FIG. 4. The same as Figs. 3(a)–3(d) but for model M7c3 at t � 114
drawn for the corresponding time slices, respectively.
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around the rotational axis. A current popular model for the
central engine of gamma-ray bursts is the so-called collap-
sar model [57]. To escape the baryon-loading problem for
the fireball model [58], it is often required to form a funnel
in the collapsar models. In their scenario, a rapidly rotating
black hole is formed, and subsequently, a jet emitted along
the rotational axis of the black hole ejects the matter. The
present results suggest that a high degree of differential
rotation for the progenitor of the stellar collapse helps
making a funnel without relying on the formation of a
rapidly rotating black hole and subsequent jets.
(b)

(d)

:9 and 120.4 msec. The solid and dashed curves in (c) and (d) are
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D. Dependence on equations of state

To clarify the dependence of the outcomes on the equa-
tions of state, we performed simulations varying �1 and �2
as listed in Table III for models M5c1, M5c2, M7b3, M7c2,
M7c3, M7c4, M8c2, and M8c4. Here, we focus only on
highly differentially rotating cases with A � 0:1 and 0.25.
The details for the cases of rigid rotation and moderate
degrees of differential rotation with A� 1 are presented in
[52]. As listed in Table I, we choose three sets of ��1;�2� as
(i) (1.3, 2.5), (ii) (1.32, 2.25), and (iii) (1.28, 2.75). In the
following, we will refer to the models with (i), (ii), and (iii)
using the labels A, B, and C, e.g., as M5c1A, M5c1B, and
M5c1C.
(a)

(c)

FIG. 5. The same as Figs. 3(a)–3(d) but for model M7c6 at t � 113
drawn for the corresponding time slices, respectively. For comparison
curves).
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In Fig. 6, we compare the evolutions of the central value
of � and � for models M7c3A, M7c3B, and M7c3C
[Figs. 6(a) and 6(b)] and for M5c2A and M5c2C
[Figs. 6(c) and 6(d)] as representative illustrations. In the
previous section, we found that models M7c3 and M5c2
are possible candidates for the onset of nonaxisymmetric
dynamical instabilities of �max > 0:27. Among these mod-
els of different equations of state, �max for case (iii) is
largest. On the other hand, �max for case (ii) is much
smaller than those in the other two cases. This seems to
be due to the fact that for smaller values of �1, the deple-
tion factor of the internal energy and the pressure in an
early stage of collapse in which 	� 	nuc is larger. As a
(b)

(d)

:0 and 117.0 msec. The solid and dashed curves in (c) and (d) are
, the results for model M7a2 at t � 121:3 msec are shown (dotted
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TABLE III. Numerical results with different values of �1 and
�2 for selected models.

Model �1 �2 �Min 	Max �max Outcome

M5c1A 1.3 2.5 0.79 3:2� 1014 0.28 O-A
M5c1C 1.28 2.75 0.80 3:8� 1014 0.33 O-A
M5c2A 1.3 2.5 0.74 5:0� 1014 0.28 O-A ! NS
M5c2C 1.28 2.75 0.77 5:2� 1014 0.31 O-A ! NS
M7b3A 1.3 2.5 0.65 4:8� 1014 0.29 NS
M7b3B 1.32 2.25 0.71 2:8� 1014 0.23 O-A
M7b3C 1.28 2.75 0.70 5:3� 1014 0.29 NS
M7c2A 1.3 2.5 0.61 6:0� 1014 0.33 O-A
M7c2B 1.32 2.25 0.75 5:6� 1014 0.21 O-A
M7c2C 1.28 2.75 0.67 5:6� 1014 0.36 O-A ! NS
M7c3A 1.3 2.5 0.51 9:2� 1014 0.30 NS
M7c3B 1.32 2.25 0.38 1:2� 1015 0.26 O-A
M7c3C 1.28 2.75 0.61 7:6� 1014 0.33 NS
M7c4A 1.3 2.5 0.46 1:2� 1015 0.27 NS
M7c4B 1.32 2.25 � � � � � � � � � BH
M7c4C 1.28 2.75 0.59 8:7� 1014 0.30 NS
M8c2A 1.3 2.5 0.59 5:4� 1014 0.34 O-A
M8c2B 1.32 2.25 0.86 2:2� 1014 0.16 O-A
M8c2C 1.28 2.75 0.64 5:2� 1014 0.37 O-A
M8c4A 1.3 2.5 0.29 1:5� 1015 0.30 NS
M8c4C 1.28 2.75 0.51 9:4� 1014 0.34 NS
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consequence, the internal energy U is decreased to con-
tribute to the increase of �, and furthermore, the matter
around the rotational axis which possesses large values of
the specific angular momentum collapses to a more com-
pact state, for which a spin-up is enhanced effectively. On
the other hand, the values of �c (compactness) for models
M7c3C and M5c2C are larger (smaller) than that for
M7c3A and M5c2A, respectively. This may be partly due
to the fact that �2 for case (iii) is larger than that for (i), but
mainly due to the fact that the fraction of the matter which
simultaneously collapses is smaller for case (iii) than for
(i). This implies that to achieve a large value of �, it is not
necessary for the whole system to become compact.
Rather, what is essentially needed is to accumulate the
matter with large values of the specific angular momentum
in the central region. This point is reconfirmed from the
results for M7c3B. In this case, the value of �max is much
smaller than those for the other two cases, although the
value of�c is smallest among the three cases. This is due to
the fact that in this case, a large fraction of the matter
collapses nearly simultaneously independent of the mag-
nitude of the specific angular momentum.

Table III also shows that the largest value of �max is
achieved for case (iii) for all the initial conditions. This
indicates that to achieve a large value of�, the depletion of
the internal energy and the pressure in the early stage of the
collapse, which in reality will be achieved by partial pho-
todissociation of the iron to lighter elements and by the
electron capture [44,45], should be sufficiently large to
accelerate the collapse of the central region.
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As indicated in Fig. 6, the outcomes for models M7c3
and M5c2 depend sensitively on the equations of state. For
the small values of �1 [cases (i) and (iii)], an oscillating
protoneutron star is formed eventually. The amplitude of
the oscillation is smaller and the period is shorter for the
smaller value of �1 [case (iii)]. As a result, the protoneu-
tron star relaxes to a quasistationary state more quickly. For
a long period of the oscillation, the duration of the phase, in
which � and rotational angular velocity remain small,
becomes long. This also suggests that for the onset of
nonaxisymmetric dynamical instabilities, the smaller value
of �1 may be preferable.

In Fig. 7, we display the snapshots of the density contour
curves and the velocity vectors at the time slices that the
maximum compression is achieved and the system relaxes
to an approximately quasistationary state for model
M7c3C. The density profiles and the angular velocity in
the equatorial plane at the corresponding time steps are
shown in panels (c) and (d) together with results for model
M7c3A (displayed in Fig. 4). It is found that the shape of
the outcome for M7c3C is more toruslike than that for
M7c3A. In addition, the degree of differential rotation for
M7c3C is slightly higher than that for M7c3A. These facts
indicate that the outcome for M7c3C is likely to be more
subject to nonaxisymmetric dynamical instabilities. These
properties depend weakly on the value of K0 (i.e., mass of
the progenitor). Indeed, the outcome of M5c2C is more
toruslike and the degree of differential rotation in the
central region for M5c2C is higher than those for
M5c2A. As illustrated in Sec. V, thus, the value of �1 is
one key parameter for determining the onset of nonaxi-
symmetric dynamical instabilities.

We note that the properties pointed out above are found
only for A � 0:1. For A � 0:25, the value of �max for two
equations of state (i) and (iii) are not very different. Also,
the density profile and the angular velocity profile of the
formed neutron stars are similar (see Fig. 8). This indicates
that for large values of A, the larger depletion factor of the
internal energy (smaller value of �1) in the early stage of
the collapse does not play an important role for accumulat-
ing the matter of large specific angular momentum in the
central region. This result suggests that the stability prop-
erty against nonaxisymmetric deformation will not depend
on the choice of �1 and �2 for A � 0:25 as strongly as for
A � 0:1 as long as �1 � 1:3. On the other hand, for �1 �
1:32, the outcomes are completely different from those for
the other two cases as in the case of A � 0:1.

E. Candidates of nonaxisymmetric
dynamical instabilities

As reviewed in Sec. I, nonaxisymmetric dynamical in-
stabilities of rotating stars in isolated equilibrium may set
in when the value of � becomes larger than �0:27 or when
the degree of differential rotation is sufficiently high. It is
found that to achieve �max * 0:27, the following condi-
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tions are necessary; (i) the progenitor of the collapse
should be highly differentially rotating with A & 0:25;
(ii) the progenitor has to be moderately rapidly rotating
with 0:01 & �init & 0:02; (iii) the progenitor should be
massive enough to make a compact core for which an
efficient spin-up is possible.

As indicated in [21,28], even in the case of �< 0:27,
nonaxisymmetric dynamical instabilities may set in if the
degree of differential rotation is sufficiently large. To
achieve such a state, the conditions (i) and (ii) are also
(a)

(c)

FIG. 6. Evolution of (a) �c and (b) � for model M7c3 and of (c) �c
��1;�2� � �1:3; 2:5�, (1.32, 2.25), and (1.28, 2.75), respectively. The
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necessary. In addition, the following condition is required:
(iv) the depletion factor of the internal energy and the
pressure in an early stage of collapse during which 	�
	nuc is large enough to induce a significant collapse in the
central region for making a toruslike structure and a steep
profile of rotational angular velocity. In the next section,
we present numerical results of the three-dimensional
simulations and illustrate that the condition (iv) plays an
important role for the onset of nonaxisymmetric dynamical
instabilities.
(b)

(d)

and (d) � for model M5c2. Panels (i), (ii), and (iii) are results for
dotted horizontal lines in (b) and (d) denote � � 0:27.
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V. RESULTS IN THREE-DIMENSIONAL
SIMULATIONS

A. Features of nonaxisymmetric dynamical instabilities

As described in Sec. IV, there are several candidate
models for which nonaxisymmetric dynamical instabilities
may set in. We performed the three-dimensional simula-
tions focusing on the candidates in which �max * 0:27 and
�� 0:2 after bounce. In this paper, however, we do not pay
attention to the models in which oscillating stars with the
(a)

(c)

FIG. 7. The same as Figs. 3(a)–3(d) but for model M7c3C at t � 8
drawn for the corresponding time slices, respectively. In (c) and (d),
curves) for comparison.
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period * 10 msec are formed since the simulations for
such models take too much computational time.

In the simulations, we initially superimposed a nonax-
isymmetric bar-mode density perturbation as defined in
Eq. (53). Specifically, we picked up models M5c1, M5c2,
M7b3, M7c2, M7c3, and M7c4 with ��1;�2� � �1:3; 2:5�
and (1.28, 2.75) (referred to, e.g., as M5c1A and M5c1C)
as listed in Table IV. Since the matter in the outer region is
discarded in preparing the initial conditions for the three-
dimensional simulations according to Eq. (52), the mass
(b)

(d)

5:1 and 89.0 msec. The solid and dashed curves in (c) and (d) are
we plot the results for model M7c3A at t � 120:4 msec (dotted
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and the angular momentum are smaller than those in the
corresponding axisymmetric simulations by 10%–20%.
As a consequence, the numerical results deviate slightly
from those obtained by the axisymmetric simulations even
in the case that nonaxisymmetric deformation is small.
However, qualitative differences between two results are
not found and also the quantitative disagreement is small
(see below).

In this paper, the dynamical stability against bar-mode
deformation is analyzed using a distortion parameter de-
fined by
(a)

(c)

FIG. 8. (a) The density contour curves for 	 for model M7b3A at t
same method as in Fig. 3. (b) The same as (a) but for model M7b3C a
in the equatorial plane for models M7b3A at t � 123:1 msec (solid c
function of time for models M7b3A, M7b3B, and M7b3C.
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, � �,2� � ,2��
1=2; (56)

where

,� �
Qxx 	Qyy

Qxx �Qyy
; ,� �

2Qxy

Qxx �Qyy
; (57)

and

Qij �
Z
	>	cut

	
x
ixjd3x: (58)

Here, the integration is carried out only for 	  	cut where
	cut is a selected cutoff density. In this paper, we chose as
(b)

(d)

� 123:1 msec. The contour curves and vectors are drawn in the
t t � 91:3 msec. (c) Angular velocity along the radial coordinate
urve) and M7b3C at t � 91:3 msec (dashed curve). (d) 	max as a
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	cut � 	max=100 to focus on the high-density region. For
comparison, we also chose the cutoff density as zero (i.e.,
the distortion parameter is defined in terms of Iij). In this
case, the distortion parameter is denoted as ,0. In the
following, we primarily adopt ,, and if the value of ,
grows exponentially, we judge that the model is dynami-
cally unstable.

In Fig. 9, we show the evolution of 	max, �c, and , for
models M5c1C, M5c2A, M5c2C, M7b3A, M7b3C,
M7c2A, M7c2C, M7c3A, and M7c3C. For models
M5c2A, M7b3A, M7b3C, M7c2A, M7c3A, and M7c4C,
, (and also ,0) does not increase exponentially (cf.
Table IV). This implies that these models are dynamically
stable against bar-mode deformation. For models M5c1C,
M5c2C, M7c2C, and M7c3C, on the other hand, the values
of , approximately increase in proportion to et=A where A
denotes a characteristic growth time. Thus, these models
are unstable. The growth time A of these models is ap-
proximately 0.8–1 msec. This is the same order of magni-
tude as the dynamical time scale 		1=2

c . Thus, the
instabilities found here are indeed the dynamical
instabilities.

In Figs. 10–12, we display the snapshots of the density
contour curves and velocity vectors for the selected time
slices for models M7c2C, M7c3C, and M5c2C. In all the
models, the collapse proceeds in an approximately axisym-
metric manner throughout the initial collapse to the first
bounce, forming a toruslike structure. For M7c2C, after the
first bounce, the formed core expands by a large factor, and
then, collapses again. In this second collapse, nonaxisym-
metric instabilities grow significantly: In the toruslike
high-density region, two density peaks are formed (third
panel of Fig. 10). Then, the separation of the density peaks
increases, and a barlike structure is formed (fourth panel),
developing spiral arms in the outer region. Subsequently,
the separation decreases, and they eventually merge and
form a single peak (fifth and sixth panels). In the outer
region, spiral arms are developed, which play a role for
TABLE IV. Parameters and numerical results fo
	max, and L are listed in units of cgs,M�, g=cm3, a
nearly equal to the baryon rest mass M
. In the las
shown.

Model A K0 �1 �2

M5c1C 0.1 5� 1014 1.28 2.75
M5c2A 0.1 5� 1014 1.3 2.5
M5c2C 0.1 5� 1014 1.28 2.75
M7b3A 0.25 7� 1014 1.3 2.5
M7b3C 0.25 7� 1014 1.28 2.75
M7c2A 0.1 7� 1014 1.3 2.5
M7c2C 0.1 7� 1014 1.28 2.75
M7c3A 0.1 7� 1014 1.3 2.5
M7c3C 0.1 7� 1014 1.28 2.75
M7c4C 0.1 7� 1014 1.28 2.75
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transferring the angular momentum of the formed core to
the outer region. Because of this angular momentum trans-
fer as well as the dynamical friction force to the bar from
the surrounding matter, the nonaxisymmetric structure of
the central core is quickly erased and the protoneutron star
eventually relaxes to a slightly nonaxisymmetric quasista-
tionary state.

For model M7c3C, the nonaxisymmetric instabilities
grow in a similar manner to that of M7c2C. In this case,
however, the maximum value of ,, which denotes the
achieved maximum degree of nonaxisymmetric deforma-
tion, is slightly smaller. This seems to reflect the fact that
the angular momentum is not as large as that of M7c2C.
For model M5c2C, the evolution is very similar to that of
M7c3C. However, the growth rate of , for M5c2C is
slightly smaller than for M7c2C. The reason is that the
mass and the compactness of the outcome formed after the
collapse are smaller, and hence, the growth time of the
nonaxisymmetric dynamical instabilities, which is ap-
proximately proportional to the dynamical time scale,
becomes longer.

A noteworthy feature for the unstable models is that in
the late phase in which the bar-mode perturbation damps,
the m � 1 mode grows gradually and becomes a dominate
mode eventually. With the growth of this mode, a small
one-armed spiral arm is formed (see, e.g., the last panels of
Figs. 10–12). The excitation of this mode is probably due
to the fact that the formed star is highly differentially
rotating [55,56]. However, the effect of its growth is not
very outstanding since the amplitude of the perturbation is
not very large and fairly quickly damps due to the angular
momentum transfer to the outer region. Therefore, we
conclude that the onset of m � 1 mode instabilities is not
as important as that of the bar mode for the evolution of the
system, although the density configuration of the formed
protoneutron star becomes asymmetric due to it.

The formation of the bar and subsequent outward trans-
fer of the angular momentum change the density profile of
r three-dimensional simulations. K0, M
�M�,
nd km, respectively. The ADM massM is still
t column, the stability against the bar mode is

M
 M J=M2 L Stability

1.287 1.288 1.380 144 Unstable
1.384 1.384 1.103 147 Stable
1.224 1.235 1.204 147 Unstable
2.234 2.235 1.154 182 Stable
1.944 1.946 1.195 182 Stable
2.347 2.348 1.081 170 Stable
2.106 2.108 1.172 170 Unstable
2.263 2.265 0.939 171 Stable
2.014 2.016 1.024 171 Unstable
1.956 1.958 0.922 172 Stable
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the protoneutron stars. In Fig. 13, we show the evolution of
�c, 	max, and , for models M7c2C and M7c3C in the
three-dimensional simulations as well as in the axisym-
metric ones. To illustrate that the convergence is approxi-
mately achieved, the three-dimensional results with
N � 156, 188, and 220 are shown together. In the early
stage of the evolution (t & 88 msec) in which the ampli-
tude of the bar-mode perturbation is small, the results of
the three-dimensional and axisymmetric simulations are in
(a)

(c)

FIG. 9. Evolution of 	max, �c, and , in the three-dimensional sim
curves), and M5c2C (dotted curves); (b) for models M7c2A (dotted
M7c3C (dashed curves); and (c) for models M7b3A (dotted curves) a
change to the three-dimensional code; t2d � 85:4, 115.1, 85.1, 114.
M5c2C, M7c2A, M7c2C, M7c3A, M7c3C, M7b3A, and M7b3C, re
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good agreement: i.e., �c and 	max are simply in a damped
oscillation. A slight disagreement between the results of
the three-dimensional and axisymmetric simulations is
likely due to the fact that we discard the matter located
in the outer region in the three-dimensional simulations. In
a stage in which the system is approximately axisymmet-
ric, shock dissipation which damps the oscillation is only
the mechanism for modifying the density profile. On the
other hand, in the late stage with , * 0:1 [see Figs. 13(c)
(b)

ulations (a) for models M5c1C (solid curves), M5c2A (dashed
curves), M7c2C (solid curves), M7c3A (dot-dashed curves), and
nd M7b3C (solid curves). Here, t2d denotes the time at which we
9, 85.1, 121.2, 84.7, 118.6, and 86.7 msec for M5c1C, M5c2A,
spectively.
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and 13(d)], 	max (�c) gradually increases (decreases) with
time in the three-dimensional simulations. This reflects the
effect of the angular momentum transfer by which the
centrifugal force in the inner region is weakened and the
formed object becomes more compact than the outcome in
the axisymmetric simulations. In particular, the effect is
remarkable for model M7c2C. In this case, an oscillating
(type O-A) star (not a protoneutron star in the definition of
this paper) is formed in the early phase of the axisymmetric
simulation, while in the three-dimensional simulation, the
protoneutron star is promptly formed because of the quick
contraction due to the outward transfer of the angular
momentum. For more massive cases with M * 3M�, pro-
toneutron stars which are supported by strong differential
rotation may be formed first [59], but the angular momen-
tum transfer may trigger black hole formation. This effect
may also play an important role in the stellar collapse of
very massive (M * 250M�) stars (population III stars)
which is triggered by the electron-positron pair creation
instability [60]. Very massive stars are likely to be rapidly
rotating [61], and the collapse may not result directly in a
black hole but in very massive self-gravitating disks [62].
FIG. 10. Snapshots of the density contour curves for 	 in the equat
for 	=	max � 1, 0.8, 0.6, 0.4, 0.2, and 10	j=2 for j � 2; . . . ; 8. Vectors
the upper right-hand corner.
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The disks will be dynamically unstable against nonaxisym-
metric deformation and the resulting angular momentum
transfer by a nonaxisymmetric structure may induce black
hole formation.

Figure 13 also shows that with increasing the value ofN,
the numerical results achieve a convergence. The results of
N � 188 and 220 agree well (except for those in the very
late time for which the numerical error is accumulated too
much), implying that a convergent result is obtained with
N � 200. By the way, the period of the quasiradial oscil-
lation becomes spuriously longer due to the larger numeri-
cal dissipation with the smaller value of N. Such spurious
effect may lead to underestimation of the growth rate and
the achieved maximum value of ,. The convergent test
carried out here gives us a caution that we have to guaran-
tee a sufficient grid resolution in this problem.

In the lower panels of Figs. 13(c) and 13(d), we display
the evolution of ,0 to compare with that of ,. For model
M7c2C, ,0 increases to be much larger than the initial
value. However, the value of ,0 is smaller than that of ,
even when the bar mode grows to a nonlinear regime. This
implies that the bar structure is formed mainly in the
orial plane for model M7c2C. The solid contour curves are drawn
indicate the local velocity field �vx; vy�, and the scale is shown in
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FIG. 11. The same as Fig. 10 but for model M7c3C.
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central region. This feature is more outstanding for model
M7c3C in which the increase of ,0 from the initial value is
not seen. Thus, we conclude that the bar-mode perturbation
is amplified only in the central region. This is reasonable
since in the models with A � 0:1, the outcomes are rapidly
rotating only in the central region.
FIG. 12. The same as Fig. 1
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B. Criterion for the onset of nonaxisymmetric
dynamical instabilities

Models M7c2C and M7c3C are dynamically unstable
against the bar mode and m � 1 mode deformation, while
model M7c4C is stable for both modes. This implies that
for the onset of dynamical nonaxisymmetric instabilities,
0 but for model M5c2C.
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high values of � are necessary for given values of �1 and
M.

All the models with �1 � 1:3 that we picked up here are
stable. On the other hand, the models with �1 � 1:28 are
much more prone to be unstable. This suggests that only
for a sufficiently small value of �1 & 1:28, the collapsing
star can be unstable. As mentioned in Sec. IV, for the
smaller value of �1 (for the larger depletion factor of the
internal energy and the pressure at the onset of collapse),
the outcomes are more toruslike than those for other values
of �1, and also, the degree of differential rotation is larger.
FIG. 13 (color online). Evolution of �c and 	max (a) for model M7
with N � 156 (dashed curves), 188 (solid curves), and 220 (long-dash
Evolution of , and ,0 (c) for model M7c2C and (d) for model M7c3
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These facts are likely reasons that models with �1 � 1:28
are more subject to the dynamical instabilities.

Even with M � 1:5M� (models M5c1C and M5c2C),
nonaxisymmetric bar-mode instabilities set in, although
the maximum values of � and compactness for the out-
comes are smaller than for models M7c2C and M7c3C.
This indicates that the mass and compactness achieved in
the collapse are not very important parameters for trigger-
ing the bar-mode instabilities as far as M is larger than
�1:5M�. However, it should be noted that general relativ-
istic effects certainly help making a compact outcome.
c2C and (b) for model M7c3C in three-dimensional simulations
ed curves) as well as in axisymmetric simulation (dotted curves).
C in three-dimensional simulations with varying grid resolution.
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Thus, if the mass is much smaller than �1:5M�, nonax-
isymmetric instabilities may not set in.

Although a high value of � is necessary, the onset of the
nonaxisymmetric dynamical instabilities is not simply de-
termined by the value of �; i.e., although a large value of
� * 0:27 is preferable for the onset, it is neither the
necessary nor the sufficient condition. The first evidence
for this statement is that the values of , for the unstable
models do not increase at the first bounce at which the
value of � becomes maximum with �max * 0:27. The
growth of the perturbation is significantly induced in the
subsequent bounce stages. Also, model M7c2A is dynami-
cally stable although �max � 0:33. These show that even if
� exceeds �0:27, the nonaxisymmetric perturbations do
not grow. Probably, the duration of the phase for which
�> 0:27 would have to be much longer than the dynami-
cal time scale for the onset of the dynamical instabilities.

Second, the value of � during the growth of the bar-
mode perturbation is smaller than 0.27 for any unstable
model. In Fig. 14, we show the time evolution of � for
models M7c2C, M7c3A, M7c3C, and M5c2C. It shows
that during the growth of the perturbation, � for models
M7c3C and M5c2C is at most �0:25 and on average �0:2,
which is much smaller than the widely believed critical
value �0:27. There are at least three possible reasons that
� may be smaller than 0.27 for the onset of the nonax-
isymmetric dynamical instabilities. The first one is that the
effective value of � in the high-density region may be
larger than the global value, and may be large enough for
FIG. 14 (color online). Evolution of � for models M7c2C
(solid curve), M7c3C (long-dashed curve), M7c3A (dashed
curve), and M5c2C (dot-dashed curves) in three-dimensional
simulations. The values of t2d are listed in the caption of
Fig. 9. The dotted line denotes � � 0:27.
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the onset of the nonaxisymmetric dynamical instabilities.
This is likely to be the case, in particular, for the highly
differentially rotating collapse since the effective value of
� in the central high-density region where the nonaxisym-
metric perturbation grows dominantly is larger than the
whole value for such cases. The second possibility is that
the onset of the nonaxisymmetric dynamical instabilities is
due to the high degree of differential rotation as indicated
in a Newtonian simulation [28]. In this case, the high value
of �> 0:27 is not necessary. The third possibility is that
general relativistic effects reduce the critical value of �
below 0.27. Indeed, in [15], we showed that the critical
value of � can be decreased by �10% due to the general
relativistic effects for compact stars with the compactness
�0:1–0:2. All these possibilities show that the critical
value of � for the onset of the nonaxisymmetric dynamical
instabilities may be smaller than 0.27 depending sensi-
tively on several parameters, and thus, it cannot be
uniquely determined.

Figure 14 also shows that the values of � for models
M7c3A and M7c3C are not very different during the
oscillation phase although they are stable and unstable
against bar-mode deformation, respectively. This also il-
lustrates that the value of � does not uniquely determine
the dynamical stability. As shown in Fig. 7, on the other
hand, the profiles of the density and the rotational angular
velocity in the central region are different between two
models. Thus, in this case, the degree of differential rota-
tion and the steepness of the density profile play an im-
portant role for determining the stability.

The case with �1 � 1:28, in which the depletion of the
pressure and the internal energy in an early stage of col-
lapse with 	� 	nuc is largest among the three cases, is
more subject to the nonaxisymmetric dynamical instabil-
ities. This indicates that a large depletion of the internal
energy and the pressure in the early stage is an essential
element for the onset of the nonaxisymmetric dynamical
instabilities. The reason is that for the larger depletion
factor, the collapse in the central region proceeds signifi-
cantly to make a compact core, and hence, to increase the
spin of the central region as illustrated in the axisymmetric
simulations (cf. Fig. 7). In a realistic phenomenon, the
depletion of the pressure and the internal energy in the
early stage is determined by the partial photodissociation
of the iron to lighter elements, by the electron capture, and
by the neutronization [44,45]. Since the depletion factor is
a crucial parameter, an appropriate modeling for such
microphysical processes will be necessary for a more de-
tailed study on the nonaxisymmetric dynamical instabil-
ities in the future.

No evidence for fragmentation of protoneutron stars is
found in the first �10–20 msec after the bounce in the
present numerical simulations. Previous studies in the field
of protostar formation from collapsing gas clouds (e.g.,
[63]) show that the fragmentation occurs when the thermal
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energy at an initial stage of the collapse is much smaller
than the gravitational potential energy: In the case of the
small thermal energy, a toruslike or a disklike structure is
formed as a result of the collapse and subsequently the
fragmentation takes place. This indicates that if the value
of �1 is much smaller than 1.28 (i.e., if the fraction of the
depletion of the internal energy and the pressure in an early
stage of collapse is much larger than 16%), the fragmenta-
tion may occur during the stellar core collapse. However,
such an extremely small value of �1 (an extremely large
value of the depletion factor) is unlikely to be achieved in
the stellar core collapse [44,45], and therefore, we infer
that the fragmentation of protoneutron stars would not
occur in nature, at least in a few 10 msec after the stellar
collapse.

To summarize, the nonaxisymmetric dynamical insta-
bilities set in only for the case that the following conditions
are satisfied: (i) the progenitor of the stellar core collapse is
rapidly rotating with the initial value of � * 0:01, (ii) the
degree of differential rotation for the velocity profile of the
initial condition is very high with A & 0:1, (iii) the deple-
tion factor of the pressure and the internal energy in an
early stage of collapse in which 	� 	nuc should be large
enough to induce a rapid collapse in the central region of
the stellar core and for an efficient spin-up. With the
increase of the stellar core mass, the maximum value of
� achieved during the collapse is increased, but this does
not significantly change the stability property as far asM is
larger than �1:5M�. It is also found that the value of �
does not uniquely determine the property of the dynamical
stabilities.

C. Gravitational waveforms from nonaxisymmetrically
deformed stars

In Fig. 15, we show gravitational waveforms and total
emitted energy and angular momentum as a function of
retarded time for models M7c2C, M7c3C, and M5c2C. For
these models, nonaxisymmetric dynamical instabilities set
in after the bounce resulting in the formation of a bar and
spiral arms and in excitation of gravitational waves with
m � 2modes. Gravitational waveforms are computed both
by the gauge-invariant wave extraction and by the quadru-
pole formula.

Figure 15 shows that with the amplification of ,, the
amplitudes of gravitational waves are increased. However,
once it reaches the maximum, the amplitude damps
quickly as in the evolution of ,. This is due to the effect
that the bar-mode perturbation plays a role for transferring
the angular momentum from the inner region to the outer
one. Eventually, the bar-mode perturbation damps, result-
ing in a quick damping of gravitational wave amplitude.
The damping is, in particular, outstanding for model
M7c2C. This is due to the fact that in this model, the
amplitude of the bar mode is largest, and hence, the angular
momentum transfer is most effective. Because of this fact,
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the total emitted energy for models M7c2C and M7c3C
becomes approximately identical although the maximum
amplitude of gravitational waves for M7c2C is about twice
larger.

In isolated rotating stars, once the bar-mode instabilities
set in and saturate, the amplitude of their perturbation
remains approximately constant, resulting in the emission
of quasiperiodic gravitational waves in a dissipation time
scale of gravitational radiation which is much longer than
the dynamical time scale (e.g., [28]). However, in the
rotating core collapse, the amplitude of gravitational waves
is damped by the angular momentum transfer from the bar
to the surrounding matter, for which the time scale is nearly
equal to the dynamical time scale and much shorter than
the emission time scale of gravitational radiation.

The maximum amplitude of gravitational waves for
model M7c2C is by a factor of �2 larger than that for
M7c3C, reflecting that the degree of nonaxisymmetric
deformation is larger. The amplitude for model M5c2C is
by a factor of �2:5 smaller than that of M7c3C, although
the initial value of � is approximately identical and the
waveforms are very similar for these two models.
According to the quadrupole formula, the amplitude of
gravitational waves is approximately proportional to M2

if the radius of the formed protoneutron star is identical.
Thus, the dependence on the mass is reflected in the
amplitude.

In the evolution of models M7c2C, M7c3C, and M5c2C,
them � 1mode perturbation grows in the late phase of the
evolution. However, this does not affect the amplitude of
gravitational waves significantly, since the amplitude of the
perturbation is not very large and them � 1mode does not
contribute to the lowest-order (mass quadrupole) wave-
forms in the three-space of the reflection symmetry with
respect to the equatorial plane.

For models M7c2C and M7c3C, the maximum values of
R�;� are �0:25 and 0.15 km, respectively. For M5c2C, it is
even smaller �0:05 km. The amplitude of gravitational
waves, h, observed at a distance of r along the optimistic
direction (3 � 0) is written as

h � 10	21
�
R�;�

0:31 km

��
10 Mpc

r

�
: (59)

This implies that the observed amplitude at a distance of
10 Mpc is at most h & 8� 10	22 for initial core massM�
2:5M� and h� 1:5� 10	22 for M� 1:5M�.

To compare the amplitude of gravitational waves from
the bar-mode deformation with that from axisymmetric
collapse, we show A0 for models M5a1, M7a1, M5c2,
and M7c3 with �1 � 1:3 and �2 � 2:5 in the axisymmetric
simulations in Fig. 16. As mentioned in [12], it is difficult
to extract gravitational waves of small amplitude from the
metric in the axisymmetric simulations, and hence, only
the waveforms by the quadrupole formula are presented
here. Although it provides only an approximate waveform,
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the wave phase can be accurately computed and the error of
the amplitude will be at most �10%. Figure 16 indicates
that for the initial mass M� 2:5M�, the maximum ampli-
tude is at most 0.01 km for the rigidly rotating case and
0.02–0.03 km for differentially rotating cases. The values
are by a factor of �2 smaller for M� 1:5M�. Thus, the
amplitude of gravitational waves of the l � m � 2 modes
from the nonaxisymmetric dynamical instabilities is �10
times as large as that in the axisymmetric case. On the
other hand, those amplitudes are not as large as the maxi-
mum amplitude of gravitational waves from coalescing
(a)

(c)

FIG. 15. Gravitational waveforms in the gauge-invariant wave ex
(a) for M7c2C, (b) for M7c3C, and (c) for M5c2C. (d) Total emitted
for models M7c2C (solid curves), M7c3C (dashed curves), and M5
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binary neutron stars in close circular orbits [36]. Thus,
the nonaxisymmetric deformation in the stellar core col-
lapse is not as strong an emitter as coalescing binary
neutron stars.

For model M7c2C (M7c3C), the total emitted energy
and angular momentum are about 9� 1050 erg (9�
1050 erg) and 3� 1047 g cm2=sec (2� 1047 g cm2=sec),
respectively. These values are about 0.03% (0.03%) of
the total mass energy (M
c

2) and 0.7% (0.6%) of the total
angular momentum, respectively, and are much larger than
those in the axisymmetric collapse (e.g., [10]). However,
(b)

(d)

traction method (R�;�) and in the quadrupole formula (A�;�)
energy and angular momentum as a function of the retarded time
c2C (long-dashed curves).

-27



(a) (b)

FIG. 16. A0 in the axisymmetric simulations (a) for models M7a1 (solid curve) and M5a1 (dashed curve), and (b) for models M7c3
(solid curve) and M5c2 (dashed curve) with �1 � 1:3 and �2 � 2:5.
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they are not as large as those in the merger of binary
compact objects in which * 1% of the total mass energy
and * 10% of the angular momentum are dissipated by
gravitational waves in the final phase of the merger [36].
Thus, in the stellar collapse, the radiation reaction by
gravitational waves is not likely to play an important role
for the dynamics of bounce and oscillation of the proto-
neutron star. For model M5c2C, these values are much
smaller because of its small mass and small compactness
achieved. Hence, the effect of gravitational wave emission
is less important.

Comparison of gravitational waveforms computed by
the gauge-invariant wave extraction method and by the
quadrupole formula shows that the wave phase in the two
results agree approximately (besides a systematic phase
shift). However, the amplitude disagrees by a factor of & 2.
As pointed out in [12], in the quadrupole formula, the
amplitude is underestimated by a factor of M=R�
0:1–0:2 where R here denotes the characteristic radius of
the outcome after the collapse. On the other hand, the
amplitude in the gauge-invariant wave extraction method
is likely to be overestimated because the waveforms are
extracted in a local wave zone [48]: In this paper, L�
B=2< B where B is the wavelength of gravitational waves
�300 km, and thus, the amplitude would be overestimated
by a factor of 10%–20% [48]. Hence, the true amplitude
would be between two results. However, besides the dis-
agreement in the amplitude, two methods provide qualita-
tively the identical results. This reconfirms that the
quadrupole formula is a reasonable method for approxi-
mately computing gravitational waveforms even in fully
general relativistic simulations, in the absence of black
holes.
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In Fig. 17, we show the energy power spectrum of m �
2 modes (a) for models M7c2C (solid curve) and M7c3C
(dashed curve) and (b) for model M5c2C. The Fourier
spectrum is computed from gravitational waveforms in
terms of the gauge-invariant wave extraction. The spec-
trum for model M7c2C is broader in a low frequency
region with f < 1 kHz than those for other models. This
reflects the long oscillation period of this model. The peak
frequency is about 0.8–1.3 kHz in these models. These
frequencies are determined by the quadrupole f mode
frequency of the deformed star formed after the bounce.
Namely, the higher peak frequency implies that the out-

come is more compact in proportion to

M=R3

p
. According

to a perturbative study for the quadrupole f mode [64], the
frequency of neutron stars becomes �2:5–4 kHz. The
frequency of the oscillation of unstable protoneutron stars
is much lower than that of neutron stars. The reason is that
the radius of the protoneutron star is larger. Nevertheless,
the peak frequency is higher than the best sensitive fre-
quency (between �100 and several 100 Hz) of kilometer
size laser interferometers such as LIGO [34]. As shown in
Eq. (59), the amplitude of gravitational waves is not very
high if we assume the distance to the source * 10 Mpc.
Thus, gravitational waves from nonaxisymmetrically de-
formed protoneutron stars may be promising sources for
such gravitational wave detectors only when the stellar
collapse happens for r� 10 Mpc. On the other hand, the
frequency may be in a good range for resonant-mass
detectors and/or specially designed advanced interferome-
ters such as the advanced LIGO [34].

To summarize this section, we have found that the
amplitude of gravitational waves from dynamically un-
stable protoneutron stars against nonaxisymmetric defor-
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FIG. 17. Energy power spectra of l � m � 2 modes (a) for models M7c2C (solid curve) and M7c3C (dashed curve), and (b) for
M5c2C.
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mation is �10 times as large as that from the axisymmetric
collapse. However, even in the case that the degree of the
nonaxisymmetric deformation is as large as in model
M7c2C, the maximum amplitude is & 20%–30% of that
in the merger of binary neutron stars (e.g., [36]). Since the
peak frequency of gravitational waves is fairly high
�1 kHz, gravitational waves from nonaxisymmetric dy-
namical deformation of protoneutron stars may become
promising sources for the laser-interferometric gravita-
tional wave detectors only in the case that the event rate
for the nonaxisymmetric deformation in the stellar core
collapse is large.

Before closing this section, we demonstrate that the
convergence with the improvement of the grid resolution
is achieved fairly well for gravitational waveforms. In
Fig. 18, we show the numerical results for models
M7c2C and M7c3C with N � 156, 188, and 220. For the
lower grid resolution, the period of the quasiradial oscil-
lation becomes longer. As a result, the growth rate of ,
becomes smaller. This causes an error in the phase of
gravitational waves. Also, the lower grid resolution results
in underestimating the maximum value of ,. As a result,
the amplitude of gravitational waves is underestimated.
However, with N * 200, the numerical results appear to
converge well. Thus, we conclude that with our choice of
the grid resolution, a good convergent result is obtained.
VI. SUMMARY AND DISCUSSION

We have presented the first numerical results of three-
dimensional hydrodynamic simulations for stellar core
collapse in full general relativity focusing mainly on the
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criterion for the onset of the bar-mode dynamical instabil-
ities. The nonaxisymmetric dynamical instabilities have
been widely studied for isolated rotating stars in equilib-
rium to this time not only in Newtonian gravity but also in
general relativity. However, for nonaxisymmetric dynami-
cal instabilities in rotating stellar core collapse, very little
study has been done even in Newtonian gravity [7]. Taking
into account such status, we performed the simulations for
a wide variety of equations of state, stellar masses, and
velocity profiles to clarify the criterion for the onset of the
nonaxisymmetric dynamical instabilities as well as the
outcomes after their onset.

A number of previous works for isolated rotating stars in
equilibrium have clarified that the bar-mode dynamical
instabilities can set in when the value of � exceeds
�0:27 or when the degree of differential rotation is suffi-
ciently high. Thus, first, we performed axisymmetric simu-
lations of rotating stellar collapse to clarify the conditions
that the value of � is amplified beyond �0:27 and that the
degree of differential rotation for the outcomes of the
collapse becomes very large. We have found the following
conditions are necessary to achieve a state with �max >
0:27: (A) the initial state of the collapse is highly differ-
entially rotating with A & 0:1; (B) the progenitor is mod-
erately rapidly rotating with 0:01 & �init & 0:02, but has
to be not very rapidly rotating such as �init * 0:02; (C) the
progenitor star is massive enough to achieve a compact
state for which a significant spin-up is achieved. However,
at the same time, the mass should not be very high to avoid
black hole formation. We also found that to achieve a high
degree of differential rotation after the collapse, the deple-
tion factor of the pressure and the internal energy in an
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FIG. 18 (color online). Gravitational waveforms and energy luminosity (a) for model M7c2C and (b) for model M7c3C with N �
156, 188, and 220. The long-dashed, solid, and dashed curves denote the results with N � 220, 188, and 156.
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early stage of collapse in which 	� 	nuc should be large
enough to induce a rapid collapse in the central region of
the stellar core and resulting efficient spin-up.

Next, to clarify the condition for the onset of nonaxi-
symmetric dynamical instabilities, we performed three-
dimensional simulations. Based on the results of axisym-
metric simulations, we picked up models which are likely
to become unstable during the collapse and bounce. From
the three-dimensional simulations, it is found that the non-
axisymmetric dynamical instabilities set in only for a
restricted parameter range as indicated by axisymmetric
simulations. Specifically, the following conditions are re-
quired to be satisfied: (i) the progenitor of the stellar core
collapse is rapidly rotating with 0:01 & �init & 0:02, (ii)
the degree of differential rotation for the velocity profile of
the initial condition is very high with A & 0:1, and (iii) the
depletion factor of the pressure and internal energy in the
early stage of collapse is large enough to induce a rapid
collapse in the central region of the stellar core. Although
stellar cores of larger mass have more advantage to form a
compact protoneutron star, the stability property depends
weakly on the mass as far as M * 1:5M�.

Gravitational waves are computed in the case that the
bar-mode dynamical instabilities set in. For the case that
the bar-mode perturbation grows, the amplitude of gravi-
tational waves increases exponentially, and as a result,
burst-type waves are emitted. However, since the bar
mode of the core subsequently damps due to the outward
angular momentum transfer in a short time scale
�2–3 msec, the amplitude of gravitational waves de-
creases quickly. Thus, quasiperiodic gravitational waves,
in which the amplitude can be accumulated effectively, are
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not emitted efficiently after the damping of the nonaxisym-
metric perturbation. The maximum amplitude of gravita-
tional waves at a distance of 10 Mpc is �4–8� 10	22 with
the frequency �1 kHz for very massive core collapse with
initial core mass M� 2:5M�. The maximum amplitude is
approximately proportional toM2 for a given value of�init.
For M� 1:5M�, thus, the maximum amplitude is �1–2�
10	22 at a distance of 10 Mpc. This amplitude is about
10 times as large as that in the axisymmetric collapse, but
�20%–30% of the maximum amplitude in the merger of
binary neutron stars (e.g., [36]). Thus, the feature of gravi-
tational waves is summarized as follows: (i) burst-type (not
quasiperiodic) waves are emitted, (ii) the frequency is
relatively high with �1 kHz, and (iii) the amplitude is
about 10 times as large as that from axisymmetric collapse,
but not as large as that for the merge of binary compact
objects. These facts imply that only when nonaxisymmet-
ric dynamical instabilities set in for a large fraction of the
stellar core collapse, gravitational waves induced by non-
axisymmetric dynamical instabilities of protoneutron stars
may become promising sources for kilometer size laser
interferometers.

Besides the dynamical instabilities, there is another
route for nonaxisymmetric deformation: secular instabil-
ities. As found from Figs. 1 and 6, the value of � in the
protoneutron stars formed after the collapse is often larger
than the critical value for the onset of secular instabilities
�0:14. According to previous works [65–67], isolated
rotating stars of � * 0:14 can form an ellipsoidal structure
due to gravitational radiation, which may become a strong
emitter of quasiperiodic gravitational waves with the fre-
quency between 10 and several 100 Hz. However, these
-30
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studies were performed for isolated stars. In the case of
stellar core collapse, the formed protoneutron stars will be
surrounded by massive outer envelopes, and thus, the bar-
mode perturbation excited by the secular instabilities may
be damped quickly due to the angular momentum transfer
from the ellipsoidal protoneutron star to the outer envelope
as in the case of the dynamical instabilities. A simulation
with massive envelope will be necessary to clarify whether
the secular instabilities can grow or not. On the other hand,
in contrast to the dynamical instabilities, the growth time
scale of the secular instabilities is fairly long * 100 msec.
In such a long time scale, the surrounding matter may be
ejected outward or accrete onto the central neutron star in
reality, and hence, the secular instabilities may grow as in
the isolated stars. However, in such a long time scale,
viscous or magnetic dissipation may also play an important
role [59] for preventing the growth of the nonaxisymmetric
perturbation. At present, it is totally unclear whether the
secular instabilities set in or not.

As reported in this paper, the criterion for the onset of
nonaxisymmetric dynamical instabilities may depend sen-
sitively on the equations of state for subnuclear density,
since with the smaller pressure for 	 < 	nuc, the collapse is
accelerated more for an efficient spin-up of the central
region. In the present work, we adopted a parametric
equation of state for simplicity. To clarify the criterion
for the onset of nonaxisymmetric dynamical instabilities
more strictly, however, sophisticated equations of state
should be adopted. In realistic equations of state, the
increase rate of the pressure as a function of the density
(i.e., an adiabatic index) significantly decreases at density
�1012 g=cm3 (e.g., [68,69]). This suggests that in a real-
024014
istic equation of state, collapse of the central region is
likely to be accelerated significantly before reaching the
nuclear density and, hence, the collapsed core may be more
subject to nonaxisymmetric dynamical instabilities. This
fact suggests that a simulation with more realistic equa-
tions of state is an interesting subject for the future.

Finally, we note the following issue. This paper focuses
only on nonaxisymmetric dynamical instabilities of proto-
neutron stars in the first 10–20 msec after the bounce. The
formed protoneutron stars subsequently emit neutrinos and
dissipate the thermal energy [45,70]. As a result, they
contract gradually in a time scale of �10 sec. Because
the angular momentum is conserved approximately, the
spin of the protoneutron stars will be increased with the
contraction and � may be increased beyond �0:27. Thus,
even in the case that they are stable in the first 10–20 msec
after the bounce, they may eventually become unstable
after the neutrino cooling. This issue is not investigated
in this paper and remains for the future.
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