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We perform high-resolution magnetohydrodynamics simulations of binary neutron star mergers in
numerical relativity on the Japanese supercomputer K. The neutron stars and merger remnants are covered
by a grid spacing of 70 m, which yields the highest-resolution results among those derived so far. By an
in-depth resolution study, we clarify several amplification mechanisms of magnetic fields during the binary
neutron star merger for the first time. First, the Kelvin-Helmholtz instability developed in the shear layer
at the onset of the merger significantly amplifies the magnetic fields. A hypermassive neutron star (HMNS)
formed after the merger is then subject to the nonaxisymmetric magnetorotational instability, which
amplifies the magnetic field in the HMNS. These two amplification mechanisms cannot be found with
insufficient-resolution runs. We also show that the HMNS eventually collapses to a black hole surrounded
by an accretion torus which is strongly magnetized at birth.
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I. INTRODUCTION

Coalescence of binary neutron stars (BNS) is one of the
most promising sources of gravitational waves. The second-
generation gravitational-wave detectors like advanced
LIGO, advanced VIRGO, and KAGRA [1], which will
operate in a few years, may detect gravitational waves from
BNS mergers as frequently as ∼1–100=yr [2,3]. If gravita-
tional waves from BNS mergers are observed, they could tell
us the validity of general relativity in strong gravitational-
field regions and the equation of state (EOS) of neutron stars.
Furthermore, a long-standing puzzle on the central engine
of short-hard gamma-ray bursts (SGRB) may be resolved if
gravitational waves are observed simultaneously with them.
BNS also attracts attention as a possible site of r-process
nucleosynthesis [4] and as a source of electromagnetic
transients. In particular, emission associated with the radio-
active decay of the r-process elements in the merger ejecta is
a promising electromagnetic counterpart of BNS mergers
[5]. In fact, “kilonova” associated with GRB130603B is an
interesting candidate of such events [6]. All these facts
stimulate us to theoretically construct a reliable model of
the BNS merger. Numerical relativity is the unique approach
for this purpose.
Strong magnetic fields are universal elements of neutron

stars, shown by pulsar observations [7]. Typical strength of
the magnetic fields is 1011–1015 G. The so-called magnet-
ars have even stronger magnetic fields of 1014–1015 G.
Although magnetic fields could be a key ingredient in the
BNS mergers, their role is still not clear. The prime reason
is that a number of magnetohydrodynamical instabilities,
which can amplify the magnetic fields, are generally
activated by short-wavelength modes, i.e., the fastest

growing mode has a short wavelength and is not easily
resolved in numerical simulations. One example is the
Kelvin-Helmholtz (KH) instability. In the absence of
gravity, this instability sets in for all the wavelengths,
and moreover, the shorter-wavelength modes have the
larger growth rates. Another example is the magnetorota-
tional instability (MRI) [8], in which the wavelength of
the fastest growing mode is quite short for the typical
magnetic-field strength and density of neutron stars. It has
not been easy to prepare a sufficient grid resolution for the
BNS merger simulations for them [9].
We tackle this problem using the 10 PFLOPS Japanese

supercomputer K, which enables us to assign the highest
grid resolution so far in this field. To assess the resolution
dependence of the magnetic-field amplification processes,
we carry out an in-depth resolution study. Furthermore, to
explore the final state of the BNS merger, we perform long
term simulations of duration ∼100 ms. Together with the
recent observations of ≈2M⊙ neutron stars [10], the recent
numerical relativity simulations have established that, in
the BNS mergers for the typical total mass 2.6–2.8M⊙ and
for plausible EOS, a hypermassive neutron star (HMNS)
is transiently formed after the merger and subsequently it
collapses to a black hole [11]. Based on this picture, we
focus in particular on the following three stages. First is the
stage in which two neutron stars come into contact. This
stage is subject to the KH instability, which develops in a
thin shear layer [12]. The second is the HMNS phase which
is subject to the MRI because of a rapid and strong
differential rotation [13]. The third is the stage after the
HMNS collapses to a black hole (BH) surrounded by an
accretion torus, which could be again subject to the MRI.

PHYSICAL REVIEW D 90, 041502(R) (2014)

1550-7998=2014=90(4)=041502(5) 041502-1 © 2014 American Physical Society

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevD.90.041502
http://dx.doi.org/10.1103/PhysRevD.90.041502
http://dx.doi.org/10.1103/PhysRevD.90.041502
http://dx.doi.org/10.1103/PhysRevD.90.041502


Throughout the analysis for the three stages, we clarify the
amplification mechanisms of magnetic fields.

II. METHOD, INITIALMODELS AND GRID SETUP

Einstein’s equation is solved in the puncture-BSSN
formalism [14]. The magnetohydrodynamics (MHD) equa-
tion is solved by a high-resolution shock-capturing scheme
with the third-order cell reconstruction (see Ref. [15] for
details). A fixed mesh-refinement algorithm is employed to
resolve the wide dynamical range of BNS mergers simul-
taneously, where we prepare 7 refinement levels with the
varying grid spacing as Δxl ¼ 27−lΔx7 (l ¼ 1; 2;…; 7) for
the same coordinate origin. Here,Δxl is the grid spacing for
the lth level in the Cartesian coordinates. The solenoidal
constraint and magnetic flux conservation on the refine-
ment boundary are satisfied using the Balsara’s method
[15,16]. The orbital plane symmetry is imposed. For each
level, the computational domain covers ½−NΔxl; NΔxl�
for x and y directions, and ½0; NΔxl� for z direction. The
highest-resolution runs were done with 16,384 CPUs on
the K.
Table I lists the key parameters of our models and

numerical setup of the simulations. We employ H4 EOS
[17], with which the maximum mass of neutron stars is
2.03M⊙, and the mass of each neutron star is chosen to be
1.4M⊙. With the parameters chosen, the computation
follows about 6 inspiral orbits, and the merger outcome
is a HMNS with its lifetime ∼10 ms in the absence of
magnetic fields [11]. We prepare three grid resolutions with
Δx7 ¼ 70, 110, and 150 m as well as three maximum initial
magnetic-field strengths, 1014.5, 1015, and 1016 G to assess
how the result depends on the resolution and field strength.
The initial magnetic field is given in terms of the vector
potential

Ai ¼ ð−ðy − ycÞδxi þ ðx − xcÞδyi ÞAb½maxðP − Pc; 0Þ�2;

where xc and yc are the coordinates of the stellar centers, P
is the pressure, and Pc is the pressure for ρ ¼ 0.04ρmax. Ab
determines the field strength. The EOS is parametrized
by a piecewise polytrope [18] and the Γ-law EOS is added
during the simulation to take into account the shock heating
effect with the gamma index being 1.8 (see [11] for details).

III. RESULTS

Figure 1 plots the profiles of the density, magnetic-field
strength, and magnetic-field lines at selected time slices
for H4B15d70 [19]. The magnetic fields do not affect the
inspiral dynamics because the magnetic stress energy is
much smaller than the matter pressure [9]. The left panel
shows a snapshot just after two neutron stars come into
contact. In this phase, the KH vortices develop and curl the
magnetic-field lines, generating the strong toroidal fields.
This significantly enhances the magnetic stress energy in
the shear layer. The unstable shear layer disappears in a
dynamical time scale of ∼0.1 ms, because the compression
and resulting shock heating associated with violent oscil-
lations of the formed HMNS suppress the continuous
generation of the vortices.
The middle panel plots a snapshot in the HMNS phase.

This shows that large-scale toroidal magnetic fields,
enhanced primarily by magnetic winding, are generated.
Furthermore, a detailed analysis elucidates that the mag-
netic fields are also globally amplified by the MRI (see
below). The HMNS collapses to a BH at ≈14 ms after the
merger and a part of the HMNS forms an accretion torus
surrounding the BH. The nondimensional BH spin is ≈0.69
and the torus mass is ≈0.06M⊙ at 10 ms after the BH
formation for H4B15d70. These numbers depend slightly
on the grid resolution.
The MRI preserves the turbulent flow and vortices

inside the accretion torus and they enhance the accretion
due to the outward angular-momentum transport. The
density of the accretion torus gradually decreases and
1010–1011 g=cm3 for ∼10–30 ms after the BH formation.
The magnetic field still remains to be toroidal-field dom-
inant, and we do not find any coherent poloidal field at this
moment as shown in the right panel of Fig. 1. This is in
contrast to the result of Ref. [20], which reported the
formation of a coherent poloidal field within a relatively
short timescale, i.e., ≈12 ms after the BH formation.1 It is
not trivial to generate such a coherent poloidal field. A large
amount of matter is ejected and blown outwards in the
merger phase and the resulting ram pressure due to the
fall-back toward the BH and torus suppresses the matter
outflow. Since the magnetic-field lines are frozen in the
fluid elements, an outflow which has not been seen for
t − tmrg ≲ 40 ms will be necessary to generate a coherent
poloidal magnetic field.

TABLE I. Parameters of the BNS and grid setup.Δx7 is the grid
spacing in the finest refinement level and N is the grid number in
one positive Cartesian direction. The last column is the initial
maximum strength of the magnetic field. Model name follows the
EOS, the initial maximum field strength, and grid spacing. The
sum of the ADM masses in isolation of each NS ðm0Þ is 2.8 M⊙
in all the models. The initial orbital angular velocity Ω is set to be
Gm0Ω=c3 ¼ 0.0221 in all the models with G and c being the
gravitational constant and the speed of light, respectively.

Model Δx7 [m] N log10½BmaxðGÞ�
H4B15d70 70 512 15.00
H4B15d110 110 322 15.00
H4B15d150 150 240 15.00
H4B14d70 70 512 14.52
H4B16d70 70 512 16.00
H4B16d110 110 322 16.00
H4B16d150 150 240 16.00

1The coherent poloidal field structure is probably due to the
choice of seeds [21].
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Figure 2 plots the magnetic-field energy as a function
of time for H4B15 runs, H4B14d70, and H4B16d70. Soon
after the onset of the merger, the magnetic-field energy is
steeply amplified because the KH vortices develop in

the shear layer. The growth rate is higher for the higher-
resolution runs, because the growth rate of the KH
instability is proportional to the wave number and hence
the smaller-scale vortices have the larger growth rate. We
analyze the maximum magnetic-field strength and plot the
amplification factor in the merger as a function of Δx7 in
the lower panel of Fig. 2. This clearly shows that the
amplification factor depends on the grid resolution but not
on the initial magnetic-field strength. This is consistent
with the amplification mechanism due to the KH vortices
and qualitatively consistent with the local shearing-box
simulation in Ref. [22]. The magnetic-field energy at
t − tmrg ≈ 5 ms in the high-resolution run is 40–50 times
as large as that of the low-resolution run.
In the HMNS stage, the magnetic-field strength grows

significantly in the high- and middle-resolution runs but not
in the low-resolution run. We analyze the field amplifica-
tion by foliating the HMNS in terms of the rest-mass
density, i.e., calculating the magnetic-field energy for ρ1 ≤
ρ ≤ ρ2 varying ρ1 and ρ2. The left panel of Fig. 3 plots
magnetic-field energy of a radial component for H4B15
runs with ρ1 ¼ 1011 g=cm3 and ρ2 ¼ 1012 g=cm3. We find
that it grows in the middle- and high-resolution runs but
not significantly in the low-resolution run. We also find
the high- and middle-resolution runs satisfy the criterion
λφMRI=Δx7 ≥ 10 where λφMRI is the MRI wavelength of the
fastest growing mode for the toroidal magnetic field,
whereas the low-resolution run does not satisfy this
criterion.
We fit the growth rate of the magnetic-field energy by

∝ e2σðt−tmrgÞ for 8≲ t − tmrg ≲ 14ms for the high-resolution
run and find that σ ≈ 140 Hz (for the middle-resolution run,
it is ≈130 Hz for 8≲ t − tmrg ≲ 16 ms) which is several
percents of the rotational frequency. This frequency agrees
approximately with that of the nonaxisymmetric MRI [23].
The right panel of Fig. 3 plots the magnetic-field energy

FIG. 1 (color online). Snapshots of the density, magnetic-field strength and magnetic-field lines for H4B15d70 at t − tmrg ≈ 0.0 ms
(left panel), at t − tmrg ≈ 5.5 ms (middle panel), and at t − tmrg ≈ 38.8 ms (right panel). tmrg is a time when the amplitude of the
gravitational waves becomes maximum. The left, middle, and right panels show the configuration just after the onset of the merger, for
the HMNS phase, and for a BH surrounded by an accretion torus, respectively. In each panel, the white curves are the magnetic-field
lines. In the left panel, the cyan represents the magnetic fields stronger than 1015.6 G. In the middle panel, the yellow, green, and dark
blue represent the density iso-surface of 1014, 1012, and 1010 g=cm3, respectively. In the right panel, the light and dark blue are the
density iso-surface of 1010.5 and 1010 g=cm3, respectively.
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FIG. 2 (color online). (Top) The total magnetic-field energies as
a function of time for H4B15 runs with three grid resolutions
(B15-70m, B15-110m, B15-150m), for H4B14d70 (B14-70m),
and for H4B16d70 (B16-70m). The thin vertical lines denote the
formation time of the BH. EB is calculated by a volume integral
only outside the BH horizon. (Bottom) The dependence of the
amplification factor of the maximum toroidal magnetic field in
the merger on the grid resolution for all the models.
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in various density ranges for H4B15d70. This figure
shows that the magnetic field in a high-density region
ρ≳ 1013 g=cm3 does not exhibit the significant growth
contrary to that in the lower-density region shown in the left
panel. This is because the MRI wavelength is proportional
to ρ−1=2, and hence, the wavelength in the high-density
region (ρ≳ 1013 g=cm3) is too short to be resolved even in
our highest-resolution run. The growth rate in the range
1011 ≲ ρ≲ 1012 g=cm3 is greater than that in the range
1010 ≲ ρ≲ 1011 g=cm3 for 8≲ t − tmrg ≲ 14 ms because
the orbital angular velocity is larger in the higher density
region. The same analysis shows that the magnetic fields
are amplified even in 1013 g=cm3 ≲ ρ≲ 1014 g=cm3 for
H4B16d70 and not in 1012 g=cm3 ≲ ρ≲ 1013 g=cm3 for
H4B14d70. We conclude that the growth of the magnetic-
field energy in the HMNS phase is attributed to the
nonaxisymmetric MRI in the low-density region. The
magnetic winding contributes to the growth of the toroidal
magnetic-field energy as well.
The MRI in the HMNS phase greatly amplify the

magnetic fields. At the BH formation, the magnetic-field
strength is already saturated in the high- and middle-
resolution runs as found in Fig. 2, and thus, it does not
much increase in the accretion torus formed after the
HMNS collapses. On the other hand, the magnetic field
is still amplified in the accretion torus in the low-resolution
run. This is attributed to the insufficient resolution to
capture the MRI in the merger and HMNS phases.
Previous simulations often reported this picture due to
the insufficient resolution. However, the picture we show in
this paper is qualitatively different from it. The growth of
the magnetic-field energy inside the accretion torus is also
seen for the low magnetic-field model H4B14d70 in Fig. 2
because the wavelength of the fastest growing mode of
the MRI in the HMNS is rather short in this model. On
the other hand, the magnetic-field energy for H4B16d70

saturates at the formation of the torus in Fig. 2. In reality,
the magnetic-field energy may reach the equipartition to the
kinetic energy at the merger and inside the HMNS.

IV. SUMMARY AND DISCUSSION

We have reported the results of long term and high-
resolution MHD simulations of the BNS merger performed
in numerical relativity on the K. The grid resolution
employed is highest among the simulations carried out
so far.
We have found the KH vortices, which develop in the

shear layer at the onset of the merger, significantly amplify
the magnetic-field strength in a dynamical timescale. This
feature can be found only by a simulation with the grid
spacing of ≲100 m.
After the formation of a HMNS as a remnant of the

merger, the MRI amplifies the magnetic fields in the
HMNS. Because the toroidal magnetic fields are dominant
in the HMNS, nonaxisymmetric MRI plays a central role in
amplifying the magnetic-field strength in this phase.
The HMNS eventually collapses to a BH surrounded by

an accretion torus after the substantial angular-momentum
transport inside it. Due to the amplification mechanisms
discussed above, the accretion torus formed is strongly
magnetized even at its formation. The magnetic-field
energy is already saturated, and hence, does not exhibit
any remarkable growth. This indicates that a central engine
of SGRBs would be modeled by a magnetized accretion
torus with saturated strength.
Even after the long term evolution, the global structure

of the magnetic field is toroidal-field dominant, and any
coherent structure of the poloidal component is not found.
This does not agree with the previous finding [20]. Our
results indicate that the coherent poloidal field is not likely
to be generated in several 10 ms after the BH formation,
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FIG. 3 (color online). (Left) The magnetic-field energy of a radial component in the range 1011 g=cm3 ≤ ρ ≤ 1012 g=cm3 for H4B15
runs. The thin vertical lines show the BH formation time. The black-dashed line is an exponential function ∝ e2σðt−tmrgÞ with σ ≈ 140 Hz
(see text in details). (Right) The magnetic-field energy of the radial component in 10a g=cm3 ≤ ρ ≤ 10aþ1 g=cm3 for H4B15d70 with
a ¼ 10, 11, 12, 13, and 14. The thin vertical line is the BH formation time.
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because the ram pressure of the fall-back fluid elements
toward the BH and torus is quite strong and hence the
outflow motion, which is necessary to generate the
poloidal component, is suppressed. This implies that a
new mechanism, which enhances the poloidal motion, is
necessary.
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