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We develop a method to compute low-eccentricity initial data of binary neutron stars required to perform
realistic simulations in numerical relativity. The orbital eccentricity is controlled by adjusting the orbital
angular velocity of a binary and incorporating an approaching relative velocity of the neutron stars. These
modifications improve the solution primarily through the hydrostatic equilibrium equation for the binary
initial data. The orbital angular velocity and approaching velocity of initial data are updated iteratively
by performing time evolutions over ∼3 orbits. We find that the eccentricity can be reduced by an order of
magnitude compared to standard quasicircular initial data, specifically from ∼0.01 to ≲0.001, by three
successive iterations for equal-mass binaries leaving ∼10 orbits before the merger.
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I. INTRODUCTION

Fully general relativistic simulations of binary neutron
star mergers have been extensively performed in the
past fifteen years (see Ref. [1] and reference therein for
earlier works). Prime targets of these studies are initially
circular binaries with irrotational velocity fields, because
gravitational radiation reaction circularizes most of the
binaries before they enter sensitive bands of ground-based
gravitational-wave detectors [2] and the viscosity of
neutron-star matter is expected to be too low to signifi-
cantly increase the neutron-star spin via tidal effects [3,4].
In addition, the orbital period of binary neutron stars right
before the merger is much smaller than typical rotational
periods of observed neutron stars [5]. Numerical-relativity
simulations of binary neutron stars have elucidated quan-
titatively the formation of remnant massive neutron stars
and/or collapse to black hole-disk systems [6,7], substantial
mass ejection [8], and gravitational waveforms during the
inspiral-merger-postmerger phases [9,10].
All the simulations of “circular” binary neutron stars

have suffered from unphysical orbital eccentricity. To
perform numerical simulations of circular binary neutron
stars throughout inspiral, merger, and postmerger phases,
sufficiently circularized initial data are necessary. To date,
quasiequilibrium states,1 which are solutions to a subset of
the Einstein equations and hydrostatics under physical
assumptions [11–14], have usually been adopted as initial
data of numerical simulations. Although the formulation
for irrotational velocity fields has been developed to a

satisfactory level [15–18], it has failed to give sufficiently
circularized binaries and instead has resulted in eccen-
tricities e≳ 0.01. Computations of quasicircular binary
neutron stars have been carried out assuming the existence
of a helical Killing vector field with the orbital angular
velocity Ω. Because this formulation neglects the gravita-
tional radiation reaction and does not appropriately incor-
porate the approaching velocity, a binary prepared in this
manner evolves as a slightly but appreciably eccentric
binary once a numerical simulation is launched. Some
effort has been made to remove the eccentricity by adding a
post-Newton-inspired approaching velocity to quasicircular
initial data [19] or by constraint-violating superposition of
Lorentz-boosted stationary stars [20], but the eccentricity is
not reduced below e ∼ 0.01.
Reducing the orbital eccentricity is an urgent task in

numerical relativity, and the most important reason for
this is high demand to derive accurate gravitational
waveforms. Although mismatch due to the orbital eccen-
tricity in quasicircular initial data is reported to be merely
∼1% in binary black hole simulations if we focus only
on the numerical-relativity waveforms [21], the eccen-
tricity complicates comparisons between gravitational
waveforms obtained by numerical simulations and those
derived by analytic methods both for binary black holes
[22–24] and binary neutron stars [9,25,26]. The eccen-
tricity also affects hybridization of analytic and numerical
waveforms, which is necessary to create phenomenologi-
cal templates covering a wide frequency domain (see
Refs. [27–30] for relevant works of black hole-neutron
star binaries). The extraction of tidal deformability from
gravitational waves is fairly sensitive to the accuracy of
templates [31–33], and thus reducing the orbital eccen-
tricity is critical to maximizing the precision with which
we can extract neutron-star parameters and constrain the

1In this paper, we refer to initial data satisfying a subset of the
Einstein equations including constraints and hydrostatics as
“quasiequilibrium.” Quasiequilibrium initial data derived under
helical symmetry are called specifically “quasicircular,” and those
with an approaching velocity are called “low eccentricity.”
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neutron-star equations of state from gravitational-wave
observations.
In this paper, we describe a method to reduce orbital

eccentricity in initial data of binary neutron stars. The basic
idea is similar to that of eccentricity reduction for binary
black holes [21]. Namely, we correct initial data using their
orbital evolution obtained by dynamical simulations and
repeat this procedure until a desired value of the orbital
eccentricity is achieved. Specifically, we adjust the orbital
angular velocity and incorporate an approaching velocity.
The primary difference from the binary black hole cases
resides in the method for computing initial data of binary
neutron stars with an approaching velocity. In binary black
hole problems solved in the extended conformal thin-
sandwich formulation (see Sec. II), the approaching veloc-
ity and eccentricity of initial data are controlled via inner
boundary conditions imposed at black hole horizons [21].
Instead, we control them by modifying hydrostatics of
neutron stars. As a first attempt to reduce the orbital
eccentricity in binary neutron stars,2 we aim for eccentricity
lower than ∼0.001, which satisfies the requirement e≲
0.002 of the Numerical-Relativity and Analytical-
Relativity Collaboration for binary black holes [35].
This paper is organized as follows. In Sec. II, we describe

our method to compute low-eccentricity initial data of
binary neutron stars with an approaching velocity. A
procedure to analyze orbital evolution is presented in
Sec. III with a brief description of our simulation code,
including an update from the Baumgarte–Shapiro–Shibata–
Nakamura (BSSN) formulation [36,37] to conformally
decomposed Z4 (Z4c) formulation [38]. Actual eccentricity
reduction and results obtained with low-eccentricity initial
data are demonstrated in Sec. IV. Section V is devoted to a
summary and discussions.
Greek and Latin indices denote the spacetime and space

components, respectively. Geometrical units in which
G ¼ c ¼ 1, where G and c are the gravitational constant
and speed of light, respectively, are adopted throughout
this paper.

II. INITIAL DATA COMPUTATION

We compute initial data of binary neutron stars in the
extended conformal thin-sandwich formulation [39,40]. We
also solve equations of hydrostatics to obtain quasiequili-
brium fluid configurations. The formulation is formally
very similar to that for quasicircular initial data, for which
the details are found in Refs. [11–14]. All the numerical
computations of initial data are performed with a public
multidomain spectral method library, LORENE [41], and
numerical details are found in Refs. [11,42].

A. Gravitational field equations

Physically valid initial data have to satisfy the
Hamiltonian and momentum constraints at the very least,
and some quasiequilibrium assumptions are desired to be
met for astrophysically realistic binary initial data. In this
study, we compute initial data of the induced metric γij and
extrinsic curvature Kij in the extended conformal thin-
sandwich formulation [39,40]. A conformal transformation
is defined by

γij ¼ ψ4γ̂ij; γij ¼ ψ−4γ̂ij; ð1Þ

Aij ¼ ψ−10Âij; Aij ¼ ψ−2Âij; ð2Þ

where Aij is the traceless part of the extrinsic curvature
given as

Aij ≡ Kij −
1

3
Kγij; K ≡ γijKij: ð3Þ

We handle a weighted lapse function Φ≡ αψ instead of the
lapse function α itself in the computation of initial data for
the sake of numerical accuracy, whereas the shift vector βi

is handled as it is. A traceless evolution tensor of the
conformal induced metric,

ûij ¼ ∂tγ̂ij; ð4Þ

with γ̂ijûij ¼ 0 is also introduced as freely specifiable data
in this formulation.
To obtain a quasiequilibrium configuration of binary

neutron stars, we impose conditions,

γ̂ij ¼ fij; K ¼ 0; ûij ¼ 0; ∂tK ¼ 0; ð5Þ

on freely specifiable data. Here, fij is the flat 3-metric. In
principle, attention has to be paid for the frame in which
equations are solved, since the latter two stationarity
conditions could be imposed even approximately only
when the time direction is chosen to agree with the binary
motion. Specifically, the change of frames amounts to
adopting different shift vectors, which appears in various
terms of gravitational field equations. It turns out that,
however, the equations are unaffected by the addition of a
reasonable approaching velocity as pointed out in Ref. [21].
The reason for this is that the difference of the shift vector
enters the equations only through (i) the conformal Killing
operator associated with γ̂ij and (ii) the Lie derivative of K.
This is the very reason why a rotational shift vector of the
formΩð∂φÞμ has not appeared explicitly in the computation
of quasicircular initial data [11–14].
One plausible way to incorporate an approaching veloc-

ity may be to add uniform contraction to the helical Killing
vector in the manner [21]

2We noticed that the Simulating eXtreme Spacetimes (SXS)
collaboration also has succeeded independently in reducing the
orbital eccentricity when this study was nearly completed [34].
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ξμ ¼ ð∂tÞμ þΩð∂φÞμ þ v
r
r0
ð∂rÞμ ð6Þ

and impose the quasiequilibrium conditions, Eq. (5), in the
time direction given by ξμ [see also Eq. (20)]. Here, v
(negative for the approaching velocity) and r0 should be
regarded as the radial velocity and separation from the
coordinate origin, respectively, averaged over binary
members.3 For an equal-mass binary, v and r0 should be
common in each member, and the averaging is not required.
The radial velocity term rð∂rÞi is a conformal Killing
vector of the flat metric, and hence this term does not affect
gravitational field equations. The boundary condition of the
shift vector (see below) is also unaffected, because a
conformal Killing vector is a homogeneous solution of
the vectorial Laplacian.
The equations to be solved for gravitational fields

become [14]

D
∘ 2
ψ ¼ −

1

8
ψ−7ÂijÂ

ij − 2πψ5ρH; ð7Þ

D
∘ 2
βi þ 1

3
D
∘ i
D
∘
jβ

j ¼ 2ÂijD
∘
jðΦψ−7Þ þ 16πΦψ3ji; ð8Þ

D
∘ 2
Φ ¼ 7

8
Φψ−8ÂijÂ

ij þ 2πΦψ4ðρH þ 2SÞ; ð9Þ

Âij ¼ ψ7

2Φ

�
D
∘ i
βj þD

∘ j
βi −

2

3
fijD

∘
kβ

k

�
; ð10Þ

where D
∘
i is the covariant derivative associated with the flat

metric, fij. The matter source terms are defined from the
3þ 1 decomposition of the energy-momentum tensor Tμν

in terms of a future-directed unit normal vector nμ to the
constant-time hypersurface as

ρH ¼ Tμνnμnν; ð11Þ

ji ¼ −γiμTμνnν; ð12Þ

Sij ¼ γiμγjνTμν: ð13Þ

The scalar elliptic equations are solved with boundary
conditions,

ψ ;Φ → 1ðr → ∞Þ; ð14Þ

derived from the asymptotic flatness. The boundary con-
dition on the shift vector determines the frame in which the
equations are solved, and we can simply set

βi → 0ðr → ∞Þ; ð15Þ
according to the discussion above, remembering that βi

obtained with this is that for an asymptotically iner-
tial frame.

B. Hydrostatics

The neutron-star matter is modeled by a perfect fluid
with zero temperature, for which all the thermodynamic
quantities are given as functions of only one representative,
in our computation of initial data. The energy-momentum
tensor takes the form

Tμν ¼ ρhuμuν þ Pgμν; ð16Þ

where ρ, P, h, and uμ are the rest-mass density, pressure,
specific enthalpy, and 4-velocity of the fluid, respectively.
The specific enthalpy is defined by h ¼ 1þ εþ P=ρ,
where ε is the specific internal energy. The hydrodynamic
equations comprise the continuity equation

∇μðρuμÞ ¼ 0 ð17Þ

and the local energy-momentum conservation equation

∇νTμν ¼ 0; ð18Þ
where ∇μ is the covariant derivative associated with the
spacetime metric. Because we focus only on the irrotational
velocity field, a velocity potential Ψ such that

∇μΨ ¼ huμ ð19Þ

can be introduced [17,18]. The time component of
Eq. (18) in the comoving frame of the fluid merely gives
Eq. (17) for a zero-temperature perfect fluid, and the spatial
components of Eq. (18), or the relativistic Euler equation,
are shown to be integrable for an irrotational flow in the
presence of symmetry [17,18]. A nontrivial equation to be
solved is only the continuity, Eq. (17), and it is reformu-
lated to a Poisson-like equation for Ψ.
A hydrostatic equilibrium can be obtained when a

symmetry for hydrodynamical fields exists. The symmetry
naturally arises in a spacetime equipped with a Killing
vector field such as the helical Killing vector. We do not
assume, however, the existence of Killing vector fields,
because the approaching velocity is not compatible with
the spacetime symmetry. Instead, we only assume that all
the hydrodynamical fields are conserved when they are
Lie dragged along a symmetry vector field ξμ.
To compute low-eccentricity initial data, a symmetry

expressed by a modified vector field, Eq. (6), may be
desired symmetry to be imposed in the presence of an
approaching velocity. A potential caveat with Eq. (6),
however, is the fact that the radial velocity term, rð∂rÞi,
is not divergence free. This suggests that a neutron star with

3Alternatively, v and r0 may be regarded as the radial velocity
and separation, respectively, of the binary. In this case, the value
of v in this paper has to be replaced by 2v.
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the approaching velocity represented by this form has a
contracting density profile. Such initial data might intro-
duce unphysical oscillations of neutron stars. This problem
does not arise in computations of quasicircular initial data
with the helical Killing symmetry, which is represented by
a divergence-free vector field.
This undesired possibility may be avoided by adopting a

different symmetry vector for the hydrodynamical fields
from that for the gravitational fields. Specifically, we can
adopt a divergence-free vector,

ξμ ¼ ð∂tÞμ þ Ωð∂φÞμ þ v�ð∂xÞμ; ð20Þ

where neutron stars are assumed to lie on the x axis and vþ
and v− apply to neutron stars at x > 0 and x < 0,
respectively. The values of v� should be chosen to satisfy
vþ − v− ¼ 2v [see Eq. (6)], and the partition may be done
according to their locations relative to the rotational axis or
masses in isolation. We should set vþ ¼ −v− ¼ v < 0 for
an approaching equal-mass binary. A potential caveat with
Eq. (20) is inconsistency of the symmetry for gravitational
and hydrodynamical fields, which might induce undesired
behavior such as, again, neutron star oscillations once
initial data are evolved in time. Although it might seem that
Eq. (20) can also be applied to gravitational fields con-
sidering that the translation is isometry of the flat metric,
incorporating translational velocities vþ < 0 in the þx
region and v− > 0 in the −x region simultaneously (say)
would lead to singular behavior at the x ¼ 0 plane.
From our experience, no noticeable difference is found

between results obtained with these two symmetry vectors,
including the oscillation of neutron stars during time
evolution, for an equal-mass binary. Specifically, the
amount of excited oscillations seems to be the same as
that for quasicircular initial data with either choice. This is
natural because the difference between the two vectors is a
tiny correction to the approaching velocity, which is small
in itself compared to the orbital velocity. Thus, the choice is
a matter of taste for an equal-mass binary. We still prefer to
adopt Eq. (20), because this symmetry vector will give us
flexibility to adjust the partition of the approaching velocity
for both binary members. This may be useful in computing
low-eccentricity initial data of unequal-mass binaries. All
the results shown in this paper are obtained with Eq. (20),
and results obtained with Eq. (6) are essentially the same as
far as equal-mass binaries are concerned.
We formulate the hydrostatic equations following

Ref. [11]. An observer with 4-velocity vμ parallel to ξμ

is introduced, and vμ is decomposed in a 3þ 1 manner as

vμ ¼ Γ0ðnμ þ VμÞ; ð21Þ

where nμVμ ¼ 0. The normalization of the 4-velocity
implies

Vi ¼ 1

α
½βi þ Ωð∂φÞi þ v�ð∂xÞi�; ð22Þ

Γ0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ViVi

p ; ð23Þ

and thus these quantities are written purely in terms of the
geometric quantities. The first integral of the relativistic
Euler equation is given by combining the irrotationality
condition and assumed symmetry, £ξðhuμÞ ¼ 0. Using the
expression ξμ ¼ ðα=Γ0Þvμ, we obtain

hα
Γ
Γ0

¼ C; ð24Þ

where Γ≡ −vμuμ and C is a constant. This equation should
be considered as an equation to determine the specific
enthalpy. The information of the symmetry, ξμ, is encoded
in Γ0 (and partly in Γ) in this equation. The continuity
equation is written as an elliptic equation for Ψ as

ρD2Ψþ ðDiΨÞðDiρÞ
¼ ΓnρhK þ ΓnhViDiρ

þ ρ

�
ðDiΨÞ

�
Di ln

�
h
α

��
þ hViDiΓn

�
; ð25Þ

where Di is the covariant derivative associated with γij and
Γn ≡ −nμuμ. The key to deriving this equation is the use of
symmetry with respect to ξμ (not limited to a Killing vector)
in the form

nμ∇μs ¼ −ViDis ð26Þ

for a given scalar field s except for the velocity potential
[18]. The velocity potential, Ψ, gives uμ, and hence it
determines Γn and Γ in a self-consistent manner. In actual
computations of binary neutron stars, we impose the spatial
conformal flatness and maximal slicing.

C. Free parameters

The equations for gravitational and hydrodynamical
fields contain free parameters to be specified to satisfy
physical requirements. We describe our strategy for
fixing these parameters to compute quasicircular and
low-eccentricity initial data separately.
When we compute quasicircular initial data, our aim is to

pick a snapshot out of a quasiequilibrium sequence of
binary neutron stars with fixed baryon rest masses and
v ¼ 0. Hence, the coordinate separation of the binary is
essentially freely chosen to determine a particular snapshot.
This uniquely fixes the location of each binary member
relative to the rotational axis for an equal-mass binary due
to its symmetry. For an unequal-mass binary, the relative
locations of each neutron star with respect to the rotational
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axis have to be specified, and one successful method is to
require that the total linear momentum vanishes [14].
The orbital angular velocity for a given orbital separation
is determined by requiring force balance at the stellar
center [11] as

∂xhjcenter ¼ 0: ð27Þ
Because Γ0 is quadratic in Ω, differentiation of Eq. (24)
with respect to x gives a required value of Ω for the
condition above to be satisfied. Finally, the constant, C,
appearing in the first integral Eq. (24) is determined so that
the baryon rest mass of a neutron star takes a desired value.
For an unequal-mass binary, values of C should be
determined independently for each member.
We compute low-eccentricity initial data by modifying

the orbital angular velocity,Ω, and approaching velocity, v,
of given binary initial data. Thus, the coordinate separation
between the two maxima of the specific enthalpy is
unchanged from the original initial data, and the orbital
angular velocity and approaching velocity are specified
simultaneously. The method to determine appropriate
values of them are described in the next section. The
relative locations of neutron stars should be changed in the
computation of low-eccentricity initial data to obtain a
vanishing total linear momentum, whereas this is not
necessary for equal-mass binaries. The condition that
determines C is the same as in the computation of
quasicircular initial data.

III. ITERATIVE CORRECTION TO INITIAL DATA

The orbital evolution of particular binary initial data is
investigated by dynamical simulations. In this study, we
perform simulations with an adaptive-mesh-refinement
code, SACRA [43]. Corrections to the orbital angular
velocity and approaching velocity are determined by
estimating the contribution of residual eccentricity through
fitting of the orbital evolution by an analytic function.

A. Time evolution

In the latest version of SACRA, the Einstein evolution
equations are solved in the Z4c formulation [38]. The
formal differences from the BSSN formulation are the
addition of a new evolution variable Θ, which serves to
wash out constraint violation, and the introduction of
constraint damping parameters κ1 and κ2. We choose κ1 ≈
0.015=m0 and κ2 ¼ 0, where m0 is the total mass of
the binary at infinite separation, in this study. Variables
evolved similarly to the BSSN formulation are the
conformal-factor variable W ≡ γ−1=6, conformal metric
~γij ≡ γ−1=3γij, conformally weighted traceless part of the
extrinsic curvature ~Aij ≡ γ−1=3Aij, modified extrinsic cur-
vature trace K̂ ≡ K − 2Θ, and so-called conformal con-
nection function ~Γi (see Ref. [38] for the definition in the
Z4c formulation). Their evolution equations differ from

those in the BSSN formulation [43] only by modification
terms given in Eq. (3) for K̂ and Eq. (5) for ~Γi of Ref. [44].
The new variable Θ is evolved according to

ð∂t − βi∂iÞΘ ¼ 1

2
α

�
R − ~Aij

~Aij þ 2

3
K2 − 16πρH

�
− ακ1ð2þ κ2ÞΘ; ð28Þ

where R is the scalar curvature of γij and K in this
expression should be understood as K̂ þ 2Θ in the Z4c
formulation. We also add Kreiss–Oliger dissipation of the
form 0.5 × 2−6ðΔxÞ6ð∂6

x þ ∂6
y þ ∂6

zÞ for all the gravita-
tional field variables at each intermediate Runge–Kutta
time step, whereΔx is the grid separation. Hydrodynamical
evolution equations are solved in exactly the same manner
as that in previous work using SACRA.
Differences of our specific implementation from

Ref. [44] are as follows. First, a variable related to the
conformal factor is chosen to be W instead of χ ¼ W2.
Second, the gauge variables are evolved by K-driver
(1þ log slicing) and Γ-driver conditions of the form

ð∂t − βj∂jÞα ¼ −2αK̂; ð29Þ

ð∂t − βj∂jÞβi ¼
3

4
Bi; ð30Þ

ð∂t − βj∂jÞBi ¼ ð∂t − βj∂jÞ ~Γi − ηsBi; ð31Þ

where Bi is an auxiliary variable and ηs is a free parameter.
We typically choose ηs ≈ 1=m0. It should be cautioned that
different values of ηs excite higher harmonic modes in the
coordinate orbital evolution differently [45], and thus an
inappropriate choice of ηs may be problematic for the
eccentricity reduction. Finally, because the outer boundary
of SACRA has a nonsmooth rectangular shape surrounding
ðx; y; zÞ ∈ ½−L∶L� × ½−L∶L� × ½0∶L� with equatorial sym-
metry imposed at z ¼ 0, we adopt simple outgoing-wave
boundary conditions [36,43] rather than constraint-preserving
and incoming-radiation-controlling ones described in
Ref. [44], which require a normal vector to the boundary.
To suppress unphysical incoming modes from the boundary,
we instead force the right-hand side of Eq. (28) to damp
exponentially by multiplying exp½−r2=ðL=2Þ2�. The same
factor is also multiplied for all κ1 and forΘ in the source term
of the evolution equation for K̂. This prescription is justified,
because all the modified terms vanish for physical solutions.
A potential caveat could be the breakdown of numerical
simulations due to the modification of principal parts of
the evolution equation system, but we found no onset of
instability. This prescription significantly improves the
conservation of the Arnowitt-Deser-Misner mass and total
angular momentum during simulations, whereas the orbital
evolution and gravitational waves depend only weakly on this
modification.
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Initial values of the lapse function and shift vector can be
freely chosen without violating the Einstein constraint
equations. Instead of using the data obtained in the
extended conformal thin-sandwich formulation, we give
as initial data of the gauge variables α ¼ W, βi ¼ 0, and
Bi ¼ 0. This choice tends to suppress unphysical oscil-
lations of coordinate orbital evolution associated with
gauge dynamics without eliminating modulations due to
the orbital eccentricity. By contrast, if we use βi obtained in
the extended conformal thin-sandwich formulation with
Bi ¼ 0, additional oscillations are excited in the coordinate
orbital evolution with approximately twice the frequency of
eccentricity-driven oscillations. We discuss this issue later
again in Sec. IV B. On another front, the dependence of the
coordinate orbital evolution on the initial choice of α is very
weak, and our choice may be a matter of taste for binary
neutron stars.4 Initial values of Θ and ~Γi are always given
as zero.

B. Finding orbital evolution

The first task is to determine the orbital evolution from
grid-based dynamical simulations. We define the location
of a stellar center xiNS ¼ ðxNS; yNS; 0Þ at each time step by a
point of the maximum conserved rest-mass density ρ� ¼
ραut

ffiffiffi
γ

p
on computational grids, where two distinct points

corresponding to two stars are tracked during the inspiral.
The coordinate orbital separation dðtÞ and orbital phase
ϕðtÞ are directly computed as

dðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxNS;1 − xNS;2Þ2 þ ðyNS;1 − yNS;2Þ2

q
; ð32Þ

ϕðtÞ ¼ arctan

�
yNS;1 − yNS;2
xNS;1 − xNS;2

�
þ 2πN; ð33Þ

where the label 1 or 2 stands for a member of the binary.
The orbital phase has a freedom of adding an integer
multiple of 2π, and it is fixed to be continuous by
appropriately choosing an integer N, which is essentially
the number of orbits. The time derivative of the orbital
separation _dðtÞ, orbital angular velocity ΩðtÞ≡ _ϕðtÞ, and
its time derivative _ΩðtÞ are computed from them by fourth-
order finite differentiation. In this study, we use _ΩðtÞ for the
orbital analysis, because this should vanish in the absence
of radiation reaction for a genuinely circular orbit. In other
words, _ΩðtÞ should be expressed as a sum of secular
(increase) terms due to the radiation reaction and modu-
lation terms due to the orbital eccentricity. This should also
be true of _dðtÞ, but we do not use _dðtÞ in this study.5

Care must be taken in differentiating the numerical data.
Because our numerical grids are discrete, the orbital
evolution determined in this manner inevitably contains
a spurious high-frequency oscillation of the order of the
grid separation. If the time derivatives are computed
directly from raw data, this oscillation easily corrupts
the result. In this study, we smooth the orbital evolution
by averaging over ∼100–200 time steps before taking the
time derivatives. This averaging time interval typically
amounts to 0.5 ms for simulations presented later in
Sec. IV, where exact values change within a factor of 2
due to different numbers of time steps used for the
averaging and/or different grid resolutions. This is suffi-
cient for the purpose of this study, i.e., to reduce the orbital
eccentricity, as far as the eccentricity-driven modulation is
largely untouched. Were we to analyze the orbital evolution
itself more carefully, a more sophisticated estimate of the
neutron star location would be needed.
After completing this work, we considered as an alter-

nate definition of the coordinate center of each neutron star
the integral form

xiNS;integ ≡
R
ρ�xid3xR
ρ�d3x

: ð34Þ

This determination is found to be fully consistent with xiNS
described above and is less subject to the high-frequency
oscillations due to the discrete grids. Although the second
time derivative of the phase, _ΩðtÞ, is still susceptible to
numerical noise, using this integration reduces the need to
average and may enhance the efficiency of the eccentricity
reduction. In addition, the orbital evolution itself can be
analyzed more reliably. The first time derivative may be
further improved if it is determined by an integral form,

_xiNS;integ ≡
R
ρ� _xid3xR
ρ�d3x

; ð35Þ

where _xi ¼ ui=ut, using the continuity equation.

C. Estimating appropriate corrections

Information at the initial instant t ¼ 0 is obtained
through fitting the orbital evolution by an analytic function
and is used to estimate appropriate corrections to the orbital
angular velocity δΩ and approaching velocity δv of initial
data. We assume that _ΩðtÞ is modeled by

_ΩðtÞ ¼ A0 þ A1tþ B cosðωtþ ϕ0Þ; ð36Þ
where fA0; A1; B;ω;ϕ0g are fitting parameters, following
Refs. [21,23,47]. The numerical evolution data are fitted to
determine these parameters. The modulation term
B cosðωtþ ϕ0Þ should be ascribed to the eccentricity,
whereas the secular terms A0 þ A1t should result from
gravitational radiation reaction. A perfectly circularized

4The modification of the lapse function is essential for black
hole-neutron star binaries to ensure its positivity if initial data are
computed in the puncture framework [46].

5This is partly motivated by future extension to precessing
black hole-neutron star binaries [47].
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orbit should give B ¼ 0 as far as the secular terms capture
evolution due to the radiation reaction.
A time interval has to be chosen carefully to perform the

fitting. First, the duration has to be long enough to include
more than one modulation cycle associated with the
eccentricity. Next, it has to be short enough to avoid strong
influence of long-term secular evolution. Finally, some
initial portion of the orbital evolution has to be excluded
from the analysis, because the evolution is significantly
affected by relaxation of initial data from the spatial
conformal flatness and of the gauge variables. Taking these
issues and our experiments into account, we use t ∈
½0.5P∶3P� for the fitting, where P≡ 2π=Ω is the initial
orbital period andΩ is the orbital angular velocity specified
in the initial value problem. The interval spanning ∼2.5
orbits is longer than those typically adopted in iterative
eccentricity reduction of binary black holes [21,23,47].
We expect that it is made shorter (possibly with increasing
the eccentricity reduction efficiency) by more elaborated
fitting like the one using Eq. (34), and such an optimization
is left for the future study.
The eccentricity is estimated from the modulation term

using the knowledge of Newtonian two-body dynamics
with e ≪ 1. Avariety of proposed eccentricity estimators is
summarized in Ref. [48], and conceptual differences among
them are analyzed in Ref. [45]. We estimate the eccentricity
of initial data mainly from the fitting parameters as

e ≈
jBj
2ωΩ

; ð37Þ

which is derived by an expected Newtonian relation
ΩðtÞ ≈ Ω½1þ 2e sinðωtþ ϕ0Þ� at e ≪ 1. Here, the differ-
ence between radial frequency ω and angular frequency Ω
is ascribed to the periastron advance of general relativistic
origin, and thus the distinction of these two may be
arbitrary to some extent in the Newtonian discussion.
We also compute another eccentricity estimator proposed
in the literature for the consistency check in Sec. IV C later.
The corrections δΩ and δv are estimated from the fitting

parameters following Ref. [47]. To simplify the discussion,
let us assume that the coordinate separation evolves
according to

_dðtÞ ¼ A0
0 þ A0

1tþ B0 cosðωtþ ϕ0Þ; ð38Þ

where A0
0 þ A0

1t and B0 cosðωtþ ϕ0Þ are the radiation-
driven secular terms and eccentricity-driven modulation
term, respectively. Hereafter, we define the initial separa-
tion as d≡ dðt ¼ 0Þ. The sum of the eccentricity-driven
initial radial velocity of two neutron stars is estimated to be
B0 cosϕ0. Similarly, the eccentricity contribution to radial
acceleration of the binary is −B0ω sinϕ0, and this should
amount to −2ΩδΩd as understood by perturbing the orbital
angular velocity in the Newtonian equation of motion,

d̈ ¼ Ω2d −m0=d. These are translated into the fitting
parameters of _ΩðtÞ using the fact that _dðtÞ ≈ eωd cosðωtþ
ϕ0Þ and _ΩðtÞ ≈ −2eωΩ cosðωtþ ϕ0Þ for a Newtonian
orbit with e ≪ 1. These two relations are combined to
suggest that B0 ¼ −Bd=ð2ΩÞ, and we finally find

δΩ ¼ −
Bω sinϕ0

4Ω2
; ð39Þ

δv ¼ Bd cosϕ0

2 × 2Ω
; ð40Þ

where δv obtained in this manner is the value assigned to
each binary member rather than to the binary separation.
This fact is expressed by the first “2” in the denominator.
Thus, both these corrections can be applied directly to Ω
and v in Sec. II.

IV. DEMONSTRATION

We test the eccentricity reduction method described in
this paper with two equal-mass binary neutron stars. One is
a 1.35M⊙–1.35M⊙ binary with the H4 equation of state
[49] denoted as the H4-135 family, and the other is a
1.4M⊙–1.4M⊙ binary with the APR4 equation of state [50]
denoted as the APR4-14 family. These equations of state
are modeled by piecewise polytropes that approximate
nuclear-theory-based ones accurately in an analytic manner
[51]. The radius of a 1.35M⊙ neutron star with H4 is
13.6 km, and that of 1.4M⊙ with APR4 is 11.1 km. The
maximum masses of a cold, spherical neutron star are
2.03M⊙ and 2.20M⊙ for H4 and APR4, respectively. We
expect that our choices of equations of state are irrelevant to
the eccentricity reduction procedure and plan to apply this
method to models with other equations of state such as
tabulated ones in the near future. We add an ideal-gas-like
thermal correction to the equation of state during dynamical
simulations with Γth ¼ 1.8 in the terminology of Ref. [8].

A. Initial data property

Key quantities of initial data are summarized in Table I.
We first compute quasicircular initial data labeled by “QC”
tuning the orbital separation to achieve the value m0Ω ¼
0.019 of the angular velocity, written in the dimensionless
form m0Ω. In subsequent computations of low-eccentricity
initial data labeled by “IterX,” where X is the serial number
of the iteration, the values of m0Ω and v are prespecified.
Hence, the values of m0Ω and v for IterX models are exact
(truncated for the presentation) rather than ones written to
significant digits.
Figure 1 shows the values of m0Ω and v for all initial

data computed in this study. As the eccentricity of Iter3
turns out to be smaller by an order of magnitude than that of
QC (see Table I), this figure indicates that the eccentricity
reduction of quasicircular initial data with m0Ω ¼ 0.019
requires an increase of ∼0.3%–0.5% in the orbital angular
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velocity and the incorporation of an approaching velocity
with ∼0.05%–0.1% of the speed of light. We further
checked that Iter3 is closer to hypothetical Iter4 estimated
from simulations of Iter3 than to Iter2 on this plot, and thus
our eccentricity reduction procedure seems to converge
toward a circularized state. A comparison between Iter3
values and a relation due to Mroué and Pfeiffer (MP),
derived by fitting formulas for initial data of binary black
holes [52], suggests that the required orbital angular
velocity and approaching velocity are larger and smaller,
respectively, for initial data of binary neutron stars than

those of binary black holes. To confirm this, we performed
another simulation of the H4-135 family with m0Ω and v
predicted by the MP formulas [52] with the same coor-
dinate separation and found that the eccentricity is
∼0.0015. Note, however, that the meaning of coordinate
separations is not rigorously the same due to different
topology of spacetimes, whereas the gauge conditions are
the same. In particular, this could lead to a large relative
difference within the small range of m0Ω and v relevant
here. Still, the eccentricity may be expressed as a Euclidean
distance on a properly rescaled ðm0Ω; vÞ plane (see
Eq. (22) of Ref. [52]). This suggests that the fitting
formulas do not produce low-eccentricity initial data with
e≲ 0.001 for binary neutron stars with m0Ω ≈ 0.019,
although they may be used to obtain first-trial initial data
that are much better than quasicircular initial data.
Table I also shows the binding energy and total angular

momentum of binary initial data. The Arnowitt-Deser-
Misner mass M0 and total angular momentum J0 are
computed by volume integrals [11–14], and the binding
energy is defined by jM0 −m0j. It appears from the table
that the energy and angular momentum of quasicircular
orbits are too small to achieve low eccentricity. Order-of-
magnitude estimates suggest that the dominant contribu-
tions to increases of M0 and J0 during the eccentricity
reduction come from the increase of m0Ω, whereas the
contribution of v to the energy is negligible.
The global quantities can be compared with post-

Newtonian formulas for binary neutron stars (see
Appendix A). Here, we include point-particle contributions
up to fourth post-Newtonian order [53] and finite-size
contributions up to first post-Newtonian order to linear
quadrupolar tidal deformation [54]. The formulas predict
ðjM0 −m0j; J0Þ at m0Ω ¼ 0.019 to be ð0.0223M⊙;

0

0.0005

0.001

0.0015

0 2×10-05 4×10-05 6×10-05 8×10-05 0.0001

-v

m0 Ω - 0.019

QC

Iter1 Iter2

Iter3

H4-135
APR4-14

MP formula

FIG. 1 (color online). The normalized orbital angular velocity
m0Ω and approaching velocity v of initial data. The circles and
crosses show the values of the H4-135 and APR4-14 families,
respectively. We plot m0Ω as a difference from the quasicircular
value 0.019 and v as its negative, −v > 0. A relation derived by
fitting formulas proposed in Ref. [52] is also plotted as the line
labeled MP formula. This relation is indistinguishable from the
relation derived by the quadrupole formula, v ¼ ð8=5Þðm0ΩÞ2 for
an equal-mass binary, if it is overplotted.

TABLE I. Key quantities of binary-neutron-star models. Names of models represent the neutron-star equation of state, gravitational
mass of a single neutron star in isolation, and stage of eccentricity reduction. Specifically, QC stands for quasicircular, and IterX stands
for the Xth iteration. The total masses of the binary at infinite separation, m0, are 2.7M⊙ and 2.8M⊙ for the H4-135 and APR4-14
families, respectively. The normalized orbital angular velocity m0Ω and approaching velocity v characterize the initial data. The
Arnowitt-Deser-Misner mass and total angular momentum of the system are given byM0 and J0, respectively, and the former is shown
as the binding energy defined by jM0 −m0j. The eccentricity e is estimated during the fitting procedure using Eq. (37). Each family has
common values of the orbital separation, d, as well as the size of the simulation grid, L, and finest grid resolution, Δxmin, in dynamical
simulations. The initial orbital period, gravitational-wave frequency, and wavelength are ≈ 4.4 ms, 450 Hz, and 660 km for H4-135,
respectively, and ≈ 4.6 ms, 440 Hz, and 680 km for APR4-14, respectively.

Model m0Ω v jM0 −m0j½M⊙� J0½M2⊙� e

H4, 1.35M⊙–1.35M⊙, d ≈ 52.4 km, L ≈ 3400 km, Δxmin ≈ 330 m
H4-135-QC 0.0190000 0 0.0222 7.661 0.01
H4-135-Iter1 0.0190373 −0.001044 0.0220 7.679 0.004
H4-135-Iter2 0.0190616 −0.001039 0.0220 7.690 0.002
H4-135-Iter3 0.0190658 −0.000848 0.0220 7.692 0.0008

APR4, 1.4M⊙–1.4M⊙, d ≈ 54.3 km, L ≈ 2700 km, Δxmin ≈ 250 m
APR4-14-QC 0.0190000 0 0.0234 8.225 0.01
APR4-14-Iter1 0.0190437 −0.001065 0.0233 8.246 0.005
APR4-14-Iter2 0.0190749 −0.001068 0.0232 8.260 0.002
APR4-14-Iter3 0.0190816 −0.000893 0.0231 8.264 0.0008
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7.687M2⊙Þ and ð0.0232M⊙; 8.261M2⊙Þ for H4-135 and
APR4-14, respectively. Comparing these values with those
shown in Table I, it is found that the eccentricity reduction
improves agreement of the angular momentum from∼0.5%
of QC to ∼0.1% of Iter3. Because the post-Newtonian
approximation is expected to be an excellent approximation
for the distant orbit computed here, this improvement
suggests that low-eccentricity initial data are more accurate
quasiequilibrium states than quasicircular ones.

B. Orbital evolution and eccentricity

Before presenting the results, we briefly summarize the
setup of numerical simulations. All the simulations in each
model family are performed with a fixed size of the
computational domain, L. Specifically, L is ≈3400 km
and 2600 km for the H4-135 and APR4-14 families,
respectively. Computational domains of each simulation
consist of five coarser domains, which are centered at the
center of mass of the binary, and two sets of four finer
domains, which follow the binary motion. The box size
halves every refinement level, as does the grid separation.
The grid separation at the finest domain Δxmin is ≈330m
and 250 m for H4-135 and APR4-14 families, respectively.
These relatively coarse resolutions (see, e.g., Refs. [6,8,9])
are not the product of compromise but are chosen to show
that our eccentricity reduction works with low computa-
tional cost. To ensure that the eccentricity observed in
simulations is independent of the grid resolution, we also
perform simulations with Δxmin ≈ 270 m (20% finer in
terms of 1=Δx) and 220 m (50% finer) for H4-135-QC and
H4-135-Iter3.
First of all, Fig. 2 shows _ΩðtÞ used to estimate correc-

tions to initial data in the initial epoch of simulations. This
figure shows that the amplitude of modulations in _ΩðtÞ
decreases monotonically as the iterative eccentricity

reduction proceeds. In particular, _ΩðtÞ of H4-135-QC
and APR4-14-QC become negative around their local
minima, because the modulation amplitude is larger than
the orbital average of _ΩðtÞ. Negative values of _ΩðtÞ do not
occur for all the other initial data, because our eccentricity
reduction method succeeds in reducing the modulation in
_ΩðtÞ. It would be important, however, to check whether
our method also diminishes eccentricity-driven modula-
tions in other quantities that are not directly involved in the
eccentricity reduction procedure.
Figure 3 compares the orbital evolution of all the models

in the initial epoch of simulations. Modulations with
amplitude ∼0.5–1 km are observed in both H4-135-QC
and APR4-14-QC, and the coordinate separations do not
even decrease monotonically. These two models clearly
exhibit the eccentricity inherent in quasicircular initial data.
The modulations decay as the iterative eccentricity reduc-
tion proceeds, and it would not be easy to find oscillations
of either H4-135-Iter3 or APR4-14-Iter3 in these plots by
eye. This sharp decline in modulation is clear evidence of
the efficacy of our eccentricity reduction method.
The eccentricity of initial data is evaluated by Eq. (37)

and shown in Table I. These values indicate that each
iterative correction reduces the eccentricity by a factor of
2–3. As a result, three successive iterations reduce the
eccentricity, e ∼ 0.01, of QC to e≲ 0.001. Because this
reduction factor is common to both the H4-135 and
APR4-14 families, we believe it will not depend on the
compactness of the neutron star. It could, however, vary
with the mass ratio.
Aside from the eccentricity-driven modulation, an abrupt

decrease of the coordinate orbital separation is found for all
the models during the initial ∼1 ms, which is approxi-
mately one-fifth of the initial orbital period. Similar
behavior is also observed in simulations of (spinning)
binary black holes based on the moving puncture method
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FIG. 2 (color online). The time derivative of coordinate orbital angular velocity, _ΩðtÞ, of the H4-135 (left) and APR4-14 (right)
families during the initial ∼3–4 orbits. In these plots, curves after taking the average over 100–200 time steps are shown. We exclude
initial 2 ms from these plots, because data are not available for some models due to long averaging intervals.
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[55]. We speculate that this decrease is due at least partly to
the initial choice of the shift vector, βi ¼ 0, while the
relaxation from the spatial conformal flatness may also play
a role. Figure 4 shows the orbital evolution during an initial
orbit obtained with initial shift vectors βi ¼ 0 and βi

obtained in the extended conformal thin-sandwich formu-
lation. The abrupt decrease is not observed with nonzero βi,
and instead the coordinate orbital separation increases
due to another oscillation with approximately twice the

frequency of the orbital one. Excitation of second harmon-
ics in the coordinate orbital evolution due to βi obtained in
the extended conformal thin-sandwich formulation has
been found in simulations of binary black holes (see
Appendix B of Ref. [43]). Because gauge-invariant quan-
tities such as gravitational waves depend only weakly on
the choice of initial shift vector, the harmonics should
entirely be gauge artifacts. We also find that the coordinate
evolution including the initial abrupt decrease is approx-
imately unchanged when the harmonic gauge condition is
adopted with the shift vector initialized by βi ¼ 0. Taking the
different orbital evolution after this initial transient among
the models shown in Fig. 3 into account, we speculate that
the abrupt decrease is caused by the relaxation of the shift
vector from βi ¼ 0, and not specific to the moving puncture
gauge. If this abrupt decrease is eliminated by a sophisticated
gauge choice, we would be able to use the numerical
evolution data near t ¼ 0 for the eccentricity reduction,
and this may improve the efficiency. By contrast, the
eccentricity reduction becomes difficult due to the second
harmonics if we adopt βi obtained in the extended conformal
thin-sandwich formulation as initial values.
The periastron advance of binary neutron stars does not

deviate significantly from that of binary black holes. The
ratio of the radial frequency ω and orbital frequency Ω can
be estimated in the fitting, and the initial value of Ω is
typically larger than ω by ∼20%–25%. At the same time,
the value of the angular velocity is estimated to be larger by
∼10% on average than its initial value during the fitting
time interval, ½0.5P∶3P�, due to gravitational radiation
reaction. Thus, the angular frequency is estimated to be
larger by ∼30%–35% than the radial frequency. This
fraction is consistent with results for binary black holes
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FIG. 4 (color online). The orbital evolution of H4-135-QC
during an initial orbit. The solid curve (zero shift) is the same
as shown in Fig. 3, and derived giving initial data of gauge
variables by α ¼ W, βi ¼ 0, and Bi ¼ 0. The dashed oscillating
curve (XCTS shift where XCTS stands for extended conformal
thin-sandwich) is derived giving α and βi obtained in the extended
conformal thin-sandwich formulation, and Bi ¼ 0. In this figure,
raw data are plotted to confirm that the initial trend is not an artifact
of Bezier curves. This also indicates the uncertainty in determining
the location of neutron stars by the maximum-density point, xiNS.
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FIG. 3 (color online). The orbital evolution of the H4-135 (left) and APR4-14 (right) families during the initial ∼3–4 orbits. In these
plots, Bezier curves are shown instead of raw data to focus on the eccentricity-driven modulation by discarding high-frequency oscillations
associated with the finite grid separation (see Sec. III B). We note that the Bezier smoothing is performed only for the presentation and is
never adopted during the eccentricity reduction. The data averaged over 100–200 time steps behave very similarly to the Bezier curves, but
we do not plot the former here, because some portion of initial abrupt decrease at ≲1 ms is masked by the averaging time interval.
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[48,56]. Expected values for a test particle in the
Schwarzschild spacetime are 32% and 39% for m0Ω ¼
0.019 and 0.023 (value at t ≈ 3P), respectively, and a third-
order post-Newtonian calculation for an equal-mass binary
gives 29% and 34% for m0Ω ¼ 0.019 and 0.023, respec-
tively. Results of binary black hole simulations lie between
these predictions, and binary neutron stars do not show
significant deviations.6 More accurate estimation of a
possible finite-size effect on the periastron advance will
be an interesting topic for the future study.
Figure 5 shows the orbital evolution up to the merger for

all the models. It is observed that the eccentricity-driven
modulation is very small during the entire inspiral phase for
Iter3, whereas QC shows the modulation even right before
the plunge. The eccentricity of quasicircular initial data
should decrease as a result of gravitational radiation, but the
rate is only eðtÞ ∝ ½dðtÞ�19=12 at e ≪ 1 in the quadrupole
approximation. Hence, the expected decrease is only by a
factor of ∼4 for the evolution (say) from 15m0 to 6m0, and
quasicircular initial data with ∼0.01 will never achieve a
low-eccentricity inspiral with e≲ 0.001. Both analytic
estimation and numerical results indicate that the eccen-
tricity reduction has to be performed by improving initial
data if we want to obtain the low-eccentricity, e≲ 0.001
inspiral with current computational resources.
The time to merger increases as the eccentricity

decreases (see Fig. 5). While it is difficult to define the
merger time in a physical manner from the orbital evolu-
tion, the time to merger seems to be longer by ∼2 ms for
Iter3 than for QC. This cannot be explained by strong
gravitational radiation from an eccentric binary, because the

quadrupole formula predicts that the time to merger from a
given semimajor axis is proportional to 1 − ð157=43Þe2 at
leading order of e [2]: The eccentricity enters only through
its squared value.7 The actual difference in the time to merger
is, however, ∼5% between QC with e ∼ 0.01 and Iter3 with
∼0.001 and is thus too large. Instead, this difference is
ascribed to the initial semimajor axis of the binary.
Numerical results suggest that apastron distances are approx-
imately the same irrespective of the eccentricity reduction,
and the semimajor axis is shorter by 1 − e. Thus, the time to
merger should be proportional to 1 − 4e at leading order
of e. This approximately explains the difference of the time
to merger shown in Fig. 5. This feature is consistent with
findings in Ref. [21] that modulation-free parts of the orbital
evolution and gravitational radiation are approximately
independent of small eccentricity once appropriate time
shifts are applied. This argument also suggests that quasi-
circular initial data computed assuming helical symmetry
represent a binary configuration at the apastron. That is, the
coordinate separation d specified in the initial data compu-
tation is the apastron distance.

C. Gravitational waves

The binary’s dynamical behavior is more reliably
observed using gravitational waves, which are gauge
invariant at least asymptotically. In SACRA, gravitational
waves are extracted via the Weyl scalar Ψ4 projected onto
spin-weighted spherical harmonics at finite coordinate
radii. We focus only on the ðl; mÞ ¼ ð2; 2Þ mode in this
study and denote its coefficient as Ψ4;22. Although we
extrapolate Ψ4 to null infinity when we compute gravita-
tional waves as transverse-traceless portions of the metric,
we do not perform the extrapolation when we present Ψ4

itself and instead show results obtained by extraction at
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FIG. 5 (color online). The same as Fig. 3 but up to the merger. Oscillations after ∼30 ms show dynamics of remnant massive neutron
stars with double-core structures [6] and thus are irrelevant to the orbital motion.

6The periastron advance is also studied in [57] for a black hole-
neutron star binary, but their binary configuration is chosen so
that finite-size effects do not play a role during the evolution.
Their results do not exhibit finite-size effects on the periastron
advance as expected.

7The absence of the first-order term is due to averaging over
the period in the derivation of emission rates.
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rex ≈ 300 km. We checked that Ψ4 in the inspiral phase8

depends only weakly on the extraction radius once a time
shift and amplitude scaling are performed according to the
different extraction radii. We present gravitational-wave
quantities as a function of an approximate retarded time
defined using an approximate areal radius D as

tret ≡ t −D − 2m0 ln

�
D
m0

�
; ð41Þ

D≡ rex

�
1þ m0

2rex

�
2

: ð42Þ

The total mass m0 in these definitions should have been
replaced by the Arnowitt-Deser-Misner mass, M0, but
we choose to avoid using M0, because this depends on
the stage of the eccentricity reduction as shown in
Table I. The difference between m0 and M0 does not
introduce appreciable effects as far as we are concerned
in this study.
Figure 6 shows the amplitude of Ψ4;22 in the inspiral

phase obtained from each model. Amplitudes of QC show
substantial modulations in a similar manner to the orbital
evolution. By contrast, those of IterX show only small
modulations compared to QC, and again the modulations of
Iter3 are not easily detected by eye except for small
wiggles. The wiggles have higher frequency than the
orbital frequency, and they are not induced by the eccen-
tricity. Because gravitational-wave quantities are expected
to be gauge invariant, this figure gives a firm evidence of

the success of our eccentricity reduction. A comparison of
Figs. 5 and 6 suggests that the eccentricity-driven modu-
lations are approximately in phase for these two quantities,
and thus discussions based on the coordinate orbital
separation are not entirely gauge artifacts.
Gravitational waveforms are most important for the

purpose of this study. To extract the waveforms, we
extrapolate Ψ4 to null infinity and perform a time integra-
tion as summarized in Appendix B. We plot plus-mode
gravitational waves hþðtÞ in Fig. 7 after applying time and
phase shifts to align the waveforms. The cross-mode h×ðtÞ
shows the same behavior for the purpose of our discussion.
Here, we again note that hþ and h× are real and (negative
of) imaginary parts of the ðl; mÞ ¼ ð2; 2Þ mode, respec-
tively. This figure shows that the effect of an eccentricity
e≲ 0.01 is not easily distinguished from the shifted
gravitational waveforms, in either ∼10 orbits in the inspiral
phase or a few tens of cycles in the postmerger phase. The
former is already shown in the study of binary black holes
[21], and our result confirms this for binary neutron stars
for the first time. This agreement will be made more
quantitative when we compute the overlap or mismatch of
the waveforms obtained by simulations, and we postpone
such computations after hybridization with analytic mod-
els. The visual agreement of gravitational waveforms does
not imply that quasicircular initial data are sufficient for the
construction of theoretical templates, but properties of
gravitational waves have to be investigated carefully as
we do below.
We move to more in-depth discussions by decomposing

the gravitational waveforms into the amplitude and fre-
quency. First, Fig. 8 shows the time evolution of the
amplitude defined by

jhjðtÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½hþðtÞ�2 þ ½h×ðtÞ�2

q
; ð43Þ
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FIG. 6 (color online). The amplitude ofΨ4;22 in the inspiral phase for the H4-135 (left) and APR4-14 (right) families. The amplitude is
given by a dimensionless combination, jΨ4;22jDm0. The time is given by an approximate retarded time, and initial ∼0.1 ms suffers from
junk radiation in initial data.

8Postmerger gravitational waves from the remnant massive
neutron star are not extracted reliably at larger radii, because the
grid resolution is not enough at the distant region to cover one
gravitational wavelength by ∼10 points due to high frequency
and the coarse resolution adopted for the eccentricity reduction.
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and the time shift is applied in the same manner as Fig. 7.
Although the amplitude evolution of Iter3 is very smooth,
those of QC with e ∼ 0.01 show the modulation with
amplitude ∼3%–5% throughout the inspiral phase. This is
roughly consistent with the expectation that the amplitude
should vary by ð3=2Þe at leading order of e in the
quadrupole approximation. In addition, these modulations
are again in phase with the modulations observed in the
orbital phase.
Next, we turn to the angular frequency of gravitational

waves ΩGWðtÞ and show behavior of an eccentricity
estimator instead of the angular frequency itself, which
behaves very similarly to the amplitude shown in Fig. 8.
The eccentricity estimator is defined using an underlying
smooth evolution obtained by fitting, ΩGW;fitðtÞ, as [58]

eGWðtÞ≡ΩGWðtÞ −ΩGW;fitðtÞ
2ΩGW;fitðtÞ

: ð44Þ

The fitting function is chosen to be polynomial in time,

ΩGW;fitðtÞ ¼ a0 þ a1tþ a2t2 þ a3t3 þ a4t4; ð45Þ

and features of eGWðtÞ depend only weakly on the specific
form of the fitting function. The fitting time interval is taken
from ∼5 ms after the initial instant to ∼1 orbit before the
merger, where the former is chosen to avoid strong
unphysical effects of junk radiation.
Figure 9 shows the time evolution of the eccentricity

estimator, eGWðtÞ. The curves of QC exhibit oscillation
components with the period ∼5 ms and amplitude ∼0.01,
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FIG. 8 (color online). Gravitational-wave amplitudes for the H4-135 (left) and APR4-14 (right) families in the inspiral phase. The
vertical axis is the sum-squared amplitude measured by an observer at 100 Mpc distance along the rotational axis of the binary. The time
axis is aligned so that the maximum amplitude occurs at the same time (outside these plots). QC and Iter1 suffer from junk radiation
during the initial ∼1–2 ms, while junk radiation components of Iter2 and Iter3 are less apparent in the plots due to the time shifts.
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and this is ascribed to the orbital eccentricity in quasicir-
cular initial data. This oscillation component with the
period of ∼5 ms decays as the eccentricity reduction
proceeds, and the curves of Iter3 show ∼5 ms oscillations
with the amplitude of only ∼0.001. This behavior of the
eccentricity estimator is consistent with the eccentricity
evaluated in the fitting of orbital motion shown in Table I,
and thus both eccentricity estimation methods may be
reliable.9

When the orbital eccentricity is reduced to ∼0.001,
another oscillation component with an amplitude ∼0.001
becomes prominent in the eccentricity estimator, eGW, with
frequency several times higher than the orbital and radial
frequencies. Indeed, this rapid component is not new to
Iter3, and QC also exhibits this oscillatory behavior
superposed on the eccentricity-driven modulation. This
component does not converge away with increasing grid
resolution as far as we tried. We also confirmed that this
oscillation cannot be ascribed to the oscillation of neutron
stars, since no oscillatory mode with the same frequency is
found up to l ≤ 4, including quadrupole oscillations, in our
simulations. We speculate that this oscillation component is
due to insufficient boundary conditions of SACRA, because
the frequency of the oscillation changes when the location
of the outer boundary is changed,10 although only slightly.
We will confirm or exclude this speculation by imple-
menting higher-order boundary conditions [44] in the

near future. This will involve modifying the shape of
the outer boundary. Another possibility is reflection of
unphysical high-frequency radiation contained in initial
data at adaptive-mesh-refinement boundaries [59], sizes
of which are proportional to that of the outer boundary
in SACRA. If this is the case, appropriately modified
gauge conditions might reduce the rapid oscillation
component [60].
We show the spectrum of gravitational waves in Fig. 10.

Here, the effective spectral amplitude ~hðfÞ is defined by

~hðfÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ ~hþðfÞ�2 þ ½ ~h×ðfÞ�2

2

s
; ð46Þ

where ~hþðfÞ and ~h×ðfÞ are the Fourier transformation of
the plus and cross modes, respectively. A remnant massive
neutron star of neither H4-135-QC nor APR4-14-QC
collapses to a black hole during simulations over
∼100 ms,11 and therefore we decided to stop H4-135-
Iter3 and APR4-14-Iter3 only after ∼50 ms from the initial
instant (or ∼20 ms after the merger). The same time
interval of ∼50 ms is adopted among all the models for
the computation of the spectra to avoid possible biases,
even if longer data are available for some of the models.
This truncation during the lifetime of remnant massive
neutron stars results in an underestimation of the spectral
peak at ∼2500 Hz and 3500 Hz for the H4-135 and
APR4-14 families, respectively, associated with postmerger
activities of the remnant massive neutron stars. This
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FIG. 9 (color online). Time evolution of the eccentricity estimator, eGWðtÞ, defined from ΩGWðtÞ for the H4-135 (left) and APR4-14
(right) families in the inspiral phase. We truncate initial ∼5 ms for the fitting, because junk radiation pollutes ΩGWðtÞ in the initial orbit.
After ∼25 ms, the evolution of the binary becomes plungelike, and the eccentricity may no longer be defined even approximately.

9See Ref. [45] for conceptual differences of these two
estimators.

10We checked that the oscillation is not related to the finite
extraction radius, Courant–Friedrichs–Lewy factor, strength of
the Kreiss–Oliger dissipation (as far as gravitational waves are
not completely smeared out), damping parameter κ1, gauge
parameter ηs, and artificial atmosphere. We also checked that
the oscillation does not vanish when a simulation is performed in
the BSSN formulation.

11The lifetimes of remnant massive neutron stars are longer
than those found in our previous works [6] irrespective of
the eccentricity, and we speculate that accumulated constraint
violation and associated spurious dissipation of the angular
momentum trigger the early collapse in the BSSN formulation
adopted there.
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truncation mainly affects the high-frequency side of the
spectral peak, and the frequency of the maximum ampli-
tude does not vary by more than ∼10 Hz.
The effect of a small eccentricity, e≲ 0.01, on the

spectra is weak both for inspiral and postmerger phases,
in a similar manner to the waveforms shown in Fig. 7. This
shows that previous studies of binary neutron stars
focused on gravitational-wave spectra are not affected
significantly by the orbital eccentricity if the simulation is
sufficiently long. We find that the spectral amplitude is
smoother for Iter3 in ∼600–1500 Hz than QC, and this
is likely to reflect the reduced eccentricity. The difference
is, however, relatively subtle and easily masked by differ-
ent filtering techniques in Fourier transformation (see
Appendix B). Thus, we only suggest that low-eccentricity

initial data may yield smoother spectra than quasicircular
ones. Figure 10 also suggests that characteristics of
remnant massive neutron stars do not depend strongly
on the eccentricity as again expected from the postmerger
agreement in Fig. 7.

D. Convergence

We discuss convergence issues to show that the presence
and/or absence of eccentricity-driven modulations found in
various quantities are inherent in initial data rather than
associated with the finite grid resolution. Figure 11 com-
pares the evolution of quantities associated with Ψ4;22 for
H4-135-QC among high, middle, and low resolutions,
where the low resolution has always been adopted to
derive all the results presented so far. The left panel shows
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FIG. 11 (color online). Convergence property of Ψ4;22 for H4-135-QC with different grid resolutions. The high, middle, and low
(baseline of this study) resolutions are denoted by 150%, 120%, and 100%, respectively. The left, middle, and right panels show the
amplitude evolution, difference of amplitude evolution, and difference of phase evolution, respectively. We do not show the phase
evolution itself, because differences among different grid resolutions are barely distinguished from the direct comparison. We also
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FIG. 10 (color online). Gravitational-wave spectra for the H4-135 (left) and APR4-14 (right) families. The vertical axis is the
dimensionless amplitude, f ~hðfÞ, measured by an observer at 100 Mpc distance along the rotational axis of the binary. Abrupt decreases
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the amplitude evolution and indicates that the modulations
with a ∼5 ms period are in phase among all the grid
resolutions. Furthermore, the differences of the amplitude
plotted in the middle panel show no modulation with this
period. These facts imply that the eccentricity is a genuine
property of initial data. Figure 12 shows the same quantities
as Fig. 11 but for H4-135-Iter3, and no appreciable
eccentricity-driven modulation is observed in either the
amplitude itself or its difference. This fact implies that
the low eccentricity of H4-135-Iter3 is not an artifact of a
particular grid setting and is again a genuine property of
initial data.
The middle panels of Figs. 11 and 12 also suggest that

the result of new SACRAwith the Z4c formulation converges
more rapidly than that of the previous version [43].
Although our evolution scheme is fourth order at best in
both time and space, the overall behavior of the amplitude
evolution among different resolutions implies that our
results are scaled with eighth-order convergence even right
before the merger (compare with Fig. 7). Specifically,
we assume that a quantityQ depends on the grid separation
Δx as

QðΔxÞ ¼ Q0 þ EðΔxÞp; ð47Þ
whereQ0 ≡Qð0Þ is the value at the continuum limit, E is a
constant, and p is the convergence order. We readily derive

QðΔxÞ −QðΔx=1.2Þ
QðΔx=1.2Þ −QðΔx=1.5Þ ¼

1 − 1=ð1.2Þp
1=ð1.2Þp − 1=ð1.5Þp : ð48Þ

Our numerical results suggest that the left-hand side is
approximately equal to 4, and this is explained if p ≈ 8.
We never expect that our new code converges with the
eighth order, which might be achieved when lower-order
truncation errors happen to be very small. We guess rather
that the range of grid resolutions spanned in this study,
150%, is not sufficient to clarify the convergence property
in a nearly convergent regime. A more systematic inves-
tigation spanning a wide range of grid resolutions is
evidently required. It should be cautioned that assessment

of convergence properties in numerical relativity is a
highly nontrivial task, especially when a sophisticated
adaptive-mesh-refinement algorithm is adopted [59]. As
SACRA has been verified in many places with the BSSN
formulation (see, e.g., Ref. [10]), our results convince us
that the modulation is not an artifact of finite grid
resolutions.
The right panels of Figs. 11 and 12 compare

gravitational-wave phase evolution among different grid
resolutions. Again, we see no modulation with the ∼5 ms
period in the phase differences, and thus the eccentricity is
shown to be inherent in initial data. An apparent eighth-
order convergence is also found in the phase evolution in a
manner consistent with the amplitude evolution. A small
phase difference of ∼1 radian between middle and high
resolutions at tret ¼ 28 ms may be more important for
practical purposes, where this approximately corresponds
to m0ΩGW ¼ 0.1 for H4-135-QC. The small difference
should be contrasted with previous results obtained in the
BSSN formulation, with which the number of orbits can
differ by a factor of order unity with a similar grid
resolution [9]. While a sophisticated extrapolation method
such as the one developed in Ref. [9] will be still useful to
compute physical waveforms, slight improvement of the
grid resolution would give us a phase error smaller than 0.1
radian, accurate enough for the next generation of inter-
ferometric detectors.

V. SUMMARY AND DISCUSSION

We developed a method to obtain low-eccentricity
initial data of binary neutron stars for numerical relativity.
In the beginning, we computed standard quasicircular
initial data assuming helical symmetry with the angular
velocity determined by force balance at the center of
neutron stars [11–14] and evolved them for ∼3 orbits. We
fit the time derivative of the coordinate orbital angular
velocity to an analytic function and estimated appropriate
corrections to the orbital angular velocity and approaching
velocity for the eccentricity reduction. We then modified
the initial data by adjusting the orbital angular velocity
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FIG. 12 (color online). The same as Fig. 11, but for H4-135-Iter3. The time intervals are taken to be the same as those of Fig. 11 in all
the plots. Because the merger time is later for H4-135-Iter3 than for H4-135-QC, the amplitude and phase differences at the end of the
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and approaching velocity. This modification affected the
solution primarily through the hydrostatic equilibrium
equations for binary neutron stars and should be con-
trasted with the case of binary black holes [21,58]. We
repeated these procedures (initial data computation, time
evolution, and analysis of the orbit) until the eccentricity
was reduced to a desired value.
We demonstrated the ability of our eccentricity reduction

by simulating two families of equal-mass binary neutron
stars. The eccentricity was decreased from∼0.01 to≲0.001
by three successive iterations beginning with quasicircular
initial data. We found that low-eccentricity initial data
exhibit smaller modulations in evolution of the orbital
separation, gravitational-wave amplitude, and gravitational-
wave frequency than quasicircular initial data. Smooth
evolution of gravitational-wave quantities associated with
low-eccentricity initial data will help comparisons with
analytic models and hybridization to construct theoretical
templates. We also found that the accuracy of gravitational
waves derived by low-eccentricity initial data is limited by
high-frequency oscillations, which might be ascribed to
insufficient outer boundary conditions of SACRA.
Aside from gravitational waves investigated in this study,

the eccentricity could affect properties of remnant massive
neutron stars and mass ejection from the system, and hence
electromagnetic signals. Indeed, simulations performed in
this study suggest that the ejecta mass, which is 3 ×
10−4M⊙ for H4-135-QC and 0.02M⊙ for APR4-14-QC
at 10 ms after the merger, seems to vary by Oð10%Þ
between quasicircular and low-eccentricity initial data. This
variation is not always systematic with respect to the
eccentricity, possibly because the velocity at the contact
of binary neutron stars can fluctuate within the eccentricity-
driven modulation in each particular simulation. We do not

present results for them in detail here, because quantitative
conclusions require systematic investigations with conver-
gence analysis. Remnant massive neutron stars and mass
ejection will be relevant to short-hard gamma-ray bursts
(see Refs. [61,62] and references therein for reviews) and
other electromagnetic counterparts [63,64], and thus the
eccentricity reduction may also be important to quantita-
tively clarify electromagnetic signals from binary neutron
star mergers.
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APPENDIX A: POST-NEWTONIAN FORMULA

The energy and angular momentum of a binary of
nonspinning masses m1 and m2 with the angular velocity
Ω are currently known up to fourth post-Newtonian order
for point-particle contributions [53]. Here, the total mass is
defined by m0 ≡m1 þm2, and the symmetric mass ratio
is defined by ν≡m1m2=m2

0. A post-Newtonian parameter
is defined by

x≡
�
Gm0Ω
c3

�
2=3

; ðA1Þ

where G and c are inserted for clarity in this Appendix.
The orbital binding energy is given by
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where γE is Euler’s constant. The orbital angular momentum is given by
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The latter is derived from the former using a so-called
thermodynamic relation,

∂E
∂Ω ¼ Ω

∂J
∂Ω ; ðA4Þ

or equivalently

∂½E=ðm0c2Þ�
∂x ¼ x3=2

∂½J=ðGm2
0=cÞ�

∂x : ðA5Þ

Finite-size contributions are computed up to first post-
Newtonian order to linear quadrupolar tidal deformation
[54]. We parametrize the finite-size effect of a neutron star
with the gravitational mass m and radius R by a dimen-
sionless quadrupolar tidal deformability defined by [27,30]

Λ ¼ Gλ

�
c2

Gm

�
5

¼ 2

3
k

�
c2R
Gm

�
5

; ðA6Þ

where λ and k are the quadrupolar tidal deformability and
Love number, respectively. Specific values of Λ are 1111
for a 1.35M⊙ neutron star with the H4 equation of state and
256 for a 1.4M⊙ neutron star with the APR4 equation of
state. Hereafter, the dimensionless deformability of m1 and
m2 are denoted by Λ1 and Λ2, respectively. We further
define q1 ≡m1=m0 and q2 ≡m2=m0. The contribution to
the orbital binding energy is

Etidal

m0c2
¼ νx

2

�
9ðq41q2Λ1 þ q1q42Λ2Þx5

þ 11

2
½ð3þ 2q1 þ 3q21Þq41q2Λ1

þ ð3þ 2q2 þ 3q22Þq1q42Λ2�x6
�
; ðA7Þ

and that to the orbital angular momentum is

Jtidal
Gm2

0=c
¼ ν

x1=2

�
6ðq41q2Λ1 þ q1q42Λ2Þx5

þ 7

2
½ð3þ 2q1 þ 3q21Þq41q2Λ1

þ ð3þ 2q2 þ 3q22Þq1q42Λ2�x6
�
; ðA8Þ

where the thermodynamic relation is used again. These
contributions are simply added to the point-particle con-
tributions described above. For Gm0Ω=c3 ¼ 0.019 con-
sidered in this study, point-particle terms up to second
post-Newtonian order dominate the energy and angular
momentum, while the sum of higher-order terms and finite-
size corrections contributes only by ∼0.1%–0.2% even for
a relatively stiff H4 equation of state.

APPENDIX B: COMPUTATION OF
GRAVITATIONAL WAVES

In this Appendix, we summarize our derivation of
gravitational waveforms h ¼ hþ − ih× from Ψ4 obtained
by numerical simulations. We first extrapolateΨ4 extracted
at a finite coordinate radius, rex, to null infinity following
Ref. [65]. Using the areal radius defined by Eq. (42), we
compute

DΨ4;lmðtÞjD→∞

¼
�
1 −

2m0

D

�

×
�
DΨ4;lmðtÞ −

ðl − 1Þðlþ 2Þ
2

Z
Ψ4;lmðt0Þdt0

�
;

ðB1Þ

where Ψ4;lm is the ðl; mÞ-mode coefficient of Ψ4 projected
onto spin-weighted spherical harmonics. The prefactor
1 − 2m0=D approximately corrects a difference between
the tetrad used in SACRA [43] and the Kinnersly tetrad,
where the latter has to be chosen to derive this extrapolation
formula. Next, gravitational waveforms are computed by
integrating this extrapolated Ψ4 (or DΨ4) twice as

hlmðtÞ ¼
Z �Z

Ψ4;lmðt00Þdt00
�
dt0: ðB2Þ

The angular frequency of gravitational waves, ΩGWðtÞ, is
estimated by

ΩGW;lmðtÞ≡ j R Ψ4;lmðt0Þdt0j
j R ðR Ψ4;lmðt00Þdt00Þdt0j

: ðB3Þ

In the body text, we suppress the subscript lm except for
Ψ4;22, because we focus only on the (2,2) mode.
All the time integrations are performed by fixed-

frequency integration [66]. The time-domain data are
transformed to frequency-domain data by

~Ψ4;lmðfÞ ¼
Z

wðtÞΨ4;lmðtÞe−2πiftdt; ðB4Þ

where we apply a tapered-cosine filter of the form

wðtÞ ¼

8>><
>>:

f1 − cos½πðt − tiÞ=Δt�g=2 ðti ≤ t < tiþÞ
1 ðtiþ ≤ t < tf−Þ
f1 − cos½πðtf − tÞ=Δt�g=2 ðtf− ≤ t < tfÞ

:

ðB5Þ

Here, ti and tf are the initial and final times of the data,
respectively, and tiþ ≡ ti þ Δt and tf− ≡ tf − Δt are
determined by a width of the tapering region Δt.
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We choose Δt ≈ 1 ms for the computation of waveforms.
Gravitational waveforms are computed as

hlmðtÞ ¼ −
Z ~Ψ4;lmðfÞ

ð2πmax½f; f0�Þ2
e2πiftdf; ðB6Þ

replacing the time integration with multiplication by
−i=ð2πfÞ. Here, a fixed frequency f0 is introduced to
suppress unphysical drifts associated with spurious con-
tributions from low-frequency components, and we

choose it to be f0 ¼ 0.8mðΩ=2πÞ so that physical infor-
mation of gravitational waves is not affected. This
integration method is also used in evaluating the right-
hand side of Eq. (B1).
Gravitational-wave spectra are computed by Eq. (B4)

and double multiplication of −i=ð2πfÞ. For this purpose,
we apply the tapered-cosine filter, Eq. (B5), with Δt ≈
5 ms to remove unphysical noises (in the frequency
domain) associated with junk radiation and finite data
length.
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