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Information about the neutron-star equation of state is encoded in the waveform of a black hole-neutron
star system through tidal interactions and the possible tidal disruption of the neutron star. During the
inspiral this information depends on the tidal deformability Λ of the neutron star, and we find that the best-
measured parameter during the merger and ringdown is consistent with Λ as well. We performed 134
simulations where we systematically varied the equation of state as well as the mass ratio, neutron star
mass, and aligned spin of the black hole. Using these simulations we develop an analytic representation of
the full inspiral-merger-ringdown waveform calibrated to these numerical waveforms; we use this analytic
waveform and a Fisher matrix analysis to estimate the accuracy to which Λ can be measured with
gravitational-wave detectors. We find that although the inspiral tidal signal is small, coherently combining
this signal with the merger-ringdown matter effect improves the measurability of Λ by a factor of ∼3 over
using just the merger-ringdown matter effect alone. However, incorporating correlations between all the
waveform parameters then decreases the measurability of Λ by a factor of ∼3. The uncertainty in Λ
increases with the mass ratio, but decreases as the black hole spin increases. Overall, a single Advanced
LIGO detector can only marginally measure Λ for mass ratios Q ¼ 2–5, black hole spins
JBH=M2

BH ¼ −0.5–0.75, and neutron star masses MNS ¼ 1.2M⊙–1.45M⊙ at an optimally oriented
distance of 100 Mpc. For the proposed Einstein Telescope, however, the uncertainty in Λ is an order
of magnitude smaller.
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I. INTRODUCTION

By the end of the decade a network of second generation
gravitational-wave (GW) detectors, including the two
Advanced LIGO (aLIGO) detectors [1], Advanced Virgo
[2], KAGRA [3] (formerly LCGT), and possibly LIGO-
India [4], will likely be making routine detections. Future
ground-based detectors such as the third generation
Einstein Telescope (ET) [5], with an order of magnitude
higher sensitivity, are also in the planning stages, and may
be operational in the next decade. A primary goal of these
detectors is extracting from the gravitational waveform
information about the sources. Of particular interest are
compact binaries whose waveform encodes the sky loca-
tion, orientation, distance, masses, spins, and, for compact
binaries containing neutron stars (NS), information about
the neutron-star equation of state (EOS).
The study of EOS effects during binary inspiral has

focused mainly on binary neutron star (BNS) systems.
Work by Refs. [6–9] showed that EOS information could
be imprinted in the gravitational waveform through tidal
interactions. In the adiabatic approximation, the quadrupole
moment Qij of one star depends on the tidal field Eij from
the monopole of the other star through the relation
Qij ¼ −λEij, where λ is the EOS-dependent tidal deform-
ability and is related to the neutron star’s dimensionless

Love number k2 and radius R through the relation
λ ¼ 2

3G k2R
5, where G is the gravitational constant. The

leading (l ¼ 2) relativistic tidal Love number k2 was first
calculated in Ref. [10] for polytropic EOSs, then for EOSs
with hadronic and quark matter [11,12], as well as for EOSs
with analytic solutions to the stellar structure equations
[12]. Its effect on the binary inspiral (including the
contribution due to tidally excited f-modes) was calculated
to leading order [13], and later extended to first post-
Newtonian (1PN) order [14,15]. The gravitoelectric and
gravitomagnetic tidal Love numbers for higher multipoles
were calculated in Refs. [16,17]. The energy has
now been calculated to second post-Newtonian (2 PN)
order in the tidal corrections in the effective one body
(EOB) formalism, including l ¼ 2 and 3 gravitoelectic
interactions and the l ¼ 2 gravitomagnetic interaction,
using the effective action approach [18], and most terms
in the EOB waveform are now known to 2.5PN order in the
tidal interactions [19]. Finally, the accuracy of the adiabatic
approximation to tidal interactions was calculated using an
affine model, and a Love function was found to correct for
this approximation and asymptotically approaches the Love
number for large binary separations [20,21].
The measurability of tidal parameters by detectors with

the sensitivity of aLIGO and ET was examined for BNS
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inspiral for GW frequencies below 450 Hz [13] using
polytropic EOSs as well as for theoretical hadronic and
quark matter EOSs [11]. The studies found that tidal
interactions were observable during this early inspiral stage
(prior to the last ∼20 GW cycles before merger) only for
stiff EOS and NS masses below 1.4M⊙. On the other hand,
using tidal corrections up to 2.5 PN order in the EOB
approach, it was found that tidal parameters are in fact
observable when including the extra ∼20 GW cycles up to
the point of contact [19].
Numerical simulations have also been used to study the

measurability of matter effects during the late inspiral of
BNS systems. Read et al. [22] examined the measurability
of EOS information during the last few orbits, using
numerical simulations assuming that non-EOS parameters
do not correlate significantly with EOS parameters. They
found that the NS radius could be measured, using only
the last few orbits, to an accuracy of ∼10%. In addition,
results from Refs. [23,24] suggest that the NS radius could
be determined to a comparable accuracy from the post-
merger phase.
Numerical work is also in progress to verify the accuracy

of the inspiral tidal description using BNS simulations.
Initial studies comparing quasiequilibrium sequences [25]
and full hydrodynamic simulations [26,27] with post-
Newtonian and EOB tidal descriptions found noticeable
differences, suggesting that large corrections to the
analytic description might be necessary. However, later
comparisons have highlighted the importance of the
hydrodynamics treatment, numerical resolution, and
waveform extraction radius in determining the tidal con-
tribution to the waveform with numerical simulations
[28,29]. These later comparisons found that within
numerical error the improved simulations are consistent
with the 2PN-accurate EOB tidal description up to merger
[28], or at least within 1 radian up to a few GW cycles
before merger [29].
Work is now underway to understand the measurability

of EOS information in black hole-neutron star (BHNS)
systems as well. Studies using the inspiral waveform
with tidal corrections up to 1PN order found that BHNS
waveforms are not distinguishable from binary black hole
(BBH) waveforms before the end of inspiral when the
frequency reaches the innermost stable circular orbit
(ISCO) frequency or tidal disruption frequency [30].
This conclusion was also found to be true for BHNS
systems with spinning black holes where this ending
frequency may be larger than for a nonspinning BH. On
the other hand, work examining a possible cutoff in the GW
amplitude due to tidal disruption of the neutron star by the
black hole suggested that the NS radius may, in fact, be
measurable with second generation detectors [31–33].
Several numerical simulations have also been carried out

to examine EOS-dependent effects during the end of the
BHNS inspiral [34–37]. These simulations now include

BH-to-NS mass ratios of up to Q ¼ MBH=MNS ¼ 7.1 and
large black hole spins of χBH ¼ JBH=M2

BH ¼ 0.9 [38,39]
and most recently χBH ¼ 0.97 [40], where JBH is the black
hole’s angular momentum. In Ref. [41] (hereafter Paper I),
we examined numerical simulations of the last few orbits,
merger, and ringdown for systems with nonspinning black
holes and low mass ratios of Q ¼ 2 and 3. We found that
when considering only the merger and ringdown, the tidal
deformability Λ was the best-measured EOS parameter
and was marginally measurable for second generation
detectors. As in Paper I, we define a dimensionless version
Λ of the tidal deformability using the NS mass,

Λ≔Gλ

�
c2

GMNS

�
5

¼ 2

3
k2

�
c2R

GMNS

�
5

: (1)

In this paper we repeat the analysis of Paper I for mass
ratios up to Q ¼ 5 and black hole spins from χBH ¼ −0.5
to 0.75. We will also address many of the simplifica-
tions used in Paper I that can have a significant impact
on the detectability of EOS parameters. Previously, we
considered only the tidal information that could be
obtained from the merger and ringdown, ignoring the small
accumulating phase drift during the inspiral that results
from tidal interactions. We will find that coherently
adding the slow tidal phase drift from the inspiral to the
tidal effect during the merger and ringdown (as was also
discussed in Ref. [39]) can improve the measurability of
tidal parameters by a factor of ∼3 over just the merger and
ringdown.
In Paper I we also ignored possible correlations between

the tidal parameter Λ and the other binary parameters when
estimating the measurability of Λ with the Fisher matrix
approximation. We have addressed this issue by developing
a frequency-domain, analytic BHNS waveform model fit to
our BHNS simulations, which is based on analytic BBH
waveform models. This fit allows us to accurately evaluate
derivatives in the Fisher matrix and evaluate correlations
between the tidal parameter Λ and the other parameters. We
find that although these correlations are not nearly as strong
as with other pairs of parameters, they can increase the
uncertainty in Λ by a factor of ∼3. Overall, we find that the
measurability of Λ using the improved methods in this
paper are about the same as the estimates in Paper I, where
only the merger and ringdown were considered and
correlations with the other parameters were presumed to
be negligible. Finally, we calculate the systematic error in
our BHNS waveform model and find that it is smaller than
the statistical error for aLIGO and comparable to the
statistical error for the ET detector. This precision is
adequate for the goal of the present work, which is to
estimate the accuracy with which Λ and corresponding
EOS parameters can be extracted from observations
of BHNS inspiral. Our estimate relies only on the
EOS-induced difference between waveforms, not on their
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absolute accuracy. Producing hybrid templates with abso-
lute phase accuracy high enough for parameter estimation
is more demanding.
In Sec. II, we briefly describe the EOS and numerical

methods used to generate our BHNS waveforms, as well as
the waveform behavior as a function of mass ratio, BH spin,
and EOS. We then construct hybrid waveforms that join the
numerical waveforms to inspiral waveforms in Sec. III. We
then provide an overview of parameter estimation and show
that Λ is the best-measured EOS parameter in Secs. IV and
V. Finally, to understand correlations between the param-
eters, we construct a phenomenological BHNS waveform
fit to our hybrid BHNS waveforms in Sec. VI, then estimate
the ability to measure Λ with aLIGO and ET in Sec. VII.
We conclude in Sec. VIII with a brief discussion of some of
the improvements needed to generate templates accurate
enough for parameter estimation in data analysis pipelines.
Conventions: We use the following sign convention for

the Fourier transform of a signal xðtÞ:

~xðfÞ ¼
Z

∞

−∞
xðtÞeþ2πiftdt; (2)

and we will decompose the complex Fourier transform into
the amplitude and phase as ~hðfÞ ¼ j ~hðfÞjeþiΦðfÞ. These
sign conventions are opposite those of Paper I, and are
chosen to agree with those of the PhenomC waveform
model [42], which we use extensively to construct hybrid
waveforms. In addition, we setG ¼ c ¼ 1 unless otherwise
stated.

II. SIMULATIONS

Following Paper I on nonspinning BHNS systems, we
perform a large set of simulations where we systematically
vary the parameters of a parametrized EOS, then look for
the combination of parameters that are best extracted from
GW observations. Specifically we choose a simplified
two-parameter version of the piecewise polytrope EOS
introduced in Ref. [43]. For this EOS, the pressure p in the
rest-mass density interval ρi−1 < ρ < ρi is

pðρÞ ¼ Kiρ
Γi ; (3)

where Ki is a constant, and Γi is the adiabatic index. We fix
the crust EOS defined by densities below the transition
density ρ0. In the crust, K0 ¼ 3.5966 × 1013 in cgs units
and Γ0 ¼ 1.3569, such that the pressure at 1013 g=cm3 is
1.5689 × 1031 dyne=cm2. Above the transition density ρ0,
the core EOS is parametrized by the two parameters p1

and Γ1. The pressure p1 is defined as the pressure at
ρ1 ¼ 1014:7 g=cm3 and the adiabatic index Γ1 of the core
will, for simplicity, be written as Γ. The constant K1 for the
core is then given byK1 ¼ p1=ρΓ1. Once the two parameters
p1 and Γ are set, the dividing density ρ0 between the crust
and the core is given by the density where the crust and core
EOS intersect: ρ0 ¼ ðK0=K1Þ1=ðΓ−Γ0Þ. Finally, given this
EOS, the energy density ε can be evaluated by integrating
the first law of thermodynamics,

d
ϵ

ρ
¼ −pd 1

ρ
: (4)

TABLE I. Neutron star properties for the 21 EOSs used in the simulations. The original EOS names [22,35,37] are also listed. p1 is
given in units of dyne=cm2, the maximum mass is in M⊙, and the neutron star radius R is in km. R, k2, and Λ are given for the three
masses used: f1.20; 1.35; 1.45g M⊙.

EOS logp1 Γ Mmax R1.20 k2;1.20 Λ1.20 R1.35 k2;1.35 Λ1.35 R1.45 k2;1.45 Λ1.45

p:3Γ2.4 Bss 34.3 2.4 1.566 10.66 0.0765 401 10.27 0.0585 142 9.89 0.0455 64
p:3Γ2.7 Bs 34.3 2.7 1.799 10.88 0.0910 528 10.74 0.0751 228 10.61 0.0645 129
p:3Γ3.0 B 34.3 3.0 2.002 10.98 0.1010 614 10.96 0.0861 288 10.92 0.0762 176
p:3Γ3.3 34.3 3.3 2.181 11.04 0.1083 677 11.09 0.0941 334 11.10 0.0847 212
p:4Γ2.4 HBss 34.4 2.4 1.701 11.74 0.0886 755 11.45 0.0723 301 11.19 0.0610 158
p:4Γ2.7 HBs 34.4 2.7 1.925 11.67 0.1004 828 11.57 0.0855 375 11.47 0.0754 222
p:4Γ3.0 HB 34.4 3.0 2.122 11.60 0.1088 872 11.61 0.0946 422 11.59 0.0851 263
p:4Γ3.3 34.4 3.3 2.294 11.55 0.1151 903 11.62 0.1013 454 11.65 0.0921 293
p:5Γ2.4 34.5 2.4 1.848 12.88 0.1000 1353 12.64 0.0850 582 12.44 0.0747 330
p:5Γ2.7 34.5 2.7 2.061 12.49 0.1096 1271 12.42 0.0954 598 12.35 0.0859 366
p:5Γ3.0 H 34.5 3.0 2.249 12.25 0.1165 1225 12.27 0.1029 607 12.27 0.0937 387
p:5Γ3.3 34.5 3.3 2.413 12.08 0.1217 1196 12.17 0.1085 613 12.21 0.0995 400
p:6Γ2.4 34.6 2.4 2.007 14.08 0.1108 2340 13.89 0.0970 1061 13.73 0.0875 633
p:6Γ2.7 34.6 2.7 2.207 13.35 0.1184 1920 13.32 0.1051 932 13.27 0.0960 585
p:6Γ3.0 34.6 3.0 2.383 12.92 0.1240 1704 12.97 0.1110 862 12.98 0.1022 558
p:6Γ3.3 34.6 3.3 2.537 12.63 0.1282 1575 12.74 0.1155 819 12.79 0.1068 541
p:7Γ2.4 34.7 2.4 2.180 15.35 0.1210 3941 15.20 0.1083 1860 15.07 0.0995 1147
p:7Γ2.7 34.7 2.7 2.362 14.26 0.1269 2859 14.25 0.1144 1423 14.22 0.1058 912
p:7Γ3.0 1.5 H 34.7 3.0 2.525 13.62 0.1313 2351 13.69 0.1189 1211 13.72 0.1104 795
p:7Γ3.3 34.7 3.3 2.669 13.20 0.1346 2062 13.32 0.1223 1087 13.39 0.1140 726
p:9Γ3.0 2 H 34.9 3.0 2.834 15.12 0.1453 4382 15.22 0.1342 2324 15.28 0.1264 1560
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As discussed in more detail in Paper I, quasiequilibrium
configurations are used as initial data for the simulations
[37,44], and are computed using the spectral-method
library LORENE [45]. The numerical simulations are per-
formed using the adaptive-mesh refinement code SACRA

[46]. To obtain the gravitational waveform hþ − ih×, the
outgoing part of the Weyl scalar Ψ4 ¼ h

::

þ − ih
::

× is
extracted from these simulations at a finite coordinate

radius of 400M⊙–800M⊙ depending on the total mass.
We have found that the phase difference is much less than
1 radian for extraction radii between 400M⊙ and 800M⊙,
and conclude that errors associated with the finite-radius
extraction are smaller than those with the finite resolution.
(See Ref. [29] for a detailed investigation.) The Weyl scalar
is then integrated twice using a method known as fixed-
frequency integration [47]. Specifically, we take the Fourier

TABLE II. Data for the 134 BHNS simulations. The NS masses are in units of M⊙. MΩ0 is the initial orbital angular velocity of the
system. EOB BBH waveforms cannot currently be calculated for χBH ¼ 0.75.

χBH Q MNS EOS MΩ0 χBH Q MNS EOS MΩ0 χBH Q MNS EOS MΩ0

−0.5 2 1.35 p:3Γ3.0 0.028 0.25 3 1.35 p:7Γ3.0 0.030 0.75 2 1.20 p:3Γ3.0 0.028
−0.5 2 1.35 p:4Γ3.0 0.028 0.25 3 1.35 p:9Γ3.0 0.028 0.75 2 1.20 p:4Γ3.0 0.028
−0.5 2 1.35 p:5Γ3.0 0.025 0.25 4 1.35 p:3Γ3.0 0.031 0.75 2 1.20 p:5Γ3.0 0.028
−0.5 2 1.35 p:9Γ3.0 0.022 0.25 4 1.35 p:5Γ3.0 0.031 0.75 2 1.20 p:9Γ3.0 0.025
−0.5 3 1.35 p:4Γ3.0 0.030 0.25 4 1.35 p:7Γ3.0 0.031 0.75 2 1.35 p:3Γ3.0 0.028
0 2 1.20 p:3Γ3.0 0.028 0.25 4 1.35 p:9Γ3.0 0.029 0.75 2 1.35 p:4Γ3.0 0.028
0 2 1.20 p:4Γ3.0 0.028 0.25 5 1.35 p:3Γ3.0 0.033 0.75 2 1.35 p:5Γ3.0 0.028
0 2 1.20 p:5Γ3.0 0.028 0.25 5 1.35 p:5Γ3.0 0.033 0.75 2 1.35 p:7Γ3.0 0.028
0 2 1.20 p:9Γ3.0 0.022 0.25 5 1.35 p:7Γ3.0 0.033 0.75 2 1.35 p:9Γ3.0 0.025
0 2 1.35 p:3Γ2.4 0.028 0.25 5 1.35 p:9Γ3.0 0.033 0.75 2 1.45 p:3Γ3.0 0.028
0 2 1.35 p:3Γ2.7 0.028 0.5 2 1.35 p:3Γ3.0 0.028 0.75 2 1.45 p:4Γ3.0 0.028
0 2 1.35 p:3Γ3.0 0.028 0.5 2 1.35 p:4Γ3.0 0.028 0.75 2 1.45 p:5Γ3.0 0.028
0 2 1.35 p:3Γ3.3 0.025 0.5 2 1.35 p:5Γ3.0 0.028 0.75 2 1.45 p:9Γ3.0 0.025
0 2 1.35 p:4Γ2.4 0.028 0.5 2 1.35 p:7Γ3.0 0.028 0.75 3 1.35 p:3Γ3.0 0.030
0 2 1.35 p:4Γ2.7 0.028 0.5 2 1.35 p:9Γ3.0 0.025 0.75 3 1.35 p:4Γ3.0 0.030
0 2 1.35 p:4Γ3.0 0.028 0.5 3 1.35 p:3Γ2.4 0.030 0.75 3 1.35 p:5Γ3.0 0.030
0 2 1.35 p:4Γ3.3 0.025 0.5 3 1.35 p:3Γ2.7 0.030 0.75 3 1.35 p:7Γ3.0 0.030
0 2 1.35 p:5Γ2.4 0.025 0.5 3 1.35 p:3Γ3.0 0.030 0.75 3 1.35 p:9Γ3.0 0.028
0 2 1.35 p:5Γ2.7 0.025 0.5 3 1.35 p:3Γ3.3 0.030 0.75 4 1.35 p:3Γ3.0 0.032
0 2 1.35 p:5Γ3.0 0.028 0.5 3 1.35 p:4Γ2.4 0.030 0.75 4 1.35 p:4Γ3.0 0.032
0 2 1.35 p:5Γ3.3 0.025 0.5 3 1.35 p:4Γ2.7 0.030 0.75 4 1.35 p:5Γ3.0 0.032
0 2 1.35 p:6Γ2.4 0.025 0.5 3 1.35 p:4Γ3.0 0.030 0.75 4 1.35 p:7Γ3.0 0.032
0 2 1.35 p:6Γ2.7 0.025 0.5 3 1.35 p:4Γ3.3 0.030 0.75 4 1.35 p:9Γ3.0 0.030
0 2 1.35 p:6Γ3.0 0.025 0.5 3 1.35 p:5Γ2.4 0.030 0.75 5 1.35 p:3Γ2.4 0.036
0 2 1.35 p:6Γ3.3 0.025 0.5 3 1.35 p:5Γ2.7 0.030 0.75 5 1.35 p:3Γ2.7 0.036
0 2 1.35 p:7Γ2.4 0.025 0.5 3 1.35 p:5Γ3.0 0.030 0.75 5 1.35 p:3Γ3.0 0.036
0 2 1.35 p:7Γ2.7 0.025 0.5 3 1.35 p:5Γ3.3 0.030 0.75 5 1.35 p:3Γ3.3 0.036
0 2 1.35 p:7Γ3.0 0.028 0.5 3 1.35 p:6Γ2.4 0.030 0.75 5 1.35 p:4Γ2.4 0.036
0 2 1.35 p:7Γ3.3 0.025 0.5 3 1.35 p:6Γ2.7 0.030 0.75 5 1.35 p:4Γ2.7 0.036
0 2 1.35 p:9Γ3.0 0.025 0.5 3 1.35 p:6Γ3.0 0.030 0.75 5 1.35 p:4Γ3.0 0.036
0 3 1.35 p:3Γ3.0 0.030 0.5 3 1.35 p:6Γ3.3 0.030 0.75 5 1.35 p:4Γ3.3 0.036
0 3 1.35 p:4Γ3.0 0.030 0.5 3 1.35 p:7Γ2.4 0.028 0.75 5 1.35 p:5Γ2.4 0.036
0 3 1.35 p:5Γ3.0 0.030 0.5 3 1.35 p:7Γ2.7 0.028 0.75 5 1.35 p:5Γ2.7 0.036
0 3 1.35 p:7Γ3.0 0.030 0.5 3 1.35 p:7Γ3.0 0.030 0.75 5 1.35 p:5Γ3.0 0.036
0 3 1.35 p:9Γ3.0 0.028 0.5 3 1.35 p:7Γ3.3 0.030 0.75 5 1.35 p:5Γ3.3 0.036
0 4 1.35 p:3Γ3.0 0.031 0.5 3 1.35 p:9Γ3.0 0.028 0.75 5 1.35 p:6Γ2.4 0.036
0 4 1.35 p:5Γ3.0 0.031 0.5 4 1.35 p:3Γ3.0 0.025 0.75 5 1.35 p:6Γ2.7 0.036
0 4 1.35 p:7Γ3.0 0.031 0.5 4 1.35 p:4Γ3.0 0.035 0.75 5 1.35 p:6Γ3.0 0.036
0 4 1.35 p:9Γ3.0 0.029 0.5 4 1.35 p:5Γ3.0 0.035 0.75 5 1.35 p:6Γ3.3 0.036
0 5 1.35 p:3Γ3.0 0.033 0.5 4 1.35 p:7Γ3.0 0.035 0.75 5 1.35 p:7Γ2.4 0.036
0 5 1.35 p:5Γ3.0 0.033 0.5 4 1.35 p:9Γ3.0 0.035 0.75 5 1.35 p:7Γ2.7 0.036
0 5 1.35 p:7Γ3.0 0.033 0.5 5 1.35 p:3Γ3.0 0.033 0.75 5 1.35 p:7Γ3.0 0.036
0 5 1.35 p:9Γ3.0 0.031 0.5 5 1.35 p:5Γ3.0 0.033 0.75 5 1.35 p:7Γ3.3 0.036
0.25 3 1.35 p:3Γ3.0 0.030 0.5 5 1.35 p:7Γ3.0 0.033 0.75 5 1.35 p:9Γ3.0 0.036
0.25 3 1.35 p:5Γ3.0 0.030 0.5 5 1.35 p:9Γ3.0 0.033
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transform ofΨ4, then integrate twice in time by dividing by
ð2πifÞ2. Low-frequency components are filtered out as in
Paper I, and the inverse Fourier transform is then taken to
find hþ − ih× in the time domain.
We have performed 134 simulations of the late inspiral,

merger, and ringdown of BHNS systems, using 21 sets of
parameters for our two-parameter EOS. We have also
varied the mass ratio from Q ¼ 2 to 5, the spin of the
black hole from χBH ¼ −0.5 to 0.75, and the neutron star
mass from MNS ¼ 1.20M⊙ to 1.45M⊙. The EOS param-
eters used as well as the corresponding NS radius, Love
number, and tidal deformability for the three NS masses
can be found in Table I. A list of all the simulations and
their starting frequencies is given in Table II. In addition,
we plot the EOS as points in parameter space in Fig. 1
along with contours of radius, tidal deformability Λ, and
maximum NS mass. The 1.93M⊙ maximum mass contour
corresponds to the constraint from the recently observed
pulsar with a mass of 1.97� 0.04M⊙ measured using the
Shapiro delay [48]. For this parametrized EOS, parameters
below this curve have a maximum mass less than 1.93M⊙,
and therefore do not agree with the measurement of a NS
withMNS > 1.93M⊙. We also note the recent measurement
of a 2.01� 0.04M⊙ NS in a neutron star-white dwarf
binary [49].
In Fig. 2 we show two representative waveforms. The

waveform with a very soft EOS (p:3Γ2.4), and therefore
small radius and tidal deformability, behaves very much
like a BBH waveform where the inspiral smoothly tran-
sitions to quasinormal mode ringdown. For the stiff EOS
(p:7Γ3.0), however, the neutron star is tidally disrupted
near the end of inspiral; the disruption and the spread of
tidally stripped matter to form a roughly axisymmetric disk
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leads to a rapid decrease in the waveform amplitude and
suppresses the subsequent ringdown.
Because trends in the BHNS waveform are most appar-

ent in terms of the amplitude and phase of the Fourier
transform, and because data analysis is usually done in the

frequency domain, we will now focus our discussion of
the waveforms on the frequency-domain waveform behav-
ior. Several representative waveforms with varying tidal
deformability Λ, mass ratio Q, and spin χBH are shown in
Figs. 3–7.
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As was found in Paper I, the waveform monotonically
departs from a BBH (Λ ¼ 0) waveform as Λ increases, and
this is true for systems with spinning black holes as well, as
we see from Figs. 3–5. In particular, the cutoff frequency,
where the waveform begins a sharp drop in the amplitude,
decreases monotonically with increasing Λ. The accumu-
lated BHNS phase ΦBHNS at fixed frequency f similarly
decreases with increasing Λ, because the orbit loses energy
more rapidly: There is less time for the phase to accumu-
late. As a result, the departure of ΦBHNS from the accu-
mulated BBH phase ΦBBH increases with increasing Λ.
More massive black holes exert smaller tidal forces on

their companion near coalescence, because the radius of
the innermost orbit is roughly proportional to MBH. As a
result, the differences in amplitude and phase between a
BHNS and BBH waveform decrease when the mass ratioQ
increases. The effect is clear in Fig. 6, which displays the
dramatically enhanced departure of the amplitude and
phase from that of a BBH waveform as Q decreases. On
the other hand, the radius of the innermost orbit decreases
with increasing aligned BH spin χBH, implying a larger
maximum tidal force for larger χBH. The resulting enhanced
departure from a BBH waveform is shown in Fig. 7.

III. CONSTRUCTING HYBRID
INSPIRAL-MERGER-RINGDOWN WAVEFORMS

To obtain as much information as possible about the
physical parameters of a BHNS coalescence, we will
construct a hybrid waveform that joins the numerical
merger and ringdown waveforms to an analytic BHNS
inspiral waveform. This inspiral waveform needs to
account for the aligned spin χBH of the BH as well as
tidal interactions through the parameter Λ. In addition,
because the numerical waveforms only include the last
∼10 GW cycles before merger, the inspiral waveform,
including spin and tidal corrections, should be valid as
close to merger as possible. Finally, when we construct an
analytic BHNS inspiral-merger-ringdown (IMR) waveform

model in Sec. VI, we will find it useful to proceed by
modifying a BBH IMR waveform, and so the waveform
model will need to accurately model the merger and
ringdown of a BBH system as well.
We will use two classes of waveform models that have

been calibrated to numerical BBH simulations. The primary
waveform model, described in the next subsection, is the
frequency-domain BBH waveform labeled PhenomC [42],
and wewill add a 1PN tidal correction to the inspiral portion
of this waveform. We will also use a time-domain EOB
waveform that incorporates spin corrections [50], and we
will again add tidal corrections to the inspiral. We compare
these twowaveformmodels with no inspiral tidal correction
to each other in Figs. 3–5. We note that although these two
waveforms agree well for small mass ratios and spin, their
differences become important as the mass ratio and spin
increase.

A. PhenomC waveform with tidal corrections

Several frequency-domain phenomenological models
are now available for the complete IMR BBH waveform.
These models include the PhenomA [51] model for non-
spinning BBH systems, as well as the PhenomB [52] model
and improved PhenomC [42] model for aligned-spin BBH
systems which we will use.
In the PhenomC waveform, the Fourier transform of the

waveform is decomposed into an amplitude AphenðMfÞ and
phase ΦphenðMfÞ as

~hphenðMfÞ ¼ AphenðMfÞeiΦphenðMfÞ: (5)

The inspiral is described by the stationary phase approxi-
mation TaylorF2 post-Newtonian waveform. During the
inspiral, at each post-Newtonian order, the leading black
hole spin contribution enters as the mass-weighted average
of the two black hole spins χ1 and χ2,

χavg ¼
M1

M
χ1 þ

M2

M
χ2: (6)
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Other combinations of the spin terms enter at higher powers
of the symmetric mass ratio η ¼ M1M2=ðM1 þM2Þ2 at
each post-Newtonian order. The PhenomC model uses χavg
as the only spin parameter, and for the terms with higher
powers of η the PhenomC model sets χ1 ¼ χ2 ¼ χavg [42].
This biases the inspiral waveform to be more accurate
for systems with equally spinning companions. For BHNS
systems, where we assume negligible NS spin, we should
instead use χ1 ¼ χBH and χ2 ¼ χNS ¼ 0 for the higher-
order terms. However, because the focus of this paper is
on estimating the statistical errors in measuring EOS
parameters which only requires relative accuracy between
waveforms closely separated in parameter space instead
of absolute amplitude and phase accuracy, we choose not
to correct these higher-order terms in this paper. Such a
correction will, however, be needed for parameter estima-
tion with real data to avoid large systematic errors.
For frequencies above Mf ¼ 0.01, the amplitude and

phase of the merger and ringdown are fit to a large set of
numerical simulationswithmass ratios from1–4 andvarious
combinations of aligned or antialignedBH spins up to jχij ¼
0.85 as described in Ref. [42]. The PhenomC model again
uses χavg for the spin parameter. However, the majority of
the numerical simulations used to calibrate the merger–
ringdown fit had black hole spins with equal magnitudes,
so this is likely to bias the waveforms for BHNS systems
where the less massive companion has no spin. This may
be one reason why the PhenomC and EOB waveforms
differ during merger and ringdown as seen in Figs. 3–5.
We add tidal corrections to the inspiral for the PhenomC

waveform using the TaylorF2 stationary phase approxima-
tion up to 1PN order [15]. This is the same quantity used
by Pannarale et al. [30] who found that BBH and
BHNS waveforms are indistinguishable by aLIGO when
only considering the inspiral. Explicitly, we add a tidal
correction term ψTðMfÞ to the BBH phase,

ψTðMfÞ ¼ 3

128η
ðπMfÞ−5=3½a0ðπMfÞ10=3 þ a1ðπMfÞ12=3�;

(7)

where for MBH ≥ MNS,

a0 ¼ −12½ð1þ 7η − 31η2Þ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2Þ�Λ;

a1 ¼ − 585

28

��
1þ 3775

234
η − 389

6
η2 þ 1376

117
η3
�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p �
1þ 4243

234
η − 6217

234
η2 − 10

9
η3
��

Λ: (8)

The inspiral waveform is now ~hinspðMfÞ ¼
AphenðMfÞeiΦphenþTðMfÞ, whereΦphenþTðMfÞ ¼ ΦphenðMfÞþ
ψTðMfÞ.

We will work mostly with this frequency-domain wave-
form in the sections that follow. Since a BHNS waveform
enters the detector band starting at frequencies as low as
10 Hz for aLIGO and 1 Hz for ET, it is much more efficient
to start with a frequency-domain inspiral waveform than to
evaluate the Fourier transform of a time-domain waveform.

B. Spinning EOB waveform with tidal corrections

The other model waveforms we use for comparison
purposes, time-domain EOB waveforms, have proven
successful at reproducing the complete IMR of nonspin-
ning BBH waveforms [53], and we used these EOB
waveforms in Paper I to generate hybrid waveforms that
did not incorporate tidal corrections for the inspiral. (See
Appendix C of Paper I and references therein for a review
of the EOB formalism.) Recently, spin terms have been
calculated for the EOB Hamiltonian and resummed wave-
forms, and free parameters for the merger have been
calibrated to numerical nonspinning BBH waveforms for
mass ratios from 1–6, as well as for an equal mass, aligned-
spin waveform with spins of χ1 ¼ χ2 ¼ �0.44 [50]. We
will use EOB waveform tables generated by Taracchini and
Buonanno [54]. These tables were generated by evolving
the EOB equations of motion with an initial radial
coordinate of r ¼ 40M and a value of the radial velocity
r
:
consistent with the radiation reaction force to minimize

initial eccentricity [55]. The waveform was then evaluated
starting at r ¼ 30M where any residual eccentricity is
negligible [54].
In addition, tidal interactions have also recently been

incorporated in the EOB formalism. In the method pro-
posed in Ref. [19], a term representing the conservative part
of the tidal interaction is added to the radial potential AðrÞ
in the EOB Hamiltonian. Tidal corrections are also added to
the resummed waveform hlm which are used to calculate
the radiation reaction force in the equations of motion.
The solutions to the equations of motion are then plugged
back into hlm to produce a final waveform as a function of
time. However, for simplicity and because the versions of
the EOB formalism that incorporate spin and tidal inter-
actions are slightly different and have not been calibrated
to simulations with both spin and matter, we will instead
incorporate tidal interactions in the spinning EOB wave-
form using the same method as that for the PhenomC
waveform. Specifically, we Fourier transform the EOB
waveform, decompose it into amplitude AEOBðMfÞ and
phase ΦEOBðMfÞ, and then simply add the expression
ψTðMfÞ from Eq. (7) to ΦEOBðMfÞ. Future work on
spinning BHNS systems should treat the spin and tidal
interactions consistently.

C. Hybridization in the frequency domain

In Paper I, where we examined EOS effects only during
the BHNS merger and ringdown, we used a time-domain
matching method. In this paper, however, because we
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examine tidal effects for the entire IMR waveform, we will
find it convenient to start with the inspiral waveform in the
frequency domain before matching. The method we use
closely follows the frequency-domain least-squares method
used in Ref. [42] for BBH waveforms.
We begin by windowing the numerical BHNS waveform

with a Hann window over the interval wi to wf (width
Δtwin ¼ wf − wi),

wonðtÞ ¼
1

2

�
1 − cos

�
π½t − wi�
wf − wi

��
; (9)

and we choose the start of the windowing to be the start of
the numerical waveform at wi ¼ 0. This windowing min-
imizes the oscillatory Gibbs phenomenon that results from
Fourier transforming a waveform segment with nonzero
starting amplitude. When matching waveforms, a time
constant τ and phase constant ϕ are free parameters that
need to be fixed. For a generic waveform hðtÞ, the time and
phase can be adjusted to produce a shifted waveform
hshiftðt; τ;ϕÞ ¼ hðt − τÞeiϕ. The Fourier-transformed
waveform, which can be written in terms of the amplitude
and phase as ~hðfÞ ¼ j ~hðfÞjeiΦðfÞ, has a corresponding
shifted waveform ~hshiftðf; τ;ϕÞ ¼ j ~hðfÞjeiΦshiftðf;τ;ϕÞ, where
Φshiftðf; τ;ϕÞ ¼ ΦðfÞ þ 2πfτ þ ϕ. When joining the

inspiral and numerical waveforms, we hold the phase of
the tidally corrected inspiral waveform ΦBBHþTðfÞ fixed
and adjust the phase of the numerical waveform ΦNRðfÞ,
such that Φshift

NR ðf; τ;ϕÞ ¼ ΦNRðfÞ þ 2πfτ þ ϕ. We then
match the waveforms by performing a least-squares fit in
the matching interval fi < f < ff (width Δfmatch) that
minimizes the quantity

Z
ff

fi

½Φshift
NR ðf; τ;ϕÞ − ΦBBHþTðfÞ�2df (10)

to determine the free parameters τ and ϕ.
Once the time and phase shifts are found, we smoothly

turn on the numerical waveform and smoothly turn off the
tidally corrected inspiral waveform within a splicing
window si < f < sf (width Δfsplice) using Hann windows,

woffðfÞ ¼
1

2

�
1þ cos

�
π½f − si�
sf − si

��
; (11)

wonðfÞ ¼
1

2

�
1 − cos

�
π½f − si�
sf − si

��
: (12)

The amplitude of the hybrid waveform is then

j ~hhybridðfÞj ¼

8>><
>>:

j ~hBBHðfÞj; f ≤ si;

woffðfÞj ~hBBHðfÞj þ wonðfÞj ~hNRðfÞj; si < f ≤ sf;

j ~hNRðfÞj; f > sf;

(13)

and the phase is

ΦhybridðfÞ ¼
8<
:

ΦBBHþTðfÞ; f ≤ si;

woffðfÞΦBBHþTðfÞ þ wonðfÞ½ΦNRðfÞ þ 2πfτ þ ϕ�; si < f ≤ sf;

ΦNRðfÞ þ 2πfτ þ ϕ; f > sf:

(14)

A hybrid waveform for the system (χBH ¼ 0, Q ¼ 2,
MNS ¼ 1.35M⊙, EOS ¼ p:5Γ3.0) is shown in Fig. 8,
where we matched the numerical waveform to the
PhenomC waveform with and without the inspiral tidal
correction ψT . In the right panel of Fig. 8 we show four
phases relative to the PhenomC BBH phase ΦBBH. The
black dashed curve is the PhenomC BBH phase. The solid
black curve is the numerical BHNS waveform phase after it
is matched directly to the BBH waveform as was done in
Paper I.1 The red dashed curve represents the phase of the

tidally corrected inspiral waveform ΦBBHþT, and the curve
is given by the analytic expression for the inspiral tidal
correction ΦBBHþTðMfÞ − ΦBBHðMfÞ ¼ ψTðMfÞ. Finally,
the solid red curve is the numerical BHNS waveform
matched to the tidally corrected inspiral waveform. We note
that the difference after the matching window between the
solid red and solid black curves depends only on
the difference in the matching term 2πðMfÞðτ=MÞ þ ϕ
in the hybrid phase Φhybrid [Eq. (14)] between when the
inspiral tidal correction ψT is (red curve) or is not (black
curve) included. Because this term is linear, the difference
between the two curves grows linearly. This difference is
approximately ψTðMfmidÞ þ ðMf −MfmidÞψT

0ðMfmidÞ,
where Mfmid is the midpoint of the matching interval
and the 0 indicates a derivative with respect to Mf. As we

1Paper I used a time-domain method to match a numerical
BHNS waveform to an EOB BBH inspiral waveform, and the
time-domain matching interval used in Paper I corresponds to a
frequency interval slightly less than that shown here.
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will see below, this linear term has a large impact on the
measurability of tidal parameters.

D. Sensitivity of the hybrid waveform
to matching parameters

In the hybridization procedure described above, we are
free to choose the window width Δtwin used in Eq. (9) as
well as the matching interval ΔMfmatch ¼ Mff −Mfi and
midpoint of the matching interval Mfmid ¼ ðMfi þ
MffÞ=2 used in Eq. (10). If the numerical waveform were
long and identical to the inspiral waveform within some
interval, the choice of these free parameters would have
no impact on the values of τ and ϕ. However, there are
several sources of error. Because the numerical waveform
has finite length, the beginning of the waveform needs to
be windowed before Fourier transforming the waveform
to reduce the Gibbs phenomenon. The matching interval
should exclude as much of the beginning of the waveform
as possible because the numerical simulation takes time to
settle down from inexact initial conditions which includes
some initial eccentricity. It should also exclude the merger
and ringdown which cannot be described by the tidal terms
for the analytic inspiral waveform. On the other hand, the
matching window must be wide enough to average over
ringing from the Gibbs phenomenon that remains after
windowing, the effects of eccentricity in the simulations,
and other numerical noise. To isolate the effect that each of
these waveform errors has on the values of τ and ϕ, we will
introduce them sequentially to the waveform that is
matched to the inspiral waveform.
We first examine the effect of the Gibbs phenomenon,

present in finite-length waveforms, on the time and phase
shifts τ and ϕ. To do this, we begin with an (effectively)
infinite-length time-domain EOB waveform that includes
the inspiral, merger, and ringdown. We then mimic a

numerical waveform by making a truncated copy of this
EOB waveform that starts ∼10 GW cycles (800M) before
merger. We window the first Δtwin and Fourier transform
this truncated waveform, then match it to the Fourier
transformed original waveform such that the only matching
error is due to the Gibbs phenomenon. In the top panel of
Fig. 9 we see the post-matching hybrid phase atMf ¼ 0.05
depends on the window width Δtwin and the frequency
interval defined by ΔMfmatch and Mfmid. However, if we
increase either the window width (from Δtwin ¼ 100M to
300M) or match over a larger frequency interval (from
ΔMfmatch ¼ 0.002 to 0.008), we can reduce the depend-
ence of the hybrid phase on the Gibbs Phenomenon.
We next consider the effect of eccentricity on the hybrid

phase in the bottom panel of Fig. 9. The numerical
BHNS simulations begin with quasicircular (zero radial
velocity) initial conditions that ignore the small radial
velocity due to radiation reaction. As a result, the inexact
initial conditions lead to a small initial eccentricity
(e0 ∼ 0.03), which eventually dies down after several
orbits. We can mimic this effect by generating EOB
waveforms with equivalent eccentricity by starting the
EOB equations of motion with the same quasicircular
(zero radial velocity) initial conditions as the simulations
found by ignoring the radiation reaction term in the EOB
equations of motion [55]. We match an EOB waveform
with the quasicircular initial conditions MΩ0 ¼ 0.028 to
an effectively infinite-length, zero-eccentricity EOB wave-
form with otherwise identical parameters. As with the
top panel, the eccentric EOB waveform exhibits Gibbs
oscillations because it has a finite length, and this effect can
be reduced by increasing the window width and frequency-
matching interval. There is also an additional offset that
results from the initial eccentricity, and this offset even-
tually dies down around Mfmid ∼ 0.03.
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FIG. 8 (color online). Amplitude Deff j ~hðMfÞj=M (left) and phase ΦðMfÞ (right) for a numerical BHNS waveform matched to the
PhenomC BBH waveform with and without the tidal correction ψT [Eq. (7)]. The waveform parameters are (χBH ¼ 0, Q ¼ 2,
MNS ¼ 1.35M⊙, EOS ¼ p:5Γ3.0). The matching window fi < f < ff is bounded by solid vertical lines, and the splicing window
si < f < sf, which begins at si ¼ fi, is bounded by dotted vertical lines. Note that matching the numerical BHNS waveform to a BBH
waveform without tidal corrections, as was done in Paper I, results in ignoring a phase term that accumulates linearly even after the
matching region, and underestimates the effect of matter. We truncate the waveform when the amplitude drops below 0.1 denoted by a
black dot.
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Finally, in Fig. 10 we match two numerical BHNS
simulations to PhenomC inspiral waveforms with tidal
corrections to generate a full BHNS IMR hybrid. If the
inspiral waveform and numerical waveform are identical
within a frequency interval, then the hybrid phase will be
independent of the matching region within that interval,
and there will therefore be a plateau in the curve in Fig. 10.
We therefore identify the best-matching region as the
region centered on the maxima Mfmid ≈ 0.022 in the top
panel and Mfmid ≈ 0.020 in the bottom panel. In addition,
as in Fig. 9, increasing the window width and matching
interval reduces oscillations due to Gibbs phenomena.
We note that the best-matching region in Fig. 10

overlaps somewhat with frequencies where eccentricity

still effects the hybrid phase as seen in Fig. 9. We can
move the matching region to slightly higher frequencies;
however, the analytic tidal correction will rapidly become
inaccurate. We can estimate roughly the error of the inspiral
tidal phase term in the bottom panel of Fig. 10 as the
ratio of the 1PN-to-leading tidal corrections [defined
by ψ1PN=ψ0PN ¼ ða1=a0ÞðπMfÞ2=3].
Although the best choice of matching frequencies varies

slightly depending on χBH, Q, and the EOS, setting the
matching region to be the same for all waveforms changes
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FIG. 9 (color online). Dependence of the hybrid waveform
phase at Mf ¼ 0.05 on window width Δtwin=M and matching
interval with width ΔMfmatch and midpoint Mfmid. Top panel:
An EOB waveform, truncated to only include the last 800M
before merger, is Fourier transformed then matched to the same
EOB waveform that has not been truncated. The oscillations in
the hybrid phase result from the Gibbs phenomenon. This can be
partially suppressed by increasing the window width Δtwin=M as
well as the width of the matching window ΔMfmatch. Bottom
panel: The effect of eccentricity can be evaluated by matching
an eccentric EOB waveform to a long, zero-eccentricity EOB
waveform. Here, an eccentric EOB waveform is generated
by using the quasicircular initial conditions MΩ0 ¼ 0.028.
The dependence of the hybrid phase on the matching interval can
be reduced by using a larger matching window ΔMfmatch. For
both panels, χBH ¼ 0 andQ ¼ 2. Because the overall phase of the
hybrid waveform is arbitrary, we have set it to 0 in this figure
when Mf ¼ 0.05.
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FIG. 10 (color online). Dependence of the hybrid waveform
phase at Mf ¼ 0.05 on window width Δtwin=M and matching
interval as in Fig. 9. Top panel: The BHNS simulation with
parameters fχBH ¼ 0; Q ¼ 2;MNS ¼ 1.35M⊙;EOS ¼ p:3Γ2.4g
is matched to the PhenomC BBH waveform with tidal phase
corrections. Middle panel: The BHNS simulation with parame-
ters fχBH ¼ 0;Q¼ 2;MNS ¼ 1.35M⊙;EOS¼p:9Γ3.0g. Bottom
panel: The relative contribution of the 1PN tidal phase correction
to the leading-order tidal phase correction provides a crude
estimate of the error in the tidal phase correction. For reference,
dashed vertical lines give the ISCO frequency 1=ð63=2πÞ as well
as the innermost circular orbit for nonrotating black holes,
defined by the minimum of the third post-Newtonian energy
[Eq. (194) of Ref. [56]], for mass ratios of Q ¼ 2 and 5.
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the final hybrid phase no more than the matching uncer-
tainties described above. From the above considerations,
we choose as our windowing width Δtwin ¼ 300M, and
matching parameters ΔMfmatch ¼ 0.008 and Mfmid ¼
0.022 such that the start and end matching frequencies
are Mfi ¼ 0.018 and Mff ¼ 0.026. In the matching
region, the amplitude and phase of the inspiral and shifted
numerical waveforms agree reasonably well, so the choice
of si and sf does not significantly effect the results. We
choose Msi ¼ Mfi and Msf ¼ Msi þ 0.001.

IV. PARAMETER ESTIMATION

The primary goal of this paper is to determine how
accurately EOS parameters can be measured from BHNS
observations. In this section we will discuss the statistical
error associated with detector noise as well as the system-
atic error that results from using inexact waveform tem-
plates to estimate parameters. In the next three sections, we
will then determine the combination of EOS parameters
that is best measured and generate an analytic waveform
model matched to numerical waveforms that we then use to
estimate the statistical and systematic errors in measuring
that EOS parameter combination.
The output of a GW detector sðt; θ⃗TÞ ¼ nðtÞ þ hEðt; θ⃗TÞ

is the sum of the detector noise nðtÞ and a possible GW
signal exactly described by hEðt; θ⃗TÞ with the true param-
eters θ⃗T . We assume the noise is a stationary, Gaussian time
series, and therefore characterized by its power spectral
density (PSD) SnðjfjÞ defined by the ensemble average

h ~nðfÞ ~n�ðf0Þi ¼ 1

2
δðf − f0ÞSnðjfjÞ; (15)

and its probability distribution

pn½nðtÞ� ∝ e−ðn;nÞ=2: (16)

Here, ða; bÞ is the usual inner product between two time
series aðtÞ and bðtÞ weighted by the PSD,

ða; bÞ ¼ 4Re
Z

∞

0

~aðfÞ ~b�ðfÞ
SnðfÞ

df: (17)

The GW signal is given in terms of the two polarizations of
the GW by

hEðt; θ⃗TÞ ¼ FþhEþðt; θ⃗TÞ þ F×hE×ðt; θ⃗TÞ; (18)

where Fþ;× are the detector response functions and depend
on the location of the binary and the polarization angle of
the waves. As in Paper I, we assume the binary is optimally
located at the zenith of the detector and optimally oriented
with its orbital axis along the line of sight. This condition is
equivalent to averaging hþ and h× (Fþ ¼ F× ¼ 1=2).

In searches for GW signals from compact binary
mergers, a set of templates hðt; θ⃗Þ with parameters θ⃗ are
compared to the signal sðtÞ. The parameters that maximize
the signal-to-noise ratio (SNR)

ρ ¼ ðh; sÞffiffiffiffiffiffiffiffiffiffiffiffiðh; hÞp (19)

are the best estimate of the true parameters θ⃗T . For a
template hEðt; θ⃗Þ that exactly represents the true waveform,
we will denote the best estimate of the true parameters
produced by the exact template by θ⃗E. In practice, however,
we only have an approximate template hAðt; θ⃗Þ, and we will
denote the best estimate produced by this approximate
template by θ⃗A.
In the large-SNR limit, the difference Δθ⃗ ¼ θ⃗A − θ⃗T

between the best estimate using an approximate template
and the true parameters of the binary system obeys a
Gaussian distribution [57]. Specifically, for N parameters,
the conditional probability of the error Δθ⃗ given the best
estimate θ⃗A is

pðΔθ⃗jθ⃗AÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞN detðΣijÞ
q e−

1
2
Σ−1
ij ðΔθi−hΔθiiÞðΔθj−hΔθjiÞ:

(20)

The mean is found to be approximately [58,59]

hΔθii ≈ −Γ−1
ij ðδhðθ⃗AÞ; ∂jhAðθ⃗AÞÞ; (21)

where

Γij ¼ ð∂ihAðθ⃗AÞ; ∂jhAðθ⃗AÞÞ (22)

is the Fisher matrix and δhðt; θ⃗Þ ¼ hAðt; θ⃗Þ − hEðt; θ⃗Þ is the
difference between the approximate and exact waveform
templates. The covariance between the parameters is [57]

Σij ≡ hðΔθi − hΔθiiÞðΔθj − hΔθjiÞi ¼ Γ−1
ij ; (23)

and the variance in Δθi is therefore

σ2i ≡ hðΔθi − hΔθiiÞ2i ¼ Γ−1
ii ; (24)

where the repeated indices in Γ−1
ii do not represent

summation. The statistical error ellipsoid to n standard
deviations is a contour of pðΔθ⃗jθ⃗AÞ given by

ðΔθi − hΔθiiÞðΔθj − hΔθjiÞΣ−1
ij ¼ n2: (25)

In addition, we identify the quantity Δθ⃗syst ≡ hΔθ⃗i as the
systematic error that results from using an approximate
waveform template instead of the exact waveform template.
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We will use this expression below as a criteria for the
accuracy of our analytic BHNS waveform model.

V. BEST-MEASURED EOS PARAMETER

In Paper I we found that, during the merger and ring-
down, the best-measured combination of EOS parameters
for nonspinning BHNS systems was consistent with the
tidal deformability Λ. We used hybrid waveforms that
ignored the inspiral tidal correction ψT [Eq. (7)], and only
included EOS information from the merger and ringdown
of the numerical part of the waveform. We then evaluated a
restricted two-parameter Fisher matrix for the EOS param-
eters logðp1Þ and Γ, ignoring possible correlations between
the EOS parameters and the other parameters. In this
section we compare the measurability of EOS parameters
for only the merger and ringdown to a waveform that
includes EOS information in the full IMR hybrid wave-
form, and we do this for three combinations of mass ratio
and black hole spin. In the next two sections we will
address the issue of correlations between EOS and non-
EOS parameters by constructing an analytic BHNS wave-
form and calculating the complete Fisher matrix.
As in Paper I, we evaluate the Fisher matrix from a set of

hybrid waveforms by differentiating the waveform with
respect to each parameter using finite differencing with
two or more waveforms for each parameter. We follow the
third method in Appendix A of Paper I which results in
the greatest accuracy given the phase difference between
waveforms which can be several radians for EOS param-
eters. Specifically, we decompose each Fourier transformed
hybrid waveform into the log of the amplitude lnAðf; θ⃗Þ
and accumulated phase Φðf; θ⃗Þ,

~hðf; θ⃗Þ ¼ elnAðf;θ⃗ÞþiΦðf;θ⃗Þ; (26)

then evaluate ∂i lnA and ∂iΦ individually. The derivative is
now approximated by

∂i
~hðf; θ⃗Þ ≈ elnAðf;θ⃗ÞþiΦðf;θ⃗Þ

�
Δ lnAðf; θ⃗Þ

Δθi
þ i

ΔΦðf; θ⃗Þ
Δθi

�
;

(27)

where Δ=Δθi represents central differencing, and lnA and
Φ are evaluated at the midpoint with linear interpolation.
Calculating the complete Fisher matrix using hybrid

waveforms requires one to evaluate partial derivatives with
respect to all parameters at a single point. For an aligned-
spin BHNS system with two EOS parameters and a single
detector, the waveform will have the form

~hðf; θ⃗Þ ¼ 1

Deff
gAðf;M; η; χBH; logðp1Þ;ΓÞ

× ei½2πftcþϕcþgΦðf;M;η;χBH;logðp1Þ;ΓÞ�; (28)

where gA and gΦ are generic functions, and there are
eight parameters. The five intrinsic parameters are the chirp
mass M ¼ ðMBHMNSÞ3=5=M1=5, symmetric mass ratio
η ¼ MBHMNS=M2, black hole spin χBH

2, and the two
EOS parameters logðp1Þ and Γ. The three extrinsic param-
eters, which can be differentiated analytically, are the time
of coalescence tc, phase of coalescence ϕc, and an effective
distance Deff that incorporates the true distance D as well
as the orientation and sky location of the binary. (For an
optimally oriented and located binary, Deff ¼ D). If using
central differencing, this requires ten hybrid waveforms for
the five numerical derivatives at each point in the waveform
parameter space, and is computationally expensive if one
wants to explore the entire parameter space. In addition, in
contrast to the small EOS-dependent effects, small changes
in M, η, and χBH can result in a large change in the phase
of the waveform. This means that the simulations must be
closely spaced in parameter space in order to accurately
calculate derivatives, requiring a very large number of
waveforms. In this section, we will therefore restrict the
Fisher matrix calculation to the two EOS parameters
logðp1Þ and Γ, and will leave to the next section a better
way to differentiate the other parameters.
For the BHNS systems discussed here, the greatest

departure from BBH behavior occurs for GW frequencies
in the range 300–3000 Hz. As a result, detector configu-
rations optimized for the detection of BHNS systems with
low noise in the region below 300 Hz may not optimally
estimate EOS parameters. We therefore present results for
the broadband aLIGO noise curve [60] and the ET-D noise
curve [61] shown in Fig. 11. The broadband aLIGO
configuration uses zero-detuning of the signal recycling
mirror and a high laser power, resulting in significantly
lower noise above 300 Hz at the expense of slightly higher
noise at lower frequencies. Several configurations have
been considered for the Einstein Telescope denoted ET-B
[62], ET-C [63], and ET-D [61]. We use the most recent
ET-D configuration and note that in the 300–3000 Hz
range all of the ET configurations have a similar sensitivity.
The published noise curves, and those used in this paper,
are for a single interferometer of 10 km with a 90° opening
angle. The current ET proposal is to have three individual
interferometers each with a 60° opening angle configured in
an equilateral triangle. This will shift the noise curve down
approximately 20% [61].

2There will also be a neutron-star spin contribution χNS.
Magnetic dipole radiation, however, is expected to spin down
a NS to a small fraction of the Kepler frequency well before the
binary reaches the detector band. Furthermore, for the PhenomC
waveform, the aligned spins of the two bodies are approximated
by the single mass-weighted average-spin parameter χavg
[Eq. (6)]. Since we will use χBH as our only spin parameter it
effectively becomes a linear combination of the BH and NS spins.
Incorporating NSs with significant spins would require a different
inspiral waveform model with two separate spin parameters as
well as BHNS simulations with spinning NSs.
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The 1σ uncertainty ellipses in the EOS parameter space
θ⃗ ¼ flogðp1Þ;Γg are ΔθiΔθjΓij ¼ 1. When calculating
these two-parameter error ellipses with the Fisher matrix
using finite differencing, we sometimes find that two
waveforms with the same logðp1Þ but different Γ are
nearly identical, leading to derivatives that are dominated
by numerical errors in the waveforms. To avoid this
problem, we transform the Γ − logðp1Þ coordinate system
to the u − v coordinate system shown in Fig. 12. We then
evaluate the derivatives in this new coordinate system, and
finally transform back with the chain rule

∂ ~h
∂ logðp1Þ

¼ ∂u
∂ logðp1Þ

∂ ~h
∂uþ ∂v

∂ logðp1Þ
∂ ~h
∂v ; (29)

∂ ~h
∂Γ ¼ ∂u

∂Γ
∂ ~h
∂uþ ∂v

∂Γ
∂ ~h
∂v : (30)

These ellipses are shown in Fig. 13 for the ET-D noise
PSD for both nonspinning and spinning simulations when
the BHNS waveform is matched to a PhenomC BBH
inspiral waveform with no tidal correction ψT . As in Paper I
we find that the uncertainty contours are approximately
aligned with tidal deformability contours Λ1=5, and this
holds for systems with spinning black holes as well. As in
Paper I we plot Λ1=5 instead of Λ because it is more closely
related to the NS radius. We also note that the error ellipses
found here for (χBH ¼ 0, Q ¼ 2, MNS ¼ 1.35M⊙) using
the PhenomC BBH inspiral waveform and frequency-
domain match are very similar to the results found in
Fig. 11 of Paper I where we used the EOB BBH inspiral
waveform and a time-domain match.

In contrast, when the tidal correction ψT is added to the
PhenomC inspiral waveform before generating a hybrid
waveform, there is an improvement of roughly a factor of 3
in the measurability of Λ as shown in Fig. 14. The majority
of the improvement arises because, as stated in the
discussion of Fig. 8, even though the inspiral tidal correc-
tion is small, the hybridization procedure also adds a tidal
term that grows linearly with frequency to the merger and
ringdown which is not present when the numerical wave-
form is joined to an inspiral waveform without tidal
corrections. In addition, because the inspiral tidal correc-
tion ψT and the tidal contribution to the matching term
[ψTðMfmidÞ þ ðMf −MfmidÞψT

0ðMfmidÞ] are analytically
proportional to Λ, the ellipses align much more closely with
the Λ contours. We emphasize that the majority of the
improvement comes from the above tidal contribution to
the matching term, and not from the inspiral term ψT .
As already noted [30], tidal interactions during the inspiral
alone are not separately measurable. Finally we note that
when using the broadband aLIGO noise curve instead of
the ET-D noise curve, the error ellipses in Figs. 13 and 14
have nearly identical shape and orientation but the size is a
factor of ∼10 larger.
We tentatively conclude that Λ is the dominant

EOS-dependent quantity that can be measured for the
merger and ringdown as well as for the inspiral. We
have considered only the two-dimensional cross
section Δθ⃗nonEOS ¼ 0 of the eight-dimensional ellipsoid
ΔθiΔθjΓij ¼ 1, however, and have therefore ignored
correlations between the EOS parameters and the non-
EOS parameters.We partially address this deficiency in the
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FIG. 11. (color online). Noise PSD for broadband aLIGO, ET-
B, and ET-D. Also shown are the weighted amplitudes 2f1=2j ~hj of
phenomenological waveforms for four parameter values. For all
waveforms, MNS ¼ 1.35M⊙ and Deff ¼ 100 Mpc. Black circles
represent the start of the waveform fit at Mf ¼ 0.01.
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FIG. 12 (color online). An example of the coordinates u and v
used to compute derivatives in Eqs. (29) and (30). At the origin of
the u − ν coordinate system shown here, a logðp1Þ ¼ const
contour is approximately aligned with a Λ1=5 ¼ const contour.
Fisher matrix components in u − v coordinates involve deriva-
tives that are approximated well by finite differences; in contrast,
a component associated with the coordinates logðp1Þ and Γ
involves an inaccurate approximation of ∂ ~h=∂Γ by a difference
of two nearly identical waveforms with the same logðp1Þ but
different Γ.
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next section by explicitly accounting for correlations
between Λ and the non-EOS parameters. One may still
worry that, although Λ appears to be the best-measured
combination of the parameters logðp1Þ and Γ on this

θ⃗nonEOS ¼ 0 slice, logðp1Þ and Γ may correlate with the
other parameters θ⃗nonEOS through a different combination.
However, because the majority of the tidal contribution
comes from the linearly growing matching term that
analytically depends on Λ, we believe this assumption
is mostly justified. We will test this assumption by
calculating the systematic error in our phenomenological
waveform model below which assumes Λ is the EOS-
dependent parameter.
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FIG. 13 (color online). 1σ error ellipses for the two-parameter
Fisher matrix using the ET-D noise curve. We use hybrid
waveforms where the numerical BHNS waveform is matched
to a PhenomC BBH inspiral waveform with no tidal correction.
The binary is optimally oriented and at a distance of 100 Mpc.
Values of χBH, Q, and MNS are listed in each panel. Evenly
spaced contours of constant Λ1=5 are also shown. Each ellipse
is centered on the estimated parameter θ⃗A denoted by a ×. Top: The
matching window has widthΔMfmatch ¼ 0.008 and is centered on
Mfmid ¼ 0.016. Middle: ΔMfmatch ¼ 0.008 and Mfmid ¼ 0.016.
Bottom: ΔMfmatch ¼ 0.008 and Mfmid ¼ 0.020.
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FIG. 14 (color online). Same as Fig. 13, except the hybrid
waveforms are generated by matching the numerical BHNS
waveforms to PhenomC inspiral waveforms with the tidal
correction ψT . For all panels, the matching window has width
ΔMfmatch ¼ 0.008 and is centered on Mfmid ¼ 0.022.
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VI. PHENOMENOLOGICAL BHNS WAVEFORM

In Paper I and the section above, we assumed that
correlations between Λ and the other parameters are
negligible. To test this assumption, we must calculate
the complete Fisher matrix for all parameters, and this
requires us to evaluate partial derivatives with respect to all
parameters at a single point. As discussed above, this is
computationally difficult for hybrid waveforms using finite
differencing. Another approach is to construct an analytic
BHNS waveform model with free parameters that are fit to
the hybridized numerical waveforms. This allows one to
interpolate between the available simulations and to evalu-
ate derivatives used in the Fisher matrix.
As found in Sec. V (Figs. 13 and 14) and in Figs. 3–5, a

BHNS waveform is well approximated by a one-parameter
deformation from a BBH waveform where Λ ¼ 0 [17].
As shown in Figs. 3–5, throughout the inspiral, merger,
and ringdown, both the amplitude and phase of the
Fourier-transformed waveform monotonically decrease
with respect to a BBH waveform as frequency increases

and as Λ increases.3 We thus write the BHNS waveform
as a modification to a BBH waveform,

~hBHNSðMf; θ⃗Þ ¼ ~hBBHðMf; θ⃗ÞrðMf; θ⃗ÞeiΔΦðMf;θ⃗Þ; (31)

where the ratio rðMf; θ⃗Þ ¼ j ~hBHNSðMf; θ⃗Þj=j ~hBBHðMf; θ⃗Þj
is the amplitude correction,ΔΦðMf; θ⃗Þ ¼ ΦBHNSðMf; θ⃗Þ−
ΦBBHðMf; θ⃗Þ is a phase correction factor, and the three
physical parameters that we will fit our waveforms to are

θ⃗ ¼ fη; χBH;Λg. We will then fit the quantities rðMf; θ⃗Þ
and ΔΦðMf; θ⃗Þ to the 134 hybrid waveforms listed in
Table II.
For aligned-spin BBH systems, significant work has

gone into developing analytic waveforms that include the
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FIG. 15. (color online). Left panel: Amplitude j ~hj of the Fourier transform of BHNS waveforms for (χBH ¼ 0, Q ¼ 2,
MNS ¼ 1.35M⊙) and for the four EOSs p:3Γ3.0 (blue), p:5Γ3.0 (red), p:7Γ3.0 (orange), p:9Γ3.0 (green). Numerical waveforms
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PhenomC BBH waveform. Matching and splicing intervals are the same as those in Fig. 3.
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FIG. 16. (color online). Same as Fig. 15 except for (χBH ¼ 0.5, Q ¼ 5,MNS ¼ 1.35M⊙). The three EOSs plotted are p:3Γ3.0 (blue),
p:7Γ3.0 (red), p:9Γ3.0 (green). The disagreement between the PhenomC and EOB models as well as the quality of the fits to the
numerical waveforms is significantly worse than that in Fig. 15.

3For mass ratios of Q ¼ 4 and 5, the PhenomC amplitude is
sometimes less than the BHNS waveform with the softest EOS
during ringdown around Mf ∼ 0.1 as seen in Figs. 3 and 5. The
amplitude of the corresponding EOB waveform, however, is
always greater than the BHNS amplitudes.
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complete inspiral, merger, and ringdown, and are calibrated
to numerical BBH simulations. Unfortunately, there is no
single BBH waveform model that has been calibrated for
the ranges of mass ratio Q ∈ ½2; 5� and black hole spin
χBH ∈ ½−0.5; 0.75� listed in Table II. Furthermore, there are
differences between the various analytic BBH waveforms
for values of Q and χBH for which they are both available
(see the PhenomC and EOB waveforms in Figs. 3–5, 15,
and 16). Although small, these differences are still a non-
negligible fraction of the difference between a BBH and
BHNS waveform. As a result, we will have to separately
calibrate our BHNS waveform model for each BBH model,
and our waveform for very small values of Λ, where
intrinsic errors in the analytic BBH models may dominate
over tidal effects, will likely not be accurate. The two BBH
models we use are the frequency-domain PhenomC [42]
waveform and the time-domain EOB waveform [50]
discussed in Sec. III.

A. Fit based on the PhenomC BBH approximation

We fit the corrections to the PhenomC waveform, r and
ΔΦ, to our numerical BHNS waveforms. Although the
PhenomC waveform is not calibrated using BBH wave-
forms with mass ratios of Q ¼ 5, we will fit r and ΔΦ to
Q ¼ 5 BHNS waveforms anyway.

1. Amplitude fit

During the inspiral, because parameter estimation is
much more sensitive to the fractional change in phase of
the waveform than to the fractional change in amplitude,
we ignore the very small amplitude correction from tidal
interactions. During the merger and ringdown, however,
amplitude corrections are important. We therefore write the
amplitude correction as

rðMf; θ⃗Þ ¼
�
1; Mf ≤ MfA;
e−ηΛBðMf;θ⃗Þ; Mf > MfA;

(32)

where MfA is the boundary, chosen below, between
the inspiral and merger for the amplitude fit. We
have extracted the quantity ηΛ because, as η → 0
(extreme-mass-ratio limit) or Λ → 0 (no-matter limit),
the waveform should approach that of a BBH waveform.
We now impose two requirements on the function
BðMf; θ⃗Þ. (i) The amplitude must be continuous at the
frequency MfA, so BðMfA; θ⃗Þ ¼ 0. (ii) Because the
amplitude of the BHNS waveform is almost always less
than that of the corresponding BBH waveform, we

require BðMf; θ⃗Þ ≥ 0 for Mf ≥ MfA and for all physical
values of the parameters: η ∈ ½0; 0.25�, χBH ∈ ½−1; 1�,
and Λ ≥ 0.
Given the above restrictions, we find that a useful fitting

function for the amplitude correction is BðMf; θ⃗Þ ¼
CðMf −MfAÞD, where C and D are free parameters,
and MfA ¼ 0.01. With this ansatz, we then do a nonlinear
least-squares fit to determine the parameters C and D. We
find that over the 134 simulations, D has a mean and
standard deviation of D ∼ 3� 0.5, and because these
parameters are highly correlated, we fix D ¼ 3 so that
B ¼ CðMf −MfAÞ3. We then fit each waveform with the
single parameter C. The parameter C is then fit to the
physical parameters. We find that for fixed η and χBH, C is
approximately a linear function of Λ. We therefore use
the function Cðη;χBH;ΛÞ¼ eb0þb1ηþb2χBH þΛec0þc1ηþc2χBH ,
where the parameters fb0; b1; b2; c0; c1; c2g are found with
a nonlinear least-squares fit. We note that this function is
positive for all physical values of the parameters η, χBH,
and Λ. Given the small number of samples for η and χBH
as well as the difficulty in extracting the small tidal
contribution from numerical simulations, we have used
as few parameters in our fit as possible rather than to overfit
noisy data with a large number of parameters. The final
form of B is

BðMf; θ⃗Þ ¼ ðeb0þb1ηþb2χBH þΛec0þc1ηþc2χBHÞðMf−MfAÞ3;
(33)

and the best-fit parameters are fb0; b1; b2; c0; c1; c2g ¼
f−64:985; −2521:8; 555:17; −8.8093; 30:533; 0.64960g.
Using this fit, we find typical fractional errors inC of∼30%
for 500≲ Λ≲ 2000. However, errors can be significantly
larger for Λ≲ 500 and Q ¼ 4 and 5, where r is small due
to the small tidal interaction, and the error is dominated by
numerical noise and uncertainty in the BBH waveform.
This is not significant because, as we will find, the
systematic error that results from poorly fitting r is still
smaller than the statistical error in Λ for small values of Λ.
In addition, for Λ≳ 2000, the quality of the fit deteriorates
because the amplitude is better fit by D ∼ 2.5 than by
D ¼ 3.0. We show representative waveform fits in Fig. 15
as well as one of the worst-case fits in Fig. 16. Two more
fits are also found in Figs. 21 and 22.

2. Phase fit

For the phase of the phenomenological waveform we
choose the following ansatz:

ΔΦðMf; θ⃗Þ ¼
�
ψTðMf; θ⃗Þ; Mf ≤ MfΦ;
−ηΛEðMf; θ⃗Þ þ ψTðMfΦ; θ⃗Þ þ ðMf −MfΦÞψ 0

TðMfΦ; θ⃗Þ; Mf > MfΦ;
(34)
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where ψT is the frequency-domain tidal phase correction for
the inspiral, and a 0 denotes a derivative with respect toMf.
In this paper we will use the 1PN-accurate TaylorF2 tidal
correction [Eq. (7)] for the inspiral. This expression
explicitly breaks the EOS-dependent contribution to the
phase into three pieces: (i) the contribution due to the
inspiral tidal correction ψTðMf; θ⃗Þ, (ii) the contribution
due to the merger-ringdown dynamics −ηΛEðMf; θ⃗Þ
which we will fit to numerical simulations, and (iii) the
term ψTðMfΦ; θ⃗Þ þ ðMf −MfΦÞψ 0

TðMfΦ; θ⃗Þ that grows
linearly after the transition frequencyMfΦ and results from
matching the phase and derivative of the merger to the
tidally corrected inspiral as discussed in Sec. III.
As in the amplitude fit, we have explicitly pulled out

the quantity ηΛ in the first term −ηΛE because the phase of
the BHNS waveform should approach that of a BBH
waveform as η → 0 or Λ → 0. We further require the
remaining function EðMf; θ⃗Þ to satisfy the following
conditions: (i) EðMfΦ; θ⃗Þ ¼ 0, (ii) E0ðMfΦ; θ⃗Þ ¼ 0, and
(iii) EðMf; θ⃗Þ ≥ 0 for Mf ≥ MfΦ and for all physical
values of η, χBH, and Λ. In this way, the function EðMf; θ⃗Þ
is determined fully by the numerical waveform and is
independent of the inspiral tidal term ψT .
A key feature of this ansatz for the phenomenological

waveform is that, if we do not change the hybridization
matching window ðMfi;MffÞ, an improved inspiral tidal
phase term ψT can be swapped into Eq. (34) without
requiring one to redo the following fit for EðMf; θ⃗Þ. This is
useful for estimating how an improved inspiral tidal
correction effects the measurability of tidal parameters
for the complete IMR waveform. We note, however, that
an improved inspiral tidal term will lead to a slightly
different optimal matching window ðMfi;MffÞ for the
hybridization procedure, and using the optimal matching
window for the hybridization with the improved inspiral
tidal term will require one to redo the fit for E.
We find that each waveform can be accurately fit with a

function of the form E ¼ GðMf −MfΦÞH, whereG andH
are free parameters, and unlike the amplitude fit where
MfA ¼ 0.01, we choose MfΦ ¼ 0.02 for the transition
frequency because it is close to the midpoint
(Mfmid ¼ 0.022) of the hybrid matching interval. For
the 134 BHNS waveforms the best fit for the parameter
H has a relatively narrow range of ∼2� 0.5. This is
consistent with the leading frequency dependence
[ψT ∝ ðMfÞ5=3] of the tidal correction in Eq. (7). In
addition, the free parameters G and H in this fit are highly
correlated. We thus rewrite E ¼ GðMf −MfΦÞ5=3 and fit
each waveform with the single parameterG. For fixed η and
χBH, G is a roughly constant function of Λ, so we use the
form Gðη; χBHÞ ¼ eg0þg1ηþg2χBHþg3ηχBH . The function E can
then be written as

EðMf; θ⃗Þ ¼ eg0þg1ηþg2χBHþg3ηχBHðMf −MfΦÞ5=3; (35)

where the best-fit parameters are fg0; g1; g2; g3g ¼
f−1.9051; 15:564;−0.41109; 5.7044g, and as with the
amplitude fit, this parametrization is well defined for all
possible values of η, χBH, and Λ. Several phase fits are
shown in Figs. 15, 16, 21, and 22. We find that typical
fractional errors in the fit for G are ∼30% for Λ≳ 500, but
can be larger for smaller values of Λ. As with the amplitude
fit, the large fitting error for Λ≲ 500 is not significant
because the systematic error resulting from the poor fit will
still be less than the statistical error in Λ.

B. Fit based on the EOB BBH approximation

Unlike the PhenomC waveform, EOB waveforms are
not yet available for spins of χBH ¼ 0.75, so we use only
the 90 waveforms that have −0.5 ≤ χBH ≤ 0.5 when
calibrating the fit. As discussed in Sec. III B, we Fourier
transform the time-domain EOB waveform, then add the
TaylorF2 tidal correction [Eq. (7)] to the phase, and then
generate a hybrid waveform. We then produce an analytic
fit to these hybrid waveforms using the same procedure and
matching parameters (ΔMfmatch ¼ 0.008, Mfmid ¼ 0.022,
Msi ¼ Mfi, and Msf ¼ Msi þ 0.001) as with the
PhenomC waveforms.
For the amplitude fit we use Eq. (33)withMfA ¼ 0.01 and

obtain the following coefficients:fb0; b1; b2; c0; c1; c2g ¼
f−1424.2; 6423.4; 0.84203; −9.7628; 33.939; 1.0971g.
Typical errors inC are about the same as for the PhenomC fit.
For the phase fit we use Eq. (35) with MfΦ ¼ 0.02

and obtain fg0; g1; g2; g3g ¼ f−4.6339; 27.719; 10.268;
−41.741g. Typical errors in G are again about the same as
for the PhenomC fit.
As can be seen in Figs. 15 and 16 as well as Figs. 3–7,

the disagreement between the PhenomC and EOB models
typically grows with increasing BH spin and mass ratio.
This uncertainty in the underlying BBH waveform, to
which the BHNS waveform is a small perturbation, is one
of the primary difficulties in constructing a BHNS model
that is valid for all values of χBH, Q, and Λ. The disagree-
ment between the hybrid BHNS waveform, the fit based
on the PhenomC model, and the fit based on the EOB
model therefore typically increases with the BH spin and
mass ratio.

VII. MEASURABILITY OF Λ

A. Statistical error

Using the analytic BHNS waveform based on the
PhenomC BBH waveform developed in the previous
section, we can now evaluate the Fisher matrix for a
single GW detector using the complete set of waveform
parameters flnDeff ; f1tc;ϕc; lnM; ln η; χBH;Λ1=5g, where
f1 is some fiducial frequency such as 1 Hz, and as in Paper
I we use Λ1=5 because it is approximately proportional to
the more familiar NS radius. We have calculated the 1σ
uncertainty in Λ1=5 for both the broadband aLIGO [60] and
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ET-D detector configurations [61] shown in Fig. 11. Errors
are shown in Figs. 17 and 18 for broadband aLIGO and
ET-D, respectively, and are scaled to an effective distance
of 100 Mpc as was done in Paper I. We note that the results
here for the Q ¼ 2 and 3 nonspinning waveforms are
similar to those presented in Figs. 12 and 13 of Paper I. This
indicates that coherently adding the inspiral tidal inter-
actions to the merger and ringdown, and considering
correlations between Λ and the other parameters roughly
cancel each other.
There are several trends to notice in the uncertainty σΛ1=5.

In general, σΛ1=5 increases with increasing mass ratio Q.
This is not surprising since the inspiral tidal contribution
ψT [Eq. (7)] to the waveform phase, which has a significant
impact on the measurability of Λ both before and after the
inspiral-merger transition, is a decreasing function of the
mass ratio. In addition, the amount of tidal disruption
before the plunge, as well as its imprint on the waveform,
decreases as the mass ratio increases. However, there are
two competing effects that help to minimize the increase in
uncertainty σΛ1=5 asQ increases. First, the amplitude during
the inspiral which to Newtonian order scales as j ~hðfÞj ∝
M5=6f−7=6=Deff increases as the mass ratio increases for a
fixed NS mass. Second, for higher mass ratios, the EOS-
dependent merger dynamics occur at lower frequencies,
closer to the minimum of the noise PSD (Fig. 11).
On the other hand, σΛ1=5 decreases with increasing black

hole spin χBH. This effect can be understood from Fig. 7

where the amplitude and phase difference between a BHNS
waveform and BBH waveform with the same parameters
increases as the BH spin increases, and the amplitude cutoff
occurs at a lower frequency where the detector is more
sensitive. Physically, we expect the EOS dependence to be
greater for higher spins because the BH ISCO decreases
with spin, allowing the NS to become more tidally distorted
before passing through the ISCO and plunging into the
black hole. In addition, for high spins, the orbital decay will
take longer because the system must radiate away sufficient
angular momentum for the final Kerr black hole to have
spin parameter χfinalBH < 1. As a result, the waveform has
more chance to deviate from a BBH waveform towards the
end of the inspiral and into merger.
We also note that in general, σΛ1=5 decreases as a function

of Λ1=5. This occurs because the departure from BBH
behavior, given by Eqs. (32) and (34), is a strongly
increasing function of Λ1=5. However, as seen in Fig. 17
for broadband aLIGO, we find that for Q ¼ 2 and
χBH ≳ 0.5, the error σΛ1=5 begins to increase again for large
Λ1=5. Because the Fisher matrix element ΓΛ1=5Λ1=5 is a
monotonically increasing function of Λ1=5, the increase
in σΛ1=5 is, therefore, due to an increase in the covariance
with the other parameters for this particular set of param-
eters and noise curve. Finally, we find that although the
uncertainty σΛ1=5 for the parameter values (Q ¼ 2, χBH ¼ 0,
MNS ¼ 1.35M⊙), (Q ¼ 3, χBH ¼ 0.5, MNS ¼ 1.35M⊙),
and (Q ¼ 5, χBH ¼ 0.75, MNS ¼ 1.35M⊙) only varied
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FIG. 17 (color online). 1σ error σΛ1=5 for various values of the mass ratio, BH spin, and tidal deformability. The NS mass is fixed at
1.35M⊙. The noise curve is for broadband aLIGO. For χBH ¼ −0.5, curves are not shown forQ ¼ 4 and 5 because these values have not
been calibrated to numerical BHNS waveforms.
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by ∼50% in Fig. 14, they vary by ∼100% in Figs. 17 and
18. This again results from accounting for the covariance
with the other parameters.
In addition to the above Fisher matrix estimates of σΛ1=5

which approximate the fractional uncertainty in the NS

radius, we also evaluate σΛ which is more commonly used
in GW studies. As can be found from the definition of the
Fisher matrix [Eq. (22)] and as noted in Ref. [64], the
covariances ΣiΛ and the standard deviation σΛ ¼ Σ1=2

ΛΛ are
related to the old quantities by
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FIG. 18 (color online). Same as Fig. 17, but with the ET-D noise curve. The uncertainty σΛ1=5 is an order of magnitude smaller.
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FIG. 19 (color online). Same as Fig. 17, but for σΛ instead of σΛ1=5 .
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ΣiΛ

Λ
¼ 5

ΣiΛ1=5

Λ1=5 ; (36)

σΛ
Λ

¼ 5
σΛ1=5

Λ1=5 : (37)

For comparison with other work, we plot the uncertainty σΛ
in Figs. 19 and 20. In these figures, σΛ depends only
weakly on Λ because the phase is linearly proportional to Λ
[Eq. (34)] and the amplitude only depends on Λ during the
merger [Eq. (32)]. The Fisher matrix therefore only
depends on Λ through the off-diagonal elements and the
Λ-dependent term in the merger amplitude.

B. Systematic error in the waveform fit

The analytic BHNS waveform developed in Sec. VI does
not exactly match the hybrid waveforms that it is calibrated
against. This leads to a bias in estimating the BHNS
parameters. In this subsection, we estimate the systematic
error that results from using our analytic waveforms instead
of the hybrid waveforms as templates; we then use the
estimate as a criterion to determine the quality of the
analytic fit.
In Sec. VI, we gave an approximate expression for the

systematic error,

Δθisyst ≈ −Γ−1
ij ðδhðθ⃗AÞ; ∂jhAðθ⃗AÞÞ; (38)

where δhðt; θ⃗Þ ¼ hAðt; θ⃗Þ − hEðt; θ⃗Þ is the difference
between the approximate fit and the exact waveform.

Here, we refer to the hybrid BHNS waveform as the exact
waveform hEðt; θ⃗Þ, the analytic fit as the approximate
waveform hAðt; θ⃗Þ, and θ⃗A is the best estimate of the
true parameters using the approximate fit as the template.
The waveform derivatives and Fisher matrix Γij are then
calculated from the analytic waveform fit as was done for
the statistical error.
An analytic waveform is useful for parameter estimation

when the systematic error is a small fraction of the
statistical error for a given GW detector. We will use
as our criteria for a sufficiently accurate fit to the
numerical waveform the requirement that the systematic
error in each parameter be less than the statistical error
for an optimally oriented BHNS system observed at
100 Mpc. For larger distances or a less sensitive detector,
the systematic error will be a smaller fraction of the
total error. For a waveform with the form hðtÞ ¼ 1

Deff
gðtÞ

and a PSD with overall amplitude factor An such
that SnðfÞ ¼ A2

nRnðfÞ, the statistical errors σi scale as
σi ∝ AnDeff . On the other hand, as can be found
from Eq. (38), the systematic error is independent of both
An and Deff . The ratio of systematic to statistical error is
therefore

Δθisyst
σi

∝
1

AnDeff
: (39)

Because the PSDs for broadband aLIGO and ET-D have
roughly the same shape, but differ in amplitude An by a
factor of ∼10, we expect the systematic to statistical error
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FIG. 20 (color online). Same as Fig. 18, but for σΛ instead of σΛ1=5 .
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ratio to differ by about a factor of 10, and therefore the
systematic error will be far more important for ET.
We find that, for the BHNS fit based on the PhenomC

waveform, the ratio of systematic error to statistical error in
Λ1=5 for broadband aLIGO for a binary at Deff ¼ 100 Mpc
is jΔΛ1=5

systj=σΛ1=5 ∼ 0.15� 0.15 with a maximum value of
0.65 for the 134 waveforms listed in Table II. However, the
systematic error is strongly biased by theQ ¼ 5waveforms
for which the PhenomC waveform has not been calibrated
to BBH simulations (Table II). For the 101 simulations with
Q ≤ 4, we find jΔΛ1=5

systj=σΛ1=5 ∼ 0.09� 0.08 with a maxi-
mum value of 0.51, and we also note that this ratio is > 0.2
only when Q ≥ 4.
For ET-D, the systematic error is roughly the same

as for broadband aLIGO, and the ratio of systematic to
statistical error is about an order of magnitude larger as
expected. Specifically, atDeff ¼ 100 Mpc, jΔΛ1=5

systj=σΛ1=5 ∼
1.3� 1.2 with a maximum value of 6.3 for the 134
waveforms. Only including the 101 waveforms where
Q ≤ 4, jΔΛ1=5

systj=σΛ1=5 ∼ 1.1� 0.9 with a maximum value
of 5.3, and this ratio is > 2.5 only when Q ≥ 4. We
therefore conclude that the BHNS fit is sufficient for
aLIGO. However when the effective distance Deff is less
than a few hundred Mpc, the systematic error will
become comparable to the statistical error in some cases
for ET-D.
We also calculate the systematic error for the fit based

on the EOB waveform. Unfortunately, because the EOB
waveform is time-domain and the waveform enters the
detector band at around 10 Hz for aLIGO and 1 Hz
for ET, very long waveforms are needed to evaluate the
statistical and systematic error. This is possible, but time
consuming, so we use a more crude estimate of the errors.
Equations (24) and (38) can be approximated by ignoring
the covariance between Λ and the other parameters,

σΛ1=5 ≈ ½ð∂Λ1=5hAðθ⃗AÞ; ∂Λ1=5hAðθ⃗AÞÞjMf¼∞
Mf¼0.01�−1=2; (40)

ðΔΛ1=5Þsyst ≈ − ðδhðθ⃗AÞ; ∂Λ1=5hAðθ⃗AÞÞjMf¼∞
Mf¼0.01

ð∂Λ1=5hAðθ⃗AÞ; ∂Λ1=5hAðθ⃗AÞÞjMf¼∞
Mf¼0.01

; (41)

where the integral in the inner product ð·j·ÞjMf¼∞
Mf¼0.01 is

evaluated from a frequency of Mf ¼ 0.01 to ∞. We
also note that the hybrid waveform hE and analytic fit
hA are identical below Mf ¼ 0.01, so δh ¼ 0 below this
frequency.
We have evaluated these quantities for the BHNS fits

based on the PhenomC and EOBwaveforms. The statistical
errors are the same to approximately�10%. The systematic
error for the EOB fit, however, is typically ∼2 times larger
than for the PhenomC fit. This is somewhat surprising
given that the EOB waveform is a much better approxi-
mation to BHNS waveforms with the smallest values of Λ.
However, we note that most of the adjustable parameters,

such as the matching window, as well as the form of the
functions r and ΔΦ [Eqs. (32)–(35)] were optimized for
hybrids based on the PhenomC waveform. We therefore do
not claim that the PhenomC waveform in general produces
a better BHNS analytic fit.

C. Other sources of systematic error

In the previous subsection, we treated the hybrid BHNS
waveform as the exact waveform in estimating the sys-
tematic error of our fits. However, because the hybrid
waveform is not exact, additional systematic errors exist
that were not captured in these estimates.
One source of error is the finite resolution of the

numerical BHNS waveform. The error is most severe when
the neutron star is compact and the mass ratio Q is large.
Waveforms for the high-mass-ratio systems (χBH ¼ 0.75,
Q ¼ 4, MNS¼1.35M⊙, EOS¼p.4Γ3.0) and (χBH ¼ 0.75,
Q ¼ 5, MNS ¼ 1.35M⊙, EOS ¼ p.9Γ3.0) are shown at
three different resolutions in Figs. 21 and 22 (see also
Fig. 25 of Ref. [37] where the waveforms are matched at
the very end of the inspiral). As is readily apparent in the
top panels of both figures, several radians of phase
difference build up during the inspiral. (Using an analysis
similar to that in Ref. [65], we have found that the
waveforms are consistent with second-order convergence;
however, a more careful analysis would be needed to
verify this.) The resulting phase error is a few times larger
than the entire accumulated tidal phase drift ψT during the
inspiral, so any EOS effects during the late inspiral are
swamped by numerical error. We have circumvented this
issue in this paper by matching at the very end of the
inspiral and removing the finite-resolution phase error that
accumulates during the inspiral part of the numerical
waveform. After doing this, we find that the difference
between simulations with different resolutions is signifi-
cantly smaller than the overall effect due to the presence
of matter as seen in the Fourier-transformed amplitudes
and phases of Figs. 21 and 22. We therefore conclude that
the resolution does not play a major role in the accuracy of
our results.
However, when performing the matching at such a high

frequency, the accuracy of the analytic PN tidal description
becomes an issue, and this would not be accounted for in
the above systematic-error calculations. Because the accu-
racy of the PN phase term ψTðMf; θ⃗Þ decreases with
frequency, the accuracy of the terms in the phase correction
[Eq. (34)] that contain ψTðMfΦ; θ⃗Þ or ψ 0

TðMfΦ; θ⃗Þ also
decreases because the transition frequency MfΦ increases
when the hybridization is done at higher frequencies. A
crude estimate of the phase error can be obtained by
comparing the leading and 1PN effects as was done in
the bottom panel of Fig. 10. For the transition frequency
MfΦ ¼ 0.02, this difference is ∼35%. A complete under-
standing of the accuracy of ψT , however, can only be
assessed with high-resolution BNS and BHNS simulations,
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and such work is underway as was discussed in the
Introduction. In constructing hybrid BHNS IMR models,
the hybrid match must be done at low enough frequency
that the error in ψT is small, but at high enough frequency
that the numerical waveform is still accurate.
Finally, uncertainty in the analytic inspiral model will

also lead to systematic errors. Because the EOS-dependent
effects are so small during the inspiral of BHNS systems,
any modeling errors for other effects are likely to decrease
the ability to measure EOS parameters, since errors in the
other parameters are mildly correlated with Λ.

VIII. DISCUSSION

A. Summary

We have examined the ability of GW detectors to extract
information about the EOS from observations of BHNS
coalescence for black holes with aligned spin. In Paper I,
we found that the EOS parameter that is best measured
during the merger and ringdown, for systems with non-
spinning black holes, is consistent with the tidal deform-
ability Λ. We have now found that this is also true for
systems with aligned black hole spins. Furthermore,
coherently joining the tidally corrected inspiral, which
analytically depends on Λ, to the merger and ringdown
dramatically improves the alignment of the error ellipses
with Λ in Fig. 14 as well as the measurability of Λ by up to
a factor of ∼3 in some cases over just the merger and
ringdown.
In order to examine the correlations between Λ and

the other parameters, we constructed an analytic IMR
waveform based on the frequency-domain, aligned-spin
PhenomC BBH waveform model [42] as well as the time-
domain EOB waveform model [50], and we calibrated this
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FIG. 21 (color online). Top: Waveforms (as in Fig. 2) for
the parameters (χBH ¼ 0.75, Q ¼ 4, MNS ¼ 1.35M⊙,
EOS ¼ p:4Γ3.0). Three different resolution runs were
performed with N ¼ f36; 42; 50g, where the grid spacing is
proportional to 1=N as defined in Ref. [35]. Simulations for all
other parameters used N ¼ 50. Middle: Amplitude of the hybrid
waveforms for the three resolutions. Also shown is the phenom-
enological fit based on the PhenomC waveform. Bottom:
Phase of the hybrid waveforms as well as the phenomenological
fit. There is a significant discrepancy in the phase between
the fit and the hybrid waveform for these parameters which is
much larger than the difference between the different
resolution runs. Matching and splicing intervals are the same
as those in Fig. 3.
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FIG. 22 (color online). Same as Fig. 21 but with the parameters
(χBH ¼ 0.75, Q ¼ 5, MNS ¼ 1.35M⊙, EOS ¼ p:9Γ3.0).
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waveform model to our hybridized numerical waveforms.
Although Λ does correlate with the other parameters, the
correlations are not nearly as strong as correlations between
the other parameters. Overall, the correlations reduce the
measurability of Λ by approximately a factor of 3. The
above two effects roughly cancel out and the results for
σΛ1=5 are therefore similar to the results presented in Paper I
which neglected these two effects.
In addition, we examined the agreement between the

hybrid BHNS waveforms and our analytic waveforms in
Sec. VII B. The agreement is good enough that, in most
cases, the systematic errors introduced by using the analytic
waveform instead of the hybrid waveform will be smaller
than statistical errors for aLIGO. For ET on the other hand,
these systematic errors will matter if BHNS systems are
observed with effective distances of less than a few hundred
Mpc. However, as discussed in Sec. VII C, additional
sources of systematic error will need to be addressed before
the analytic waveforms can be used as templates for
parameter estimation with real data.

B. Future work

There is currently much room for improvement in the
analytic fits presented in this paper. The uncertainty in the
underlying BBHwaveform was a major source of difficulty
in constructing accurate fits to the hybrid BHNS wave-
forms. Recently, Pannarale et al. [66] have presented an
alternative fit for the frequency-domain amplitude based on
the PhenomC waveform for the special case of nonspinning
BHNS systems. The model, which also modifies the
underlying PhenomC BBH model to more accurately agree
with BHNS systems with soft EOSs, appears to provide an
improved fit to the BHNS amplitude during the merger-
ringdown, and future work will also incorporate spinning
BHNS systems. Additional work should also directly
compare BBH and BHNS simulations for systems with
the same mass ratio and spin instead of using analytic BBH
models, so the fit to EOS-dependent corrections does not
also incorporate uncertainties in the analytic BBH model.
Such a comparison was recently performed for a non-
spinning Q ¼ 6 system [64]. Finally, the present work was

limited to systems with lowmass ratios and BH spins due to
the current lack of BHNS simulations and accurate BBH
waveform models that are available at higher mass ratios
and spins. If the typical BH in a BHNS system has a mass
closer to 10M⊙, then studying systems with larger mass
ratios and highly spinning BHs will provide the most
relevant information.
The analytic waveform models presented here, and in

particular the one based on the frequency-domain
PhenomC waveform, can be, without too much difficulty,
incorporated into Markov chain Monte Carlo and nested
sampling algorithms used for Bayesian parameter estima-
tion for networks of GW detectors. A full Bayesian analysis
will then make it possible to assess the true nature of the
statistical errors and systematic errors in the waveform fit
beyond the Fisher matrix approximation, by injecting
hybrid BHNS waveforms into detector noise and attempt-
ing to recover their parameters with the analytic waveform
template.

ACKNOWLEDGMENTS

We thank Lucia Santamaria for providing code for
calculating PhenomC waveforms, Alessandra Buonanno
and Andrea Taracchini for generating spinning EOB wave-
forms, Richard O’Shaughnessy for helpful discussions
related to the phenomenological fits, Marc Favata for
helpful discussions related to the measurability of tidal
parameters, and Kenta Hotokezaka for helpful discussions
related to the comparison between numerical relativity and
EOB waveforms. This work was supported by NSF Grants
No. PHY-1001515, No. PHY-0970074, No. PHY11-
25915, and No. PHY-1307429. The work of M. S. is
supported by Grant-in-Aid for Scientific Research
(No. 21340051, No. 24244028), Grant-in-Aid for
Scientific Research on Innovative Area (No. 20105004),
and HPCI Strategic Program of Japanese MEXT. The work
of K. K. is supported by Grant-in-Aid for Scientific
Research (No. 21684014). Part of this work was done
while B. L. was at KITP.

[1] G. M. Harry (LIGO Scientific Collaboration), Classical
Quantum Gravity 27, 084006 (2010).

[2] F. Acernese et al. (Virgo Collaboration), Advanced virgo
baseline design, VIR-027 A-09, https://tds.ego‑gw.it/itf/tds/
file.php?callFile=VIR‑0027A‑09.pdf.

[3] K. Somiya, Classical Quantum Gravity 29, 124007
(2012).

[4] B. Iyer, T. Souradeep, C. S. Unnikrishnan, S. Dhurandhar,
S. Raja, and A. Sengupta, LIGO Document M1100296-v2,

https://dcc.ligo.org/cgi‑bin/DocDB/ShowDocument?docid=
75988.

[5] M. Punturo et al., Classical Quantum Gravity 27, 084007
(2010).

[6] C. S. Kochanek, Astrophys. J. 398, 234 (1992).
[7] D. Lai, F. A. Rasio, and S. L. Shapiro, Astrophys. J. 420,

811 (1994).
[8] T. Mora and C. M. Will, Phys. Rev. D 69, 104021

(2004).

LACKEY et al. PHYSICAL REVIEW D 89, 043009 (2014)

043009-24

http://dx.doi.org/10.1088/0264-9381/27/8/084006
http://dx.doi.org/10.1088/0264-9381/27/8/084006
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
https://tds.ego-gw.it/itf/tds/file.php?callFile=VIR-0027A-09.pdf
http://dx.doi.org/10.1088/0264-9381/29/12/124007
http://dx.doi.org/10.1088/0264-9381/29/12/124007
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=75988
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=75988
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=75988
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=75988
http://dx.doi.org/10.1088/0264-9381/27/8/084007
http://dx.doi.org/10.1088/0264-9381/27/8/084007
http://dx.doi.org/10.1086/171851
http://dx.doi.org/10.1086/173606
http://dx.doi.org/10.1086/173606
http://dx.doi.org/10.1103/PhysRevD.69.104021
http://dx.doi.org/10.1103/PhysRevD.69.104021


[9] E. Berti, S. Iyer, and C. M. Will, Phys. Rev. D 77, 024019
(2008).

[10] T. Hinderer, Astrophys. J. 677, 1216 (2008).
[11] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys.

Rev. D 81, 123016 (2010).
[12] S. Postnikov, M. Prakash, and J. M. Lattimer, Phys. Rev. D

82, 024016 (2010).
[13] É. É. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502

(2008).
[14] J. E. Vines and É. É. Flanagan, Phys. Rev. D 88, 024046

(2013).
[15] J. Vines, É. É. Flanagan, and T. Hinderer, Phys. Rev. D 83,

084051 (2011).
[16] T. Damour and A. Nagar, Phys. Rev. D 80, 084035

(2009).
[17] T. Binnington and E. Poisson, Phys. Rev. D 80, 084018

(2009).
[18] D. Bini, T. Damour, and G. Faye, Phys. Rev. D 85, 124034

(2012).
[19] T. Damour, A. Nagar, and L. Villain, Phys. Rev. D 85,

123007 (2012).
[20] V. Ferrari, L. Gualtieri, and A. Maselli, Phys. Rev. D 85,

044045 (2012).
[21] A. Maselli, L. Gualtieri, F. Pannarale, and V. Ferrari, Phys.

Rev. D 86, 044032 (2012).
[22] J. S. Read, C. Markakis, M. Shibata, K. Uryū, J. D. E.

Creighton, and J. L. Friedman, Phys. Rev. D 79, 124033
(2009).

[23] A. Bauswein, H.-T. Janka, K. Hebeler, and A. Schwenk,
Phys. Rev. D 86, 063001 (2012).

[24] K. Hotokezaka, K. Kiuchi, K. Kyutoku, T. Muranushi,
Y.-i. Sekiguchi, M. Shibata, and K. Taniguchi, Phys. Rev. D
88, 044026 (2013).

[25] T. Damour and A. Nagar, Phys. Rev. D 81, 084016
(2010).

[26] L. Baiotti, T. Damour, B. Giacomazzo, A. Nagar, and
L. Rezzolla, Phys. Rev. Lett. 105, 261101 (2010).

[27] L. Baiotti, T. Damour, B. Giacomazzo, A. Nagar, and
L. Rezzolla, Phys. Rev. D 84, 024017 (2011).

[28] S. Bernuzzi, A. Nagar, M. Thierfelder, and B. Brügmann,
Phys. Rev. D 86, 044030 (2012).

[29] K. Hotokezaka, K. Kyutoku, and M. Shibata, Phys. Rev. D
87, 044001 (2013).

[30] F. Pannarale, L. Rezzolla, F. Ohme, and J. S. Read, Phys.
Rev. D 84, 104017 (2011).

[31] M. Vallisneri, Phys. Rev. Lett. 84, 3519 (2000).
[32] V. Ferrari, L. Gualtieri, and F. Pannarale, Classical Quantum

Gravity 26, 125004 (2009).
[33] V. Ferrari, L. Gualtieri, and F. Pannarale, Phys. Rev. D 81,

064026 (2010).
[34] M. Shibata, K. Kyutoku, T. Yamamoto, and K. Taniguchi,

Phys. Rev. D 79, 044030 (2009).
[35] K. Kyutoku, M. Shibata, and K. Taniguchi, Phys. Rev. D 82,

044049 (2010).
[36] M. D. Duez, F. Foucart, L. E. Kidder, C. D. Ott, and

S. A. Teukolsky, Classical Quantum Gravity 27, 114106
(2010).

[37] K. Kyutoku, H. Okawa, M. Shibata, and K. Taniguchi, Phys.
Rev. D 84, 064018 (2011).

[38] F. Foucart, M. D. Duez, L. E. Kidder, M. A. Scheel, B.
Szilagyi, and S. A. Teukolsky, Phys. Rev. D 85, 044015
(2012).

[39] F. Foucart, M. B. Deaton, M. D. Duez, L. E. Kidder,
I. MacDonald, C. D. Ott, H. P. Pfeiffer, M. A. Scheel,
B. Szilagyi, and S. A. Teukolsky, Phys. Rev. D 87,
084006 (2013).

[40] G. Lovelace, M. D. Duez, F. Foucart, L. E. Kidder, H. P.
Pfeiffer, M. A. Scheel, and B. Szilágyi, Classical Quantum
Gravity 30, 135004 (2013).

[41] B. D. Lackey, K. Kyutoku, M. Shibata, P. R. Brady, and
J. L. Friedman, Phys. Rev. D 85, 044061 (2012).

[42] L. Santamaría et al., Phys. Rev. D 82, 064016 (2010).
[43] J. S. Read, B. D. Lackey, B. J. Owen, and J. L. Friedman,

Phys. Rev. D 79, 124032 (2009).
[44] K. Kyutoku, M. Shibata, and K. Taniguchi, Phys. Rev. D 79,

124018 (2009).
[45] LORENE website, http://www.lorene.obspm.fr.
[46] T. Yamamoto, M. Shibata, and K. Taniguchi, Phys. Rev. D

78, 064054 (2008).
[47] C. Reisswig and D. Pollney, Classical Quantum Gravity 28,

195015 (2011).
[48] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E.

Roberts, and J. W. T. Hessels, Nature (London) 467, 1081
(2010).

[49] J. Antoniadis et al., Science 340, 1233232 (2013).
[50] A. Taracchini, Y. Pan, A. Buonanno, E. Barausse, M. Boyle,

T. Chu, G. Lovelace, H. P. Pfeiffer, and M. A. Scheel, Phys.
Rev. D 86, 024011 (2012).

[51] P. Ajith et al., Phys. Rev. D 77, 104017 (2008).
[52] P. Ajith et al., Phys. Rev. Lett. 106, 241101 (2011).
[53] T. Damour and A. Nagar, Phys. Rev. D 79, 081503 (2009).
[54] A. Buonanno and B. Taracchini (private communication).
[55] A. Buonanno and T. Damour, Phys. Rev. D 62, 064015

(2000).
[56] L. Blanchet, Living Rev. Relativity 9, 4 (2006), http://www

.livingreviews.org/lrr‑2006‑4.
[57] L. S. Finn and D. F. Chernoff, Phys. Rev. D 47, 2198 (1993).
[58] C. Cutler and M. Vallisneri, Phys. Rev. D 76, 104018

(2007).
[59] J. D. E. Creighton and W. G. Anderson, Gravitational-Wave

Physics and Astronomy (Wiley-VCH, Weinheim, Germany,
2011).

[60] D. Shoemaker, Advanced LIGO anticipated sensitivity
curves (LSC, 2009), https://dcc.ligo.org/cgi‑bin/DocDB/
ShowDocument?docid=2974.

[61] S. Hild et al., Classical Quantum Gravity 28, 094013
(2011).

[62] S. Hild, S. Chelkowski, and A. Freise, arXiv:0810.0604.
[63] S. Hild, S. Chelkowski, A. Freise, J. Franc, N. Morgado,

R. Flaminio, and R. DeSalvo, Classical Quantum Gravity
27, 015003 (2010).

[64] F. Foucart, L. Buchman, M. D. Duez, M. Grudich, L. E.
Kidder, I. MacDonald, A. Mroue, H. P. Pfeiffer, M. A.
Scheel, and B. Szilagyi, Phys. Rev. D 88, 064017 (2013).

[65] M. Shibata, K. Kyutoku, T. Yamamoto, and K. Taniguchi,
Phys. Rev. D 85, 127502 (2012).

[66] F. Pannarale, E. Berti, K. Kyutoku, and M. Shibata, Phys.
Rev. D 88, 084011 (2013).

EXTRACTING EQUATION OF STATE PARAMETERS FROM … PHYSICAL REVIEW D 89, 043009 (2014)

043009-25

http://dx.doi.org/10.1103/PhysRevD.77.024019
http://dx.doi.org/10.1103/PhysRevD.77.024019
http://dx.doi.org/10.1086/533487
http://dx.doi.org/10.1103/PhysRevD.81.123016
http://dx.doi.org/10.1103/PhysRevD.81.123016
http://dx.doi.org/10.1103/PhysRevD.82.024016
http://dx.doi.org/10.1103/PhysRevD.82.024016
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1103/PhysRevD.77.021502
http://dx.doi.org/10.1103/PhysRevD.88.024046
http://dx.doi.org/10.1103/PhysRevD.88.024046
http://dx.doi.org/10.1103/PhysRevD.83.084051
http://dx.doi.org/10.1103/PhysRevD.83.084051
http://dx.doi.org/10.1103/PhysRevD.80.084035
http://dx.doi.org/10.1103/PhysRevD.80.084035
http://dx.doi.org/10.1103/PhysRevD.80.084018
http://dx.doi.org/10.1103/PhysRevD.80.084018
http://dx.doi.org/10.1103/PhysRevD.85.124034
http://dx.doi.org/10.1103/PhysRevD.85.124034
http://dx.doi.org/10.1103/PhysRevD.85.123007
http://dx.doi.org/10.1103/PhysRevD.85.123007
http://dx.doi.org/10.1103/PhysRevD.85.044045
http://dx.doi.org/10.1103/PhysRevD.85.044045
http://dx.doi.org/10.1103/PhysRevD.86.044032
http://dx.doi.org/10.1103/PhysRevD.86.044032
http://dx.doi.org/10.1103/PhysRevD.79.124033
http://dx.doi.org/10.1103/PhysRevD.79.124033
http://dx.doi.org/10.1103/PhysRevD.86.063001
http://dx.doi.org/10.1103/PhysRevD.88.044026
http://dx.doi.org/10.1103/PhysRevD.88.044026
http://dx.doi.org/10.1103/PhysRevD.81.084016
http://dx.doi.org/10.1103/PhysRevD.81.084016
http://dx.doi.org/10.1103/PhysRevLett.105.261101
http://dx.doi.org/10.1103/PhysRevD.84.024017
http://dx.doi.org/10.1103/PhysRevD.86.044030
http://dx.doi.org/10.1103/PhysRevD.87.044001
http://dx.doi.org/10.1103/PhysRevD.87.044001
http://dx.doi.org/10.1103/PhysRevD.84.104017
http://dx.doi.org/10.1103/PhysRevD.84.104017
http://dx.doi.org/10.1103/PhysRevLett.84.3519
http://dx.doi.org/10.1088/0264-9381/26/12/125004
http://dx.doi.org/10.1088/0264-9381/26/12/125004
http://dx.doi.org/10.1103/PhysRevD.81.064026
http://dx.doi.org/10.1103/PhysRevD.81.064026
http://dx.doi.org/10.1103/PhysRevD.79.044030
http://dx.doi.org/10.1103/PhysRevD.82.044049
http://dx.doi.org/10.1103/PhysRevD.82.044049
http://dx.doi.org/10.1088/0264-9381/27/11/114106
http://dx.doi.org/10.1088/0264-9381/27/11/114106
http://dx.doi.org/10.1103/PhysRevD.84.064018
http://dx.doi.org/10.1103/PhysRevD.84.064018
http://dx.doi.org/10.1103/PhysRevD.85.044015
http://dx.doi.org/10.1103/PhysRevD.85.044015
http://dx.doi.org/10.1103/PhysRevD.87.084006
http://dx.doi.org/10.1103/PhysRevD.87.084006
http://dx.doi.org/10.1088/0264-9381/30/13/135004
http://dx.doi.org/10.1088/0264-9381/30/13/135004
http://dx.doi.org/10.1103/PhysRevD.85.044061
http://dx.doi.org/10.1103/PhysRevD.82.064016
http://dx.doi.org/10.1103/PhysRevD.79.124032
http://dx.doi.org/10.1103/PhysRevD.79.124018
http://dx.doi.org/10.1103/PhysRevD.79.124018
http://www.lorene.obspm.fr
http://www.lorene.obspm.fr
http://www.lorene.obspm.fr
http://www.lorene.obspm.fr
http://dx.doi.org/10.1103/PhysRevD.78.064054
http://dx.doi.org/10.1103/PhysRevD.78.064054
http://dx.doi.org/10.1088/0264-9381/28/19/195015
http://dx.doi.org/10.1088/0264-9381/28/19/195015
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1103/PhysRevD.86.024011
http://dx.doi.org/10.1103/PhysRevD.86.024011
http://dx.doi.org/10.1103/PhysRevD.77.104017
http://dx.doi.org/10.1103/PhysRevLett.106.241101
http://dx.doi.org/10.1103/PhysRevD.79.081503
http://dx.doi.org/10.1103/PhysRevD.62.064015
http://dx.doi.org/10.1103/PhysRevD.62.064015
http://dx.doi.org/10.12942/lrr-2006-4
http://www.livingreviews.org/lrr-2006-4
http://www.livingreviews.org/lrr-2006-4
http://www.livingreviews.org/lrr-2006-4
http://dx.doi.org/10.1103/PhysRevD.47.2198
http://dx.doi.org/10.1103/PhysRevD.76.104018
http://dx.doi.org/10.1103/PhysRevD.76.104018
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
http://dx.doi.org/10.1088/0264-9381/28/9/094013
http://dx.doi.org/10.1088/0264-9381/28/9/094013
http://arXiv.org/abs/0810.0604
http://dx.doi.org/10.1088/0264-9381/27/1/015003
http://dx.doi.org/10.1088/0264-9381/27/1/015003
http://dx.doi.org/10.1103/PhysRevD.88.064017
http://dx.doi.org/10.1103/PhysRevD.85.127502
http://dx.doi.org/10.1103/PhysRevD.88.084011
http://dx.doi.org/10.1103/PhysRevD.88.084011

