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We perform new long-term (15–16 orbits) simulations of coalescing binary neutron stars in numerical
relativity using an updated Einstein equation solver, employing low-eccentricity initial data, and modeling
the neutron stars by a piecewise polytropic equation of state. A convergence study shows that our new
results converge more rapidly than the third order, and using the determined convergence order, we
construct an extrapolated waveform for which the estimated total phase error should be less than one radian.
We then compare the extrapolated waveforms with those calculated by the latest effective-one-body (EOB)
formalism in which the so-called tidal deformability, higher post-Newtonian corrections, and gravitational
self-force effects are taken into account. We show that for a binary of compact neutron stars with their
radius 11.1 km, the waveform by the EOB formalism agrees quite well with the numerical waveform so that
the total phase error is smaller than one radian for the total phase of ∼200 radian up to the merger. By
contrast, for a binary of less compact neutron stars with their radius 13.6 km, the EOB and numerical
waveforms disagree with each other in the last few wave cycles, resulting in the total phase error of
approximately three radian.
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I. INTRODUCTION

The inspiral and merger of coalescing compact binaries
are among the most promising sources for ground-based
kilometer-size laser-interferometric gravitational-wave
detectors [1]. A statistical study based on the stellar
evolution synthesis (e.g., Refs. [2,3]) suggests that the
detection rate for them will be ∼1−100 yr−1 for advanced
detectors, i.e., advanced LIGO [4], advanced VIRGO [5],
and KAGRA [6], which will sequentially start operation in
the coming years.
One of the important steps after the first detection of

gravitational waves from binary neutron stars (and also a
black hole-neutron star binary) will be to extract binary
parameters such as mass, spin, and radius of each object in
the binary systems. In particular, the mass and radius (or a
quantity related to it) of the neutron stars have invaluable
information for determining the equation of state (EOS) of
the neutron-star matter, which is still poorly known. The
mass of two neutron stars will be determined with a high
accuracy ≲1%, if the gravitational-wave signals in the
inspiral stage are detected with the signal-to-noise ratio
≳10 and the neutron-star spins are supposed to be negli-
gible [7]. On the other hand, determining the parameters
related to the neutron-star radius is the challenging issue
although it has to be done for constraining the neutron-star
EOS (e.g., Refs. [8–10]). Among other possible methods,

extracting the tidal deformability of the neutron stars from
gravitational waves emitted binary-neutron-star inspirals is
one of the most promising methods [11–13]. For employ-
ing this method, we have to prepare a theoretical template
of gravitational waves from binary-neutron-star inspirals
taking into account tidal-deformation effects that influence
the dynamics of the late inspiral orbits (e.g., Ref. [14]).
Hence, theoretically deriving a precise gravitational wave-
form for binary-neutron-star inspirals including the tidal
effects is an urgent task.
A post-Newtonian (PN) gravitational waveform for the

early stage of binary-neutron-star inspirals (with the fre-
quency f ≲ 400 Hz) was first derived by Flanagan and
Hinderer including the leading-order tidal effects [12].
They showed that the tidal effect for the evolution of the
gravitational-wave phase could be described only by the
tidal deformability of neutron stars. They also found that
the tidal deformability of neutron stars could be measured
by the advanced gravitational-wave detectors by using the
gravitational-wave signals for f ¼ 10−400 Hz, if the tidal
deformability of neutron stars is sufficiently large or if we
could observe an event with a high signal-to-noise ratio (see
also Ref. [15]). If the waveform is extended to the higher
frequency range, the measurability can be significantly
improved. In the PN approach, however, the uncertainty of
the higher order PN terms prevents us from constructing the
accurate waveform at the higher frequency [16–18].
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To overcome the ambiguity in the higher PN terms, an
effective-one-body (EOB) formalism with the tidal effects
has been explored [13,19,20]. In this approach, the nontidal
part is calibrated using the results of binary-black-hole
simulations. Damour and his collaborators [21] sub-
sequently explored the measurability of the tidal deform-
ability with the advanced gravitational-wave detectors
employing an EOB formalism including tidal effects up
to the second PN order. They concluded that the tidal
deformability of neutron stars could be measured by the
advanced gravitational-wave detectors if the signal-to-noise
ratio of the gravitational-wave signal is higher than ∼16 for
any EOS that satisfies the constraint of the maximum
gravitational mass≳2M⊙ [22]. The key assumption of their
study is that the EOB approach is valid up to the onset of
the merger of binary neutron stars. However, in the stage
just before the merger, effects such as nonlinear tidal-
deformation effects, which are not taken into account in
the current EOB formalism, could come into play (see,
e.g., Ref. [23]).
For precisely understanding the orbital motion and the

waveform in the late inspiral stage of binary neutron stars,
a high-resolution numerical-relativity (NR) simulation with
appropriately physical setting is obviously necessary.
Recently, long-term simulations for binary-neutron-star
inspirals were performed by three groups [20,23–28]
aiming at the derivation of accurate gravitational wave-
forms for the late inspiral stage. They followed the late
binary inspiral for ≲10 orbits up to the onset of the merger.
However, in their numerical simulations, an unphysical
residual eccentricity is present in the initial data. This
seriously reduced the accuracy of their results because
binary neutron stars in the late inspiral stage are believed
to have a quasicircular orbit with negligible eccentricity. In
the present work, we simulate binary-neutron-star inspirals
for a longer term with more physical initial data in which
the eccentricity is sufficiently small (less than 10−3).1

In addition, we perform the simulations employing a
formalism in which the constraint violation can be sup-
pressed to a level much smaller than that in our previous
study [23]. As a result, we can obtain an extrapolated
waveform in a much more accurate and reliable manner
than in our previous study.
The paper is organized as follows. In Sec. II, we

summarize the formulation and numerical schemes
employed in our NR study, and also review the EOS
employed. In Sec. III, we describe our method for deriving
an extrapolated gravitational waveform, showing the result-
ing waveforms that are much more accurate than those
derived in our previous study [23]. We then compare our

extrapolated waveforms with those derived by the latest
EOB approach and examine its accuracy in Sec. IV.
Section V is devoted to a summary. Throughout this paper,
we employ the geometrical units of c ¼ G ¼ 1where c and
G are the speed of light and the gravitational constant,
respectively.

II. FORMULATION FOR NR SIMULATION

In this section, we briefly describe the formulation and
the numerical schemes of our NR simulation employed in
this work.

A. Evolution and initial condition

We follow the inspiral and early stage of the merger of
binary neutron stars using our NR code, SACRA, for which
the details are described in Ref. [29]. In this work, we
employ a moving puncture version of the Baumgarte-
Shapiro-Shibata-Nakamura formalism [30], locally incor-
porating a Z4c-type constraint propagation prescription
[31] (see [32] for our implementation) for a solution of
Einstein’s equation. The constraint propagation from the
neutron-star’s outer region plays a crucial role for reducing
the constraint violation and for improving the order of the
convergence as discovered in Ref. [31]. In our numerical
simulation, a fourth-order finite differencing scheme in
space and time is used implementing an adaptive mesh
refinement (AMR) algorithm. At refinement boundaries,
a second-order interpolation scheme is partly used. The
advection terms are evaluated by fourth-order lop-sided
upwind-type finite differencing [33]. A fourth-order
Runge-Kutta method is employed for the time evolution.
For the hydrodynamics, a high-resolution central scheme
based on a Kurganov-Tadmor scheme [34] with a third-
order piecewise parabolic interpolation and with a steep
min-mod limiter is employed.
In this work, we prepare nine refinement levels for the

AMR computational domain. Specifically, two sets of four
finer domains comoving with each neutron star cover the
region of their vicinity. The other five coarser domains
cover both neutron stars by a wider domain with their
origins fixed at the center of the mass of the binary system.
Each refinement domain consists of a uniform, vertex-
centered Cartesian grid with ð2N þ 1; 2N þ 1; N þ 1Þ grid
points for ðx; y; zÞ (the equatorial plane symmetry at z ¼ 0

is imposed). The half of the edge length of the largest
domain (i.e., the distance from the origin to outer bounda-
ries along each axis) is denoted by L, which is chosen to be
larger than λ0, where λ0 ¼ π=Ω0 is the initial wavelength of
gravitational waves and Ω0 is the initial orbital angular
velocity. The grid spacing for each domain is Δxl ¼
L=ð2lNÞ, where l ¼ 0 − 8. In this work, we choose
N ¼ 72, 60, 48, and 40 for examining the convergence
properties of numerical results. With the highest grid

1We note that R. Haas and his collaborators (SXS collabora-
tion) have also derived the waveforms of small eccentricity in
their long-term simulations, although their results have not been
published yet.
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resolution (for N ¼ 72), the semimajor diameter of each

neutron star is covered by about 120 grid points.
We prepare binary neutron stars in quasicircular orbits

for the initial condition of numerical simulations. These
initial conditions are numerically obtained by using a
spectral-method library, LORENE [35]. We follow
15–16 orbits in this study. To do so, the orbital angular
velocity of the initial configuration is chosen to be m0Ω0 ≈
0.0155 (f ≈ 370 Hz for the total mass m0 ¼ 2.7M⊙; i.e.,
each mass of neutron stars is 1.35M⊙). The neutron stars
are assumed to have an irrotational velocity field, which is
believed to be an astrophysically realistic configuration
[36,37]. The parameters for the initial models are listed in
Table I.
To compute accurate gravitational waveforms in numeri-

cal simulations, we need to describe a quasi-circular orbit
by initial data with negligible eccentricity. Such initial data
are constructed by an eccentricity-reduction procedure
described in [32]. For the initial data employed in this
work, the residual eccentricity is ≲10−3.

B. EOS

Following previous works [23,32], we employ a para-
meterized piecewise-polytropic EOS proposed by Read
and her collaborators [38]. This EOS is written in terms of
four segments of polytropes

P ¼ Kiρ
Γiðfor ρi ≤ ρ < ρiþ1; 0 ≤ i ≤ 3Þ; ð2:1Þ

where ρ is the rest-mass density, P is the pressure, Ki is a
polytropic constant, and Γi is an adiabatic index. At each
boundary of the piecewise polytropes, ρ ¼ ρi, the pressure
is required to be continuous, i.e., Kiρ

Γi
iþ1 ¼ Kiþ1ρ

Γiþ1

iþ1 .
Following Read and her collaborators, these parameters
are determined in the following manner [38]: The crust
EOS is fixed by setting Γ0 ¼ 1.3562395 and K0 ¼
3.594 × 1013 in cgs units. The values of the boundary
density is set as ρ2 ¼ 1014.7 g=cm3 and ρ3 ¼ 1015.0 g=cm3.
With this preparation, the following four parameters
become free parameters that should be given:
fP1;Γ1;Γ2;Γ3g. Here, P1 is the pressure at ρ ¼ ρ2, and
for a given value of this, K1 and Ki are determined by
K1 ¼ P1=ρ

Γ1

2 and Kiþ1 ¼ Kiρ
Γi−Γiþ1

iþ1 . In this work, we
choose two sets of piecewise-polytropic EOS mimicking

APR4 [39] and H4 [40] EOS (see Table 1 of Ref. [41] for
the four parameters).
In numerical simulations, we employ a modified version

of the piecewise polytropic EOS to approximately take into
account thermal effects, which play a role in the merger
phase. In this EOS, we decompose the pressure and specific
internal energy into the cold and thermal parts as

P ¼ PcoldðρÞ þ Pth; ε ¼ εcoldðρÞ þ εth: ð2:2Þ

The cold parts of both variables are calculated using the
original piecewise polytropic EOS from ρ, and then the
thermal part of the specific internal energy is defined from ε
as εth ¼ ε − εcoldðρÞ. Because εth vanishes in the absence of
shock heating, it is regarded as the finite-temperature part
determined by the shock heating in the present context. For
the thermal pressure, a Γ-law ideal-gas EOS was adopted as

Pth ¼ ðΓth − 1Þρεth: ð2:3Þ

Following our latest works [32,41], Γth is chosen to be 1.8.

C. Extraction of gravitational waves

Gravitational waves are extracted from the outgoing
component of complex Weyl scalar Ψ4 [29]. From this,
gravitational waveforms are determined in spherical coor-
dinates ðr; θ;ϕÞ by

h≔ hþðtÞ − ih×ðtÞ ¼ −Lim
r→∞

Z
t
dt0

Z
t0

dt00Ψ4ðt00; rÞ:

ð2:4Þ

Here, we omit arguments θ and ϕ. Ψ4 can be expanded in
the form

Ψ4ðt; r; θ;ϕÞ ¼
X
lm

Ψl;m
4 ðt; rÞ−2Ylmðθ;ϕÞ; ð2:5Þ

where −2Ylm denotes the spin-weighted spherical harmon-
ics of weight −2 and Ψl;m

4 are expansion coefficients
defined by this equation. In this work, we focus only on
the ðl; jmjÞ ¼ ð2; 2Þ mode because we pay attention only
to the equal-mass binary, and hence, this quadrupole mode
is the dominant one.
We evaluate Ψ4 at a finite spherical-coordinate radius

r=m0 ¼ 100−240. To compare the waveforms extracted at
different radii, we use the retarded time defined by

TABLE I. EOSs employed, the radius and the tidal Love number of l ¼ ð2; 3; 4Þ of spherical neutron stars of mass
1.35M⊙, the radius of light ring orbit, angular velocity of initial data, and the finest grid spacing in the four different
resolution runs. m0 denotes the total mass of the system. In this study, it is 2.7M⊙.

EOS R1.35 (km) k2;1.35 k3;1.35 k4;1.35 rLR m0Ω0 Δx8 (km)

APR4 11.1 0.0908 0.0234 0.00884 3.61 0.0156 0.140, 0.167, 0.209, 0.251
H4 13.6 0.115 0.0326 0.0133 4.21 0.0155 0.183, 0.220, 0.274, 0.329
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tret ≔ t − r�; ð2:6Þ

where r� is the so-called tortoise coordinate defined by

r� ≔ rA þ 2m0 ln

�
rA
2m0

− 1

�
; ð2:7Þ

with rA ≔
ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p
and A the proper area of the extraction

sphere.

III. RECIPE FOR CONSTRUCTING AN
EXTRAPOLATED WAVEFORM

In this section, we present our prescription for deriving
an extrapolated gravitational waveform from raw numerical
data of Ψ4 and show that the resulting waveforms have a
good accuracy that can be compared carefully with the
EOB results.

A. Extrapolation to infinite extraction radius

As we mentioned in the previous section, we extract Ψ4

at several coordinate radii, 100−240m0, and then this
complex Weyl scalar is decomposed into the spherical
harmonics components, Ψl;m

4 . Since the waveform of Ψ4

extracted at a finite radius, r0, is systematically different
from that at null infinity, we first compute an extrapolated
waveform at r0 → ∞ using the Nakano’s method as [42,43]

Ψl;m;∞
4 ðtret; r0Þ ¼ Cðr0Þ

�
Ψl;m

4 ðtret; r0Þ−
ðl − 1Þðlþ 2Þ

2rA

×
Z

tret
Ψl;m

4 ðt0; r0Þdt0
�
; ð3:1Þ

where Cðr0Þ is a function of r0. Since our coordinates are
similar to isotropic coordinates of nonrotating black holes,

we choose rA ¼ r0½1þm0=ð2r0Þ�2. Cðr0Þ depends on the
choice of the tetrad components; for our choice, it is
appropriate to choose Cðr0Þ ¼ 1 − 2m0=rA. In this setting,
tret at r ¼ r0 is given by Eqs. (2.6) and (2.7).
The left panel of Fig. 1 plots the real part of

Ψ2;2;∞
4 ðtret; r0Þ for several choices of r0. The right panel

shows the evolution of the absolute amplitude of
Ψ2;2;∞

4 ðtret; r0Þ. These show that the extrapolated wave-
forms depend very weakly on the extraction radius, r0 (see
Ref. [43] for the reason).
We then have to calibrate how weakly the resulting

extrapolated waveforms, Ψ2;2;∞
4 ðtret; r0Þ, depend on r0 and

have to estimate the systematic error in this quantity. We
find that the systematic error in phase decreases approx-
imately in proportional to r−10 (see the left lower panel of
Fig. 1 that indeed shows this property). Figure 1 implies
that for r0 ≳ 200m0, the systematic error in phase is
smaller than 0.3 radian. This value is smaller than the
error in the extrapolated waveform finally obtained (asso-
ciated with the uncertainty in the resolution extrapolation),
and can be accepted in the present numerical study. Note
that this phase error is systematic and could be subtracted,
although we do not do so in this work.
By contrast, the systematic error in amplitude is appre-

ciable, i.e., 1%–2% even for r0 ≈ 200 m0. For suppressing
this error, we might have to enlarge the computational
domain for the wave extraction. However, this error size is
smaller than another error associated with the spurious
short-term modulation in the numerical gravitational-wave
amplitude as reported in Ref. [32]: The right panel of
Fig. 1 shows that a modulation in the amplitude is present
with its fluctuation amplitude of ≲3% in particular in the
early stages of the numerical waveform. Since this error
was not able to be cleaned up, we do not take a further
extrapolation of jΨl;m;∞

4 ðtret; r0Þj for r0 → ∞. Thus, in this
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FIG. 1 (color online). The waveform (real part; left) and amplitude (right) of Ψ2;2;∞
4 ðr0; tretÞ as functions of tret for several values of r0

for the run with H4 EOS and the best grid resolution (N ¼ 72). The lower plot of the left panel shows the phase differences ofΨ2;2;∞
4 ðr0Þ

relative to Ψ2;2;∞
4 ðr0 ¼ 237m0Þ.
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work, we employ Ψl;m;∞
4 ðtret; r0Þ computed from the data

extracted at r0 ¼ 200m0 [hereafter written as Ψl;m;∞
4 ðtretÞ]

without further processing and perform subsequent analy-
ses keeping in mind that in the amplitude extrapolated by
Eq. (3.1) there could exist a local error in magnitude up to
∼3% of the exact amplitude (note that in average the error
would be much smaller than 3%).

B. Extrapolation for zero-grid spacing limit

Next, we consider the resolution extrapolation for the
limit Δx8 → 0. For this task, numerical simulations have to
be performed for more than three grid resolutions. In this
study, we performed four simulations for each model
employing four different grid resolutions (compare
Table I for the finest grid spacing, Δx8, for each run).
For each run, we extracted the numerical waveform at r0 ¼
200 m0 and then performed the extrapolation of r0 → ∞ as
described in Eq. (3.1).
We then need to perform an extrapolation procedure of

taking the zero grid-spacing limit for obtaining an approx-
imately exact solution. For this procedure, we first analyze
the relation of the time to the merger, tmrg, as a function
of Δx8 following Ref. [23]. Here, the merger time, tmrg, is
defined as the time at which the maximum value of
jΨ2;2;∞

4 ðtretÞj is recorded. Then, it is found that tmrg

converges to an unknown exact value at approximately
the fourth order (see below for more detailed analysis). tmrg

is larger for the better grid resolutions because for the lower
grid resolutions, the numerical dissipation is larger and the
inspiraling process is spuriously accelerated. This numeri-
cal error is universally present for finite values of Δx8; that
is, for any inspiraling stage in any numerical simulations,
the error is always present. For obtaining the “exact”
waveform, thus, we always need an extrapolation pro-
cedure. Then, the next question is how to extrapolate the
waveform for the limit Δx8 → 0. We propose the following
method in this study.
We first determine the gravitational waveform and time

evolution of the angular frequency as functions of tret by
integrating Ψl;m;∞

4 ðtretÞ for each raw numerical data. Here,
the gravitational waveform for each multipole mode sat-
isfies [see Eq. (2.4)]

ḧl;m ≔ ḧl;mþ − iḧl;m× ¼ −Ψl;m;∞
4 ðtretÞ: ð3:2Þ

hl;m is obtained by the double time integration of Ψl;m;∞
4 .

For this procedure, we employ the method of Ref. [44],
written as

hl;mðtretÞ ¼
Z

dω
Ψl;m;∞

4 ðωÞ
maxðω;ωcutÞ2

expðiωtretÞ; ð3:3Þ

whereΨl;m;∞
4 ðωÞ is the Fourier transform ofΨl;m;∞

4 ðtretÞ and
ωcut is chosen to be 1.6Ω0. (Note that at the initial stage, the
value of ω is 2Ω0 > ωcut.) We recall again that in this paper

we pay attention only to l ¼ jmj ¼ 2 modes because these
are the dominant modes in particular for the equal-mass
binaries. Then, from Eq. (3.3), we determine the evolution
of the amplitude, i.e., Al;m ¼ jhl;mj as a function of tret.
Using Eq. (3.3), we can also define the evolution of the

angular frequency as

ωðtretÞ≔
j _h2;2j
jh2;2j ; ð3:4Þ

and then, the evolution of the gravitational-wave phase is
calculated by

ΦðtretÞ≔
Z

tret
dt0ωðt0Þ: ð3:5Þ

Now, using A2;2 and Φ, the quadrupole gravitational
waveform can be written as

h2;2ðtretÞ ¼ A2;2ðtretÞ exp ½iΦðtretÞ�: ð3:6Þ

Figure 2 plots the resulting gravitational waveforms and
the evolution of Φ obtained in the simulations with
different grid resolutions for the models with H4 (left)
and APR4 EOS (right). The upper panels plot the
gravitational waveforms, and these show that the merger
time is earlier for the poorer grid resolutions. The middle
panels plot the integrated wave phases for the pure
numerical results with no reprocessing. These show that
the phase evolution is spuriously faster for the poorer grid
resolutions. However, we already know that the merger
time converges approximately at fourth order. Taking into
account this fact, we stretch the time axis for the
gravitational waveform by an appropriate factor as
t → ηt where ηð>1Þ is the constant stretching factor.
This factor should be larger for the results of the poorer
grid resolutions. Here, this reprocessing is performed in
the same manner as in [23]: tret and Φ are modified as
tret → ηtret and Φ → ηΦ. We show that the phase evolution
matches very well among the waveforms with different
grid resolutions after this scaling performed in terms of
this single parameter η. Later, η will be also used for
determining the convergence order and for obtaining the
resolution-extrapolated waveform.
As a first step for this stretching procedure, we have to

determine the values of η. As the first substep, we carry out
a procedure for finding the minimum value of the following
integral

I ¼ min
η0;ϕ

Z
tf

ti

dtretjA2;2
2 ðη0tretÞ exp½iη0Φ2ðη0tretÞ þ iϕ�

− A2;2
1 ðtretÞ exp½iΦ1ðtretÞ�j2 ð3:7Þ

where A2;2
1 and Φ1 are, respectively, the amplitude and

integrated phase of the gravitational waveform for the best
resolved run (N ¼ 72) and A2;2

2 and Φ2 are those for less
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resolved runs. The free parameters, η0 and ϕ, are varied for a
wide range and from 0 to 2π, respectively, to search for the
possible minimum value of I. ti and tf are chosen to be
5 ms and tmrg of the best resolved run, respectively. Here,
the reason for choosing ti ¼ 5ms is that for their early
stage with tret ≲ 5 ms, the numerical waveforms have a
relatively large modulation in amplitude and phase due to
junk radiation.

We find for our present simulation results that for the
second-finest, third-finest, and poorest resolution runs,
η0 ¼ 1.00646, 1.02241, and 1.06000 for the H4 EOS
and η0 ¼ 1.00650, 1.02931, and 1.09118 for the APR4
EOS. The mismatched factors, respectively, are I=I0 ¼
7.4 × 10−6, 2.3 × 10−5, and 1.4 × 10−4 for the H4 EOS
and I=I0 ¼ 7.4 × 10−6, 1.1 × 10−4, and 1.4 × 10−3 for the
APR4 EOS. Here, we define
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FIG. 2 (color online). The gravitational waveforms and the evolution of the gravitational wave phase for four different grid-resolution
runs with the H4 EOS (left three panels) and with the APR4 EOS (right three panels). N indicates the grid resolution, Δx8 ∝ N−1.
The upper panels show the gravitational waveforms for three different grid resolutions. The middle panels show the pure numerical wave
phases and the bottom panels show the results obtained after the stretching of time and phase according to the convergence property (for
N ¼ 40, 48, and 60). The lower plots in middle and bottom panels show the phase disagreement between the purely numerical wave
phase for N ¼ 72 and the lower resolution results. Note that for N ¼ 72, tmrg ¼ 58.43 ðmsÞ for the H4 EOS and tmrg ¼ 61.08 ðmsÞ for
the APR4 EOS.
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I0 ≔
Z

tf

ti

dtretjA2;2
1 ðtretÞj2: ð3:8Þ

The cross-correlation of two waveforms is approximately
estimated as 1 −

ffiffiffiffiffiffiffiffiffiffiffi
I=2I0

p
. This implies that the cross-

correlation between the waveforms of the best resolved
run and reprocessed less resolved runs are approximately
99.9%, 99.8%, 99.4% for the H4 EOS and 99.9%, 99.5%,
and 98.2%, respectively. This shows that the accuracy is not
very good in the low-resolution runs for the APR4 EOS, for
which the compactness is larger than that for the H4 EOS,
and hence, a finer grid resolution would be necessary for a
well-resolved simulation. For both EOS, the reprocessed
waveforms in the poorest resolution run are found to be not
very accurate, and hence, in the following, we perform a
convergence study employing the waveforms of the first-,
second-, third-resolved runs (labeled by N ¼ 72, 60, and
48, respectively).
The bottom panels of Fig. 2 show the results obtained for

this time-stretching procedure. It is found that four curves
of Φ originally with different grid resolutions approxi-
mately overlap with each other. In particular, the degree of
the overlapping is quite good between the finest and
second-finest runs (see the difference of the integrated
phase shown in the lower plot of the bottom panels of
Fig. 2): For both EOS, the disagreement of Φ for these
reprocessed data is much smaller than 0.1 radian except for
the final moment of the last orbits, at which the disagree-
ment steeply increases: however it is at most ∼0.2 radian.
This suggests that the time-stretching method can be used
for obtaining the extrapolated waveform for Δx8 → 0 if we
accept the error of the integrated phase up to ∼0.2 radian.
We next try to obtain an extrapolated waveform for

Δx8 → 0 by using the time-stretching method for the well-
resolved models. For this procedure, we have to determine
the order of the convergence appropriately. In the above, we
found that the numerical waveform in the poorest run is not
very reliable even after the reprocessing. Thus, we deter-
mine the order of the convergence from the three better
resolved runs. (Note that if we employ the poorest resolved
waveforms for determining it, the order of the convergence
is spuriously overestimated.) Using the values of η0 − 1, the
order of the convergence, p, is determined from

ð72=48Þp − 1

ð72=60Þp − 1
¼

(
0.02241
0.00646 for H4;
0.02931
0.00650 for APR4;

ð3:9Þ

which give p ≈ 3.42 and 5.10 for the H4 and APR4 EOS,
respectively. This indicates that the stretching factor for the
best resolved run to reproduce the limiting waveform with
Δx8 → 0 is η ≈ 1.00746 and 1.00424 for the H4 and APR4
EOS, respectively. This implies that for these models, the
exact merger time would be tmrg ≈ 58.87 and 61.34 ms,
respectively, whereas they were 58.43 and 61.08 ms for the

best resolved run. Namely, the error in the merger time is
still much larger than 0.1 ms even for the best resolved run:
To obtain waveforms with error in the merger time smaller
than 0.1 ms, a simulation with N ≳ 100 would be neces-
sary. We note that if we extrapolate the value of η for the
best resolved runs assuming the third- and fourth-order
convergences of η0, the value of η becomes, respectively,
1.00887 and 1.00601 for the H4 EOS and 1.00893 and
1.00605 for the APR4 EOS. For the hypothetical fourth-
order convergence, the predicted merger time would be
tmrg ¼ 58.78 ms for the H4 EOS and 61.45 ms for the
APR4 EOS. Thus, it is safe to keep in mind that the
extrapolated merger time still has an error of ∼0.1 ms due
to the uncertainty in p. Since the merger time is ∼60 ms
and total gravitational-wave phase is ∼200 radian for both
EOS, we should keep in mind the phase error of 200 ×
ð0.1=60Þ ∼ 0.3 radian.

IV. COMPARISON BETWEEN NR AND EOB
WAVEFORMS

Figure 3 plots the extrapolated gravitational waveforms,
the associated frequency, and the integrated gravitational-
wave phase. For comparison, we plot the results by an EOB
approach [13,21,45] (see Appendix A for the EOB for-
malism that we employ in this work). To align the time
and phase of the numerical and EOB waveforms, we first
calculate a correlation like Eq. (3.7) for 5 ms ≤ tret ≤
20 ms between the numerical and EOB waveforms, vary-
ing the time and phase of the EOB waveform. These
parameters are determined by searching for the set of the
values that give the minimum of this integral.
Figure 3 shows that up to f ∼ 700 Hz (at tret ≈ 54 ms),

the EOB result well reproduces the extrapolated waveforms
for both H4 and APR4 EOS: In particular for the APR4
EOS for which the compactness is large and the tidal
deformability is small, the agreement is quite good. For
both EOS, the error in the frequency is smaller than 1% and
the phase error is smaller than 0.1 radian for f ≲ 700 Hz
(with tret ≥ 5 ms). However, for the last a few cycles, the
agreement between the extrapolated and EOB waveforms
becomes poor. Here, note that this disagreement cannot be
explained by the error in the numerical waveform, because
we have already estimated that the phase error in the
numerical waveform would be smaller than ∼0.3 radian.
The magnitude of the error is larger for the H4 EOS. The
possible reason for this disagreement is that in the current
version of the EOB formalism, the tidal effects are not fully
taken into account (e.g., nonlinear tidal effects and non-
stationary effects are not included). Namely, if the degree of
the tidal deformation becomes high, the approximation
could be poor.
In the final inspiraling stage for the model with the H4

EOS, the neutron stars are significantly deformed, and
the attractive force associated with the tidal deformation
is enhanced: The relative fraction of the approaching
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velocity induced by the tidal effect to that by other
general relativistic effects such as gravitational-radiation
reaction is larger for the binary of larger radius neutron
stars. The missing tidal effects could give a significant
damage in the current version of the EOB formalism. By
contrast, for the model with the APR4 EOS, the agree-
ment between the extrapolated and EOB waveforms is

quite good even at the last orbit. The total phase error is
smaller than ∼0.7 radian, which is comparable to that in
the error associated with the uncertainty of the extrapo-
lation. This implies that for the binary of small-radius
neutron stars, the current version of the EOB formalism
would be already robust if we accept the phase error of ∼1
radian (see also Ref. [20]).
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FIG. 3 (color online). The extrapolated gravitational waveform and related quantities for the models with the H4 (left) and APR4 EOS
(right). (Top) The extrapolated waveforms for the best resolved (N ¼ 72) and second-best resolved (N ¼ 60) runs are plotted (two
waveforms overlap quite well with each other and we cannot distinguish them in the figure). The waveform by an EOB calculation is
plotted together. The lower panels focus on the late inspiral waveforms. (Middle) The extrapolated gravitational-wave frequency. In the
lower panel of this, the absolute difference between the extrapolated result (with N ¼ 72) and EOB result is shown. (Bottom) The
extrapolated gravitational-wave phase. In the lower panel of this, the difference between the extrapolated result and EOB result is shown.
We aligned the phases of the extrapolated and EOB waveforms at tret ¼ 5 ms.
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The missing tidal effects in the EOB formalism cannot be
compensated even if we artificially modify the value of
the tidal deformability (or compactness). Figure 4 plots
the evolution for the degree of the mismatch between the
extrapolated waveform and the EOB waveform. For com-
parison, we calculated the mismatch employing the EOB
waveforms in which the compactness of neutron stars is
varied by �3%. Here, the mismatch is defined by

ImðtretÞ ≔
1

2

ðh − heobjh − heobÞ
ðheobjheobÞ

; ð4:1Þ

where

ðh1jh2Þ ≔
Z

tret

ti

h1ðt0retÞh�2ðt0retÞdt0ret: ð4:2Þ

Again, ti is chosen to be 5 ms. Here, h and heob denote
an extrapolated waveform and a waveform by the EOB
formalism, respectively. We note that the following relation
is approximately satisfied for small values of ImðtretÞ:

1 − ImðtretÞ ≈
ðhjheobÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðhjhÞðheobjheobÞ

p : ð4:3Þ

From Fig. 4, we first reconfirm that the degree of the
mismatch is steeply increased for the last inspiral orbit.
This indicates that the tidal effect would not be sufficiently
taken into account in the current version of the EOB
formalism, although for other inspiral orbits, the perfor-
mance of the EOB formalism appears to be quite good. It is
also found that the extrapolated waveforms cannot be
accurately reproduced even if we simply change the tidal
deformability: If its value is artificially increased, the phase
evolution is accelerated, and as a result, the mismatch is
increased in an earlier inspiral stage. If it is artificially

decreased, the merger is delayed, and as a result, the
mismatch is badly increased near the last orbit. This
suggests that a tidal effect, which is not included, should
be taken into account for improving the performance of
the EOB formalism.

V. SUMMARY

We presented our latest numerical results of long-term
simulations for the inspiraling binary neutron stars of equal
mass. By a careful resolution study and extrapolation
procedure, we obtain an accurate waveform: The estimated
total phase error is smaller than ∼0.3 radian for the total
integrated phase of ∼200 radian and the maximum error in
the wave amplitude is smaller than 3%. Using these accurate
waveforms, we calibrated the waveforms derived by the
latest EOB formalism. We show that for a binary of compact
neutron stars (with their radius 11.1 km), the waveform by
the EOB formalism agrees quite well with the numerical
waveform so that the total phase error is smaller than one
radian. By contrast, for a binary of less compact neutron stars
(with their radius 13.6 km), the EOB and numerical wave-
forms disagree with each other in the last a few wave cycles,
resulting in the total phase error of approximately three
radian. We infer that this is due to the missing of some tidal
effect such as nonlinear tidal effect in the current version of
the EOB formalism, which should be taken into account for
improving its performance.
In this work, we employed only two representative EOS

and a binary of particular mass. For systematically improv-
ing the EOB formalism, we have to derive waveforms of
wider sets of EOS and binary mass. We plan to perform
more simulations in the future work and to present a larger
number of the waveforms using the prescription developed
in this paper.

ACKNOWLEDGMENTS

This work was supported by Grant-in-Aid for Scientific
Research (No. 24244028) of Japanese MEXT/JSPS. K. K.
is supported by JSPS Postdoctoral Fellowship for Research
Abroad.

APPENDIX: EFFECTIVE ONE-BODY
FORMALISM

In this work, we employ an EOB formalism for inspiral-
ing binary neutron stars, which is described in Ref. [20].
The base point-particle dynamics for this EOB formalism is
calibrated by the latest binary-black-hole merger simula-
tions [46] and the tidal effects are taken into account based
on the prescription of Refs. [13,19,21]. Here, we briefly
review this type of the EOB formalisms and describe our
choice.
We consider a binary system composed of stars A and B

with mass of MA and MB. The EOB effective metric is
defined by
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FIG. 4 (color online). The evolution of the mismatch, ImðtretÞ,
between the extrapolated waveform and EOB waveforms.
“EOB� 3” denotes that the EOB waveforms are employed
artificially increasing or decreasing the neutron-star compactness
by 3%.
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ds2eff ¼ −AðrÞdt2 þDðrÞ
AðrÞ dr

2 þ r2ðdθ2 þ sin2θdϕ2Þ;

ðA1Þ

where ðr;ϕÞ are dimensionless coordinates and their
canonical momenta are ðpr; pϕÞ. We replace the radial
canonical momentum pr with the canonical momentum
pr� , where a tortoise-like radial coordinate r� is given by

dr�
dr

¼
ffiffiffiffiffiffiffiffiffiffi
DðrÞp
AðrÞ : ðA2Þ

Then the binary dynamics can be described by the EOB
Hamiltonian

Hrealðr; pr� ; pϕÞ ¼ Mc2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤeff − 1Þ

q
; ðA3Þ

where ν ≔ MAMB=M2, M ≔ MA þMB, and the effective
Hamiltonian is defined by

Ĥeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r� þ AðrÞ

�
1þ p2

ϕ

r2
þ 2ð4 − 3νÞνp

4
r�

r2

�s
: ðA4Þ

The potential AðrÞ is decomposed into two parts as

AðrÞ ¼ AppðrÞ þ AtidalðrÞ; ðA5Þ

where AppðrÞ is the point-particle potential and AtidalðrÞ is
the term associated with tidal effects. The point-particle
potential including up to the fifth PN terms is

AppðrÞ ¼ P1
5½1 − 2uþ 2νu3 þ νa4u4

þ νðac5ðνÞ þ aln5 ln uÞu5
þ ðac6ðνÞ þ νaln6 ðνÞ ln uÞu6�; ðA6Þ

where u≔ 1=r and P1
5 denotes a (1,5) Padé approximant.

Here, the following coefficients are analytically known
[47,48]

a4 ¼
94

3
−
41

32
π2; ðA7Þ

ac5ðνÞ ¼ −
4237

60
þ 2275

512
π2 þ 256

5
ln 2þ 128

5
γ

þ
�
−
211

6
þ 41

32
π2
�
ν; ðA8Þ

aIn5 ¼ 64

5
; ðA9Þ

aIn6 ðνÞ ¼ −
7004

105
−
144

5
ν; ðA10Þ

where γ ¼ 0.5772156… is the Euler constant. Following
Ref. [20], we take the effective form of ac6ðνÞ, with which
results of binary-black-hole-merger simulations are repro-
duced accurately, as

ac6ðνÞ ¼ 3097.3ν2 − 1330.6νþ 81.38: ðA11Þ

The contribution of tidal effects to the potential is
written as

AtidalðrÞ ¼ −
X
l≥2

ðκAl u2lþ2ÂðlÞ
A ðuÞ þ ðA↔BÞÞ; ðA12Þ

where ÂðlÞ
A includes the PN tidal effects and κAl is the tidal

coefficients. Here, the subscripts A and B denote the stars A
and B. In this work, we include the tidal effects up to l ¼ 4.
The coefficient κAl is related to the electric tidal Love
number kl and the compactness C as (see Table I for these
values of the neutron stars studied in this work)

κAl ¼ 2
MBM2l

A

M2lþ1

kAl
C2lþ1
A

: ðA13Þ

The tidal potential up to the next-to-next-to-leading cor-
rections is

ÂðlÞ
A ðuÞ ¼ 1þ αðlÞA;1uþ αðlÞA;2u

2: ðA14Þ

The coefficients are analytically known as [13]

αð2ÞA;1 ¼
5

2
XA; ðA15Þ

αð2ÞA;2 ¼
337

28
X2
A þ 1

8
XA þ 3; ðA16Þ

αð3ÞA;1 ¼
15

2
XA − 2; ðA17Þ

αð3ÞA;2 ¼
110

3
X2
A −

311

24
XA þ 8

3
; ðA18Þ

where XA ≔MA=M.
Recently, the tidal EOB was improved using resumma-

tion techniques [19]. We use the gravitational-self-force
informed l ¼ 2 tidal potential as

Âð2Þ
A ðuÞ ¼ 1þ 3u2

1 − rLRu
þ XA

~Að2Þ1SF
A ðuÞ

ð1 − rLRÞ7=2

þ X2
A

~Að2Þ2SF
A ðuÞ

ð1 − rLRÞp
; ðA19Þ

where p is an unknown parameter in the range of 4 ≤ p <
6 and we set p to be 4. rLR is the light-ring orbit. The forms

of ~Að2Þ1SF
A and ~Að2Þ2SF

A are

HOTOKEZAKA et al. PHYSICAL REVIEW D 91, 064060 (2015)

064060-10



~Að2Þ1SF
A ðuÞ ¼ 5

2
uð1 − a1uÞð1 − a2uÞ

1þ n1u
1þ d2u2

; ðA20Þ

~Að2Þ2SF
A ðuÞ ¼ 337

28
u2; ðA21Þ

where the numerical coefficients ða1; a2; n1; d2Þ are found
in Ref. [19]. As in Ref. [20], we use the tidally corrected
light ring orbit instead of rLR ¼ 3. For determining the
value of rLR, we solve the following equation numerically

AðuLRÞ þ
1

2
uLR

dA
du

����
uLR

¼ 0; ðA22Þ

where the tidal part of the potential is included as Eq. (A14)
and the value of rLR for the binary neutron star models
employed in this work is shown in Table I. Finally, the
potential Dðu; νÞ is given by

Dðu; νÞ ¼ 1

1þ 6νu2 þ 2ð23 − 3νÞνu3 : ðA23Þ

For calculating the dynamics of the binary orbit under
the potentials described above, we solve the EOB
Hamilton’s equations

dr
dt

¼ AðrÞffiffiffiffiffiffiffiffiffiffi
DðrÞp ∂Hreal

∂pr�
; ðA24Þ

dϕ
dt

¼ ∂Hreal

∂pϕ
; ðA25Þ

dpr�
dt

¼ −
AðrÞffiffiffiffiffiffiffiffiffiffi
DðrÞp ∂Hreal

∂r ; ðA26Þ

dpϕ

dt
¼ Fϕ: ðA27Þ

Note that we do not include the radial part of the radiation-
reaction force in Eq. (A26) [20] because we find this choice
advantageous for fitting the extrapolated gravitational
waveforms. Fϕ is the radiation-reaction force given by

Fϕ ¼ −
1

8πνω

X8
l¼2

Xl

m¼1

ðmωÞ2jRhlmj2; ðA28Þ

where ω ¼ dϕ=dt and hlm denotes the multipolar wave-
forms. Here, hlm is written as

hlm ¼ h0lm þ htidal;Alm þ htidal;Blm ; ðA29Þ

where h0lm includes the inspiral and plunge waveforms
given in Ref. [46], and htidal;Alm and htidal;Blm are the tidal
contributions due to the stars A and B. They are given by
Eqs. (A14)–(A17) of Ref. [21].
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