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We explore magnetic-field amplification due to the Kelvin-Helmholtz instability during binary neutron
star mergers. By performing high-resolution general relativistic magnetohydrodynamics simulations with a
resolution of 17.5 m for 4–5 ms after the onset of the merger on the Japanese supercomputer “K”, we find
that an initial magnetic field of moderate maximum strength 1013 G is amplified at least by a factor of
≈103. We also explore the saturation of the magnetic-field energy and our result shows that it is likely to be
≳4 × 1050 erg, which is ≳0.1% of the bulk kinetic energy of the merging binary neutron stars.
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I. INTRODUCTION

The merger of binary neutron stars (BNS) is one of the
most promising sources for the ground-based gravitational
wave detectors such as advanced LIGO, advanced VIRGO,
and KAGRA [1–3]. If gravitational waves from them are
detected, we will be able to assess the validity of general
relativity in a strong gravitational field and explore the
equation of state (EOS) of neutron star (NS) matter.
Furthermore, the merger of BNSs could be a central engine
of short-hard gamma-ray bursts (sGRB) and the simulta-
neous detection of gravitational waves and sGRB will give
a constraint on this merger hypothesis [4].
During the merger, the elements heavier than the iron

peak elements could be synthesized via the so-called r-
process [5] and it could reproduce the solar abundance
pattern of the r-process heavy elements [6,7]. The radio-
actively powered emission from these elements could be a
strong electromagnetic transient [8–10]. Motivated by these
facts, building a physically reliable model of BNS mergers
is in rapid progress.
In this paper, we focus on exploring the role of the

magnetic field because it is one of the universal features of
NSs. The observations of binary pulsars indicate that the
surface dipole magnetic-field strength is in the range of
109.7−12.2 G [11]. Rasio and Shapiro have pointed first that
the Kelvin-Helmholtz (KH) instability could significantly
amplify the magnetic-field strength at the merger [12].
Price and Rosswog suggested for the first time that this
could be indeed the case [13]. This instability develops in a
shear layer which appears when the two stars come into
contact.
It has been controversial whether this mechanism works

in practice and several preliminary simulations have been
reported [13–19]. The issue is that, because the growth rate

of the KH instability is proportional to the wave number of
the mode, high-resolution simulations together with a
careful convergence study is necessary to explore this
instability. Recently, the authors of Ref. [20] have
performed general relativistic magnetohydrodynamics
(GRMHD) simulation of the BNSmerger with significantly
higher resolution (by a factor ∼2.5) than any previous
simulation. They revealed that, only for a sufficiently high
numerical resolution, the KH instability activates as an
amplifier of the magnetic field at the merger.
However, it is still an open question to what extent the

magnetic field is amplified during the merger under realistic
conditions because an initial magnetic-field strength
employed in Ref. [20] was assumed to be of magnetar
class, i.e., 1014.5−16 G. Because the magnetic-field ampli-
fication was saturated at the maximum field strength of
∼1017 G, the previous simulations followed this amplifica-
tion process by a factor of 10. Several local box simulations
have suggested that the magnetic-field energy may be
amplified by several orders of magnitude until reaching
an equipartition level even if we assume moderate initial
magnetic-field strength [21,22]. In this paper, we go a step
further to thoroughly explore the amplification of the
magnetic field by the KH instability. Initially setting
moderately strong realistic magnetic fields of maximum
strength 1013 G, we perform GRMHD simulations of BNS
mergers on the Japanese supercomputer “K” increasing the
resolution by a factor 4 with respect to previous simulations
by Ref. [20].
This paper is organized as follows. In Sec. II, we briefly

mention the method, the grid setup, and the initial models
of the BNSs. We also describe how we increase the grid
resolution in the shear layer during the merger. Sections III
and IV are devoted to presenting numerical results. The
summary is given in Sec. V.
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II. METHOD, GRID SETUP, AND
INITIAL MODELS

The code is the same as that in Refs. [20,23]; Einstein’s
equation is formulated based on a Baumragte-Shapiro-
Shibata-Nakamura-puncture formulation [24–27] and
solved by fourth-order finite differencing. GRMHD is
formulated in a conservative form and solved by a high
resolution shock capturing scheme together with a third-
order cell reconstruction [28]. We implement a fixed mesh
refinement algorithm to cover a wide dynamical range of
BNSmergers. Specifically, a refinement domain labeled by l
is a cuboid box of xðlÞ ∈ ½−NΔxðlÞ;NΔxðlÞ�, yðlÞ ∈ ½−NΔyðlÞ;
NΔyðlÞ�, and zðlÞ ∈ ½0; NΔzðlÞ� where we assume an orbital
plane symmetry. Given a grid resolution, a constant integer
N specifies the size of the refinement domain. In our
algorithm, N is identical for all the refinement levels.
ΔxðlÞ,ΔyðlÞ, andΔzðlÞ are a grid resolution in the refinement
domain l and we assume ΔxðlÞ ¼ ΔyðlÞ ¼ ΔzðlÞ. The grid
resolution in a coarser refinement domain l − 1 isΔxðl−1Þ ¼
2ΔxðlÞ with l ¼ 2; 3;…, and lmax. lmax is the number of the
refinement levels. The divergence free condition as well as
the flux conservation of the magnetic field in a refinement
boundary are preserved by the Balsara’s algorithm [29].
To improve the grid resolution for a shear layer which

appears when the two stars come into contact, we add new
refinement domains at about 1 ms before the merger. The
size of the new finest refinement domain is determined by
the initial grid configuration; typically, the initial finest
domain is a cuboid of ≈ð72 000 mÞ3=2. If we add one
refinement domain, the final finest domain is a cuboid of
≈ð36 000 mÞ3=2. If we add two domains, the final finest
domain is that of ≈ð18 000 mÞ3=2 (see Fig. 1 for a
schematic picture). Previous simulations have suggested
that the shear layer appears in a central region of radius
∼10 000 m [20]. Therefore, we increase the number of the
refinement domains up to two. Table I shows the grid setup.
We achieve 17.5 m resolution which is much finer than the
highest-resolution in our previous simulation [20].

As a fiducial model, we choose an equal-mass irrota-
tional binary of total mass 2.8M⊙. As an EOS to model the
NS, we assume the H4 EOS [30]. The initial orbital angular
frequency is Gm0Ω=c3 ¼ 0.0221 where G is the gravita-
tional constant, m0 is the sum of the gravitational mass in
isolation, and c is the speed of light. At about 1 ms before
the onset of the merger, we add a seed magnetic field whose
configuration is given by

Ai ¼ ð−ðy − yNSÞδxi þ ðx − xNSÞδyi ÞAb

× maxðP − Pð0.04ρmaxÞ; 0Þ2; ð2:1Þ
where i ¼ x, y, and z, P is the pressure, and ρmax is the
maximum rest-mass density. xNS and yNS denote the
coordinate center of the NS. Ab determines the maximum
magnetic-field strength, which is realized at the stellar
center. The observations of binary pulsars suggest that the
surface dipole magnetic-field strength is in the range
∼109.7 − 1012.2 G [11]. However, the interior magnetic field
strength ismostly unconstrained since currents at the surface
could be shielding a much stronger or weaker field in the
interior. If shielding is not invoked, theoretical models of
magnetized neutron star equilibria result in a typical interior
magnetic field 2–5 times as large as its surface value
[31–33]. We thus set the initial maximum magnetic-field
strength to be 1013 G, which is approximately compatible
with the upper observational limit mentioned above and a
reasonable choice to mimic the realistic magnetic-field
strength of the BNSs. To explore the saturation of the
magnetic-field energy amplified by the KH instability, we
artificially increase the initial magnetic-field strength up to
1015 G in some of our simulations.
Note that, up to 1 ms before the onset of the merger, the

simulations are essentially the same as those in Ref. [20]
because the magnetic field does not affect the inspiral
dynamics. Table II summarizes the models with respect to
the initial magnetic-field strength. During the evolution, we
use a piece-wise polytrope prescription to model the H4
EOS [34] with a thermal part consisting of a gamma-law
EOS with the thermal index of 1.8.

TABLE I. Grid setup for all the run. l0maxðlmaxÞ: The number of
the refinement levels of the initial (final) grid configuration.
Δxðl0maxÞðΔxðlmaxÞÞ: The grid spacing of the finest refinement level
of the initial (final) grid configuration. N: The grid number in one
positive direction.

l0max lmax Δxðl0maxÞ [m] ΔxðlmaxÞ [m] N

7 7 70 70 514
7 8 70 35 514
7 9 70 17.5 514
7 7 110 110 322
7 8 110 55 322
7 9 110 27.5 322
7 7 150 150 242
7 8 150 75 242
7 9 150 37.5 242

FIG. 1 (color online). Schematic picture of the refinement
domains on the orbital plane for the initial grid configuration with
l¼ l0max (left) and for the final grid configuration with l¼ lmax−
2ð¼ l0maxÞ, lmax − 1, and lmax (right). Two ellipses in the vicinity of
the domain center represent the BNS just before the merger.
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III. DYNAMICS, MAGNETIC-FIELD
AMPLIFICATION, AND
RESOLUTION STUDY

In this section, we describe the dynamics, magnetic-
field amplification, and resolution study for the B13
run.

TABLE II. The initial maximum magnetic-field strength of the
BNS.

Model log10ðBmax½G�Þ
B13 13
B14 14
B15 15

FIG. 2 (color online). Profiles of the rest-mass density with velocity field (the 1st row), of the vorticity (the 2nd row), of the thermal
component of the specific internal energy (the 3rd row), and of the magnetic-field strength (the 4th row) on the orbital plane. The initial
magnetic-field strength is 1013 G and the resolution is ΔxðlmaxÞ ¼ 17.5 m. tmrg is the merger time (see the text for details).

EFFICIENT MAGNETIC-FIELD AMPLIFICATION DUE TO … PHYSICAL REVIEW D 92, 124034 (2015)

124034-3



A. Kelvin-Helmholtz vortex formation

Figure 2 plots the rest-mass density profiles with the
velocity field (the 1st row) and the vorticity profiles (the
2nd row) on the orbital plane for the ΔxðlmaxÞ ¼ 17.5 m run.
The vorticity is defined as the spatial components of the
following 2-form

ωμν ¼ ∇μðhuνÞ − ∇νðhuμÞ; ð3:1Þ

where h, uμ, and ∇μ are the specific enthalpy, the four
velocity, and the covariant derivative with respect to the
spacetime metric, respectively. We define the merger time
tmrg to be the time at which the gravitational-wave amplitude
becomes maximum.
Just before the merger, a shear layer appears at the contact

interface between the two stars as shown in Fig. 2(a1)
(see alsoFig. 5 and visualization [35]). This contact interface

FIG. 3 (color online). Same as Fig. 2, but for ΔxðlmaxÞ ¼ 37.5 m.
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is subject to the KH instability. At the merger, the KH
instability develops and subsequently vortices are formed in
the shear layer [Figs. 2(a2) and 2(b2)]. Figures 2(c1)–2(c4)
plot the thermal component of the specific internal energy
ϵth. A hot region appears in the shear layer. This is due to the
numerical dissipation of the vortices at the finest resolution
size [see also Figs. 3 and 4(c1)–4(c4) and discussion in
Sec. III C]. The shock wave generated by the collision of the

two stars also dissipates the vortices. Note that the KH
vortices are not completely dissipated and they cascade into
smaller-scale turbulence-like motion.
Subsequently, a hypermassive neutron star (HMNS) is

formed. In its early phase, two dense cores are transiently
formed and they collide several times [Fig. 2(a3)]. Because
of their mutual interaction, the shear layer continuously
appears between the two cores and additional KH vortices

FIG. 4 (color online). Same as Fig. 2, but for ΔxðlmaxÞ ¼ 150 m.
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are successively generated [Fig. 2(b3)]. The two cores
eventually merge to a single core and the shear layer
disappears due to the shock heating driven by stellar
oscillations, leaving behind a highly turbulence-like flow,
which decays in a dissipative timescale [Figs. 2(a4), 2(b4),
and 2(c4)].
We can interpret these results in the light of the KH linear

stability analysis [36]. The growth rate of the KH instability
is proportional to the wave number of the unstable mode.
For a shear flow with thickness D, there is a cut-off wave
number, kcutoff ∼ 2π=D above which modes do not grow
[36]. In practice, this means that the fastest growing KH
mode has a wave number, kKH close to the cutoff and its
growth rate is σKH ∼ vflowkKH. The right panel of Fig. 5
plots the profile of the x component of the velocity along the
y axis with x ¼ 0 km at t − tmrg ¼ −0.90 ms. This figure
clearly shows that D decreases with increasing the grid
resolution. Therefore, kcutoff increases as a function of
1=ΔxðlmaxÞ. We found that for ΔxðlmaxÞ ¼ 17.5 m run D ≈
130 m and vflow ≈ 0.1c. With these values, the growth time
scale is σ−1KH ≈ 6 × 10−3 ms which is much shorter than the
dynamical time scale of ∼0.1 ms. In reality, the scale of
the shear layer should depend on other factors such as the
pressure scale height at the surface of the NS and the tidal
deformation. Therefore, it is not trivial thatD goes to zero in
the continuum limit. Nonetheless, the shear layer should be
sufficiently thin and consequently the growth rate of
the KH instability should be so large that the small-scale
turbulence-like motion develops within the dynamical
timescale.

B. Magnetic-field amplification

Due to the KH instability, turbulence-like motion is
generated and this indicates that a part of the bulk kinetic
energy is converted into the energy of turbulence-like
motion [see also Figs. 2(b1)–2(b4)]. In the presence of

magnetic fields, a part of this energy is transferred to the
magnetic-field energy, which results in an efficient ampli-
fication of the magnetic field. Figures 2(d1)–2(d4) show
the magnetic-field strength profiles on the orbital plane.
A strong magnetic field of ∼1014 G is rapidly generated at
the contact interface [Fig. 2(d2)] and it is amplified in the
shear layer between the two cores [Fig. 2(d3)]. At the end
of the simulation, a strongly magnetized core is formed
[Fig. 2(d4)], with rms field values of ∼1015.5 G and peak
values of ∼1017 G.
During this kinematic phase, the magnetic field is still

weak and does not influence the dynamics; the magnetic
field is being stretched by the overturning turbulence-like
motion, which results in an exponential growth. This
kinematic phase should end up with any of the following
mechanisms. First, once the amplitude of the magnetic field
reaches an equipartition level, the magnetic field starts
playing a dynamical effect. Second, the turbulence-like
motion decays within the diffusion time scale which is
limited by the numerical resolution used. Third, it is the
ability of the global flow to regenerate the shear flow and
produce additional large-scale eddies, as described in the
previous section. These limitations are discussed in sub-
sequent sections.

C. Resolution study

Figures 3 and 4 plot the profiles of the rest-mass density,
the vorticity, the thermal component of the specific internal
energy, and the magnetic-field strength on the orbital plane
for ΔxðlmaxÞ ¼ 37.5 and 150 m runs, respectively. For
ΔxðlmaxÞ ¼ 37.5 m run, the qualitative features agree with
those discussed in the previous subsections, but the for-
mation of vortices and the magnetic-field amplification are
likely to be less prominent than those for ΔxðlmaxÞ ¼ 17.5 m
run. [compare Figs. 2(b2)–2(b4) and 2(d2)–2(d4) with
Figs. 3(b2)–3(b4) and 2(d2)–2(d4)]. The difference is

t - tmrg = -0.90 ms Log10[ ρ (g / cm3) ]
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FIG. 5 (color online). (Left) Profile of the rest-mass density with velocity field on the orbital plane just before the onset of the merger
and (right) profile of vx in the left panel along the y axis with x ¼ 0 km for ΔxðlmaxÞ ¼ 37.5, 75, and 150 m runs.
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clearer in Fig. 4 with ΔxðlmaxÞ ¼ 150 m. The scale of the
vortices is smaller and the magnetic-field is amplified more
efficiently in the higher-resolution run. This feature is con-
sistent with the linear perturbation analysis of the KH
instability; the growth rate of the fastest growing mode is
inverselyproportional to theminimumgrid spacingandhence
high-resolutions exhibit faster development of vortices.
The peak value of ϵth in the shear layer decreases

with increasing the resolution [see Figs. 2(c2)–2(c3),
3(c2)–3(c3), and 4(c2)–4(c3)]. As discussed below, the
cascade of the turbulence-like motion converts the kinetic
energy to the thermal energy at the dissipation scale
determined by the grid resolution. This finding is consistent
with such a dissipation mechanism.
We calculate the power spectrum of the turbulence-like

motion as

PMðt; kÞ ¼
1

2V

Z
V
δ~vρðt;kÞ · δ~v�ρðt;kÞdΩk; ð3:2Þ

where

δ~vρðt;kÞ ¼
Z
V
e−ik·r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρðt;xÞ

p
δvðt;xÞd3r: ð3:3Þ

The bold symbol denotes a spatial three vector. k is a wave
number vector and k ¼ jkj. dΩk is a phase-space volume
element in a spherical shell between k and kþ dk, and V is
a cuboid region of x, y½km�∈½−4.5;4;5�, z½km� ∈ ½0.0; 4.5�.
We choose r to be a position vector from the coordinate
center. The velocity fluctuation δvðt;xÞ is vðt;xÞ − hviðxÞ
where h·i denotes the time average for the duration
0.0ms≤t−tmrg≤2.0ms. We evaluate δv at t−tmrg¼2.0ms.
With this,

R
PMðt; kÞdk corresponds to the kinetic energy

density of the turbulence-like flow. Figure 6 plots the power
spectrum of ΔxðlmaxÞ ¼ 37.5, 75, and 150 m runs, respec-
tively. The amplitude at large scale in the lower-resolution
run is higher than that in the higher-resolution run and the
spectrum extends to a higher wavenumber in the higher-
resolution run. This indicates that the energy of large-scale
turbulence-like motion cascades to that of small-scale
motion. The figure also indicates that there is a kinetic
energy sink at the end of the turbulence cascade due to the
numerical dissipation. The power excess at the highest k
is the so-called bottleneck effect [37] and is observed
always in 3D simulations of turbulence (see, e.g., [38–40]).
Because energy budget of the KH instability should be the
bulk kinetic energy, all the findings show that a part of the
bulk kinetic energy is converted into the kinetic energy of
the turbulence-like motion and subsequently thermalized at
the dissipation scale.
Figure 7 plots the power spectrum of the magnetic-field

energy:

PBðt; kÞ ¼
1

8πV

Z
V

~bðt;kÞ ~b�ðt;kÞdΩk; ð3:4Þ
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FIG. 6 (color online). Kinetic energy spectrum of the matter
flow for ΔxðlmaxÞ ¼ 37.5, 75, and 150 m. The spectrum is
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where

~bðt;kÞ ¼
Z
V
e−ik·rbðt;xÞd3r: ð3:5Þ

b ¼ ffiffiffiffiffiffiffiffiffiffi
bμbμ

p
and bμ is a magnetic field measured in a fluid

rest frame. We evaluate b for ΔxðlmaxÞ ¼ 17.5, 27.5, 37.5,
75, and 150 m at t − tmrg ¼ 2.0 ms as shown in the left
panel of Fig. 7, respectively. As expected, the amplitude is
higher in the higher-resolution run. This indicates that the
kinetic energy of the turbulence-like motion is converted to
the magnetic-field energy more efficiently in the higher-
resolution runs.
The right panel is for ΔxðlmaxÞ ¼ 17.5 m run at

t − tmrg ¼ 1.0, 2.0 and 4.4 ms, respectively. The spectrum
is relatively flat in the inertial range of the turbulent cascade
and its amplitude increases with time. These features
resemble the behavior of the spectrum in local simulations
of a large-scale dynamos during the kinematic amplifica-
tion phase (see, e.g., Fig. 2 in Ref. [41]).
In local simulations, the kinematic phase ends when the

magnetic-field strength reaches an equipartition level and a
slow saturation phase occurs in which large-scale field is
generated (see discussion in Ref. [42]). Checking whether a
large-scale dynamo is active in our simulations would
require longer simulations of the saturated state. However,
it is unclear if this will be indeed the case; the shear layer is
pumping kinetic energy at sub km-size scales in the first
few ms after the merger, feeding the turbulent cascade and
making it viable dynamo action; however this initial phase
eventually ends as the two cores merge and turbulence-like
motion will decay in diffusive time scales, in which the
dynamo may not be active anymore. We do not see any sign
of a 3=2 Kazantzev spectrum during the kinematic phase,
typical of small-scale dynamos, as predicted by Ref. [22].
The fact that the magnetic field power is growing at all

scales indicates that the kinetic energy of the turbulence-like

motion is converted into the magnetic-field energy.
We estimate the kinetic energy density and the magnetic-
field energy density for the highest-resolution run at
t − tmrg ¼ 4.4 ms

ϵK ¼
Z

PMðt; kÞdk ≈ 2.3 × 1033 erg cm−3; ð3:6Þ

ϵB ¼
Z

PBðt; kÞdk ≈ 6.0 × 1030 erg cm−3: ð3:7Þ

These values correspond approximately to an averaged
fluctuation velocity of δv ≈ 0.05c with typical density field
of 1015 g=cm3, and averaged magnetic-field strength of
B̄ ≈ 1016 G. Even with the highest-resolution run, the
equipartition is not achieved and this indicates that there
is a room for further magnetic-field amplification.

IV. SATURATION OF THE MAGNETIC FIELD

Figure 8 plots the time evolution of the magnetic-field
energy. The initial magnetic-field strength is 1013 G for all
the runs. The magnetic-field energy steeply increases for
t − tmrg ≳ 0 ms and the amplification is more prominent in
the higher-resolution runs. In the highest-resolution runwith
ΔxðlmaxÞ ¼ 17.5 m, the energy is amplified by a factor of
≈106 at t − tmrg ≈ 4 ms and this implies that the averaged
magnetic-field strength increases up to ∼1016 G. The right
hand-side panel of Fig. 8 plots the dependence of the
growth rate of the magnetic-field energy on the finest grid
resolution ΔxðlmaxÞ. We fit the magnetic-field energy for
0 ms≲ t − tmrg ≲ 1 ms by an exponentially growing func-
tion ∝ expðσtÞ. The figure shows a divergent feature of the
growth rate with respect to 1=ΔxðlmaxÞ. Even with ΔxðlmaxÞ ¼
17.5 m run, the saturation is not likely to be achieved. This
behavior can be understood in terms of the property of the
KH instability. As discussed in the previous subsection, the

1042

1043

1044

1045

1046

1047

1048

1049

-1  0  1  2  3  4

 E
B

 [
er

g]

t - tmrg [ms]

70 → 17.5m
70 → 35m

70m
110 → 27.5m

110 → 55m
110m

150 → 37.5m
150 → 75m

150m

 0

 1

 2

 3

 4

 5

 6

 0  20  40  60  80  100  120  140  160

σ 
[/

m
s]

Δ x(lmax) [m]

∝ 1/Δx

FIG. 8 (color online). Left: Magnetic-field energy as a function of the time for the B13 run. Right: The growth rate of the magnetic-
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cutoff wave number kcutoff of the KH instability increases
with increasing the grid resolution. Therefore, the dispersion
relation of the KH instability should be described as
that of the shear layer with the infinitesimal thick-
ness; σ ∝ k ∝ 1=ΔxðlmaxÞ.
To explore the saturation energy of the magnetic field at

the end of the kinematic amplification phase, we also
perform simulations for an initial maximum magnetic-field
strength varied from 1013 G to 1015 G. In Fig. 9, we plot
EB as a function of time. We overplot the results of the B13
run magnified by 102 and 104. Comparing the curve for the
B14 run with ΔxðlmaxÞ ¼ 17.5 m to the magnified curve of
the B13 run with the same resolution, we find a good
overlap up to t − tmrg ≈ 2 ms. This suggests that back-
reaction due to the amplified magnetic field is negligible.
On the other hand for t − tmrg ≳ 2 ms, two curves do not
overlap. This indicates that the backreaction probably due

to magnetic braking turns on. At t − tmrg ≈ 5 ms, the
energy increases up to ≈1050 erg for the B14 run. For
the B15 run with ΔxðlmaxÞ ¼ 17.5 m, the backreaction is
turned on at t − tmrg ≈ 1 ms and subsequently the energy
reaches ≈4 × 1050 erg at t − tmrg ≈ 3 ms. The energy does
not increase significantly after that. To assess the numerical
effect on the saturation energy, we repeat the simulation
withΔxðlmaxÞ ¼ 37.5 m for the B15 run. Figure 9 shows that
the energy is amplified only up to ≈5 × 1049 erg at
t − tmrg ≈ 5 ms. Therefore, the saturation energy of the
magnetic-field is likely to be ≳4 × 1050 erg and the aver-
aged magnetic-field strength could be ≳1016 G.
Figure 10 plots a spacetime diagram of the averaged

angular velocity on the orbital plane

Ω̄ðt; RÞ ¼ 1

2π

Z
2π

0

Ωðt; R; z ¼ 0;φÞdφ; ð4:1Þ

where we employ cylindrical coordinates and Ω is an
azimuthal component of the three velocity (vφ). Because
of the nonaxisymetric structure of the HMNS, the angular
momentum is transported outward. Figure 10 shows
that the fluid elements moves gradually in the radial
direction. The magnetic braking should be active in the
Alfvén time scale

tA ¼ RHMNS

vA
≈ 2 × 10−2 s

�
ρ

1015 g=cm3

�−1=2

×

�
RHMNS

20 km

��
B

1016 G

�−1
; ð4:2Þ

where RHMNS and vA are the HMNS radius and the Alfvén
velocity, respectively. Although clear difference does not
appear between the B13 and B15 runs in Fig. 10, we find
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FIG. 9 (color online). Time evolution of the magnetic-field
energy for the B13, B14, and B15 runs. The cyan- and magenta-
dashed curves show the evolution of the B13 run magnified by
102 and 104, respectively.
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FIG. 10 (color online). Spacetime diagram of the angular velocity for the B13 run with ΔxðlmaxÞ ¼ 17.5 m (left) and the B15 run with
ΔxðlmaxÞ ¼ 17.5 m (right). The horizontal axis is the radial coordinate and the angular velocity on the orbital plane is averaged in the
azimuthal direction.
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that the magnetic braking works efficiently in the late phase
of the HMNS evolution.

V. SUMMARY

We have performed high-resolution GRMHD simula-
tions of the BNS mergers. Focusing on the shear layer
emerging at the merger, the simulations were performed by
assigning a finer grid resolution than the resolution in the
previous simulations. With this resolution, we have
revealed that the small-scale turbulence-like motion is
developed due to the KH instability and the magnetic field
is amplified efficiently. Starting from initial maximum
magnetic-field strength of 1013 G, we have found that
the magnetic-field energy is amplified at least by a factor of
≈106 at ≈4 ms after the onset of the merger. Saturation
energy of the magnetic-field is likely to be ≳4 × 1050 erg,
which is ≳0.1% of the bulk kinetic energy. We should
explore whether the physical saturation of the magnetic-
field energy occurs below the equipartition value as a
future work.
Our result shows that the efficient magnetic-field

amplification during the BNS merger is realized in reality
as pointed out in Refs. [12,13]. This implies that it is
always necessary to take into account the effects of high
magnetic fields for modeling the post merger evolution
of BNS.
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APPENDIX: LANDAU QUANTIZATION EFFECT

Because the magnetic-field strength exceeds the QED
limit of 4.414 × 1013 G, the so-called Landau quantization

would become important. The threshold density is char-
acterized by the critical density

ρB ¼ 7.04 × 1010
�
Ye

0.1

�−1� B
1016 G

�
3=2

g=cm3; ðA1Þ

where Ye is the electron fraction per baryon [43]. Below
ρB, the ground Landau level is populated and the Landau
quantization effect becomes important. On the other
hand, for ρB ≪ ρ, many Landau levels are populated
and the magnetic field is not quantized. As shown in
Fig. 2, the strong magnetic field exceeding the QED limit
appears only in the high-density region. Therefore, the
Landau quantization effect is irrelevant for the dynamics
in the HMNS phase. Note that the range in which ρ < ρB
and B2=8π < ρc2 are simultaneously satisfied is relatively
narrow when the magnetic field is strong.
In this BNS model, the HMNS will collapse to a black

hole (BH) at t − tmrg ≈ 10 ms [20]. A massive accretion
torus is formed after the BH formation. The density of the
accretion torus is in the range of 1010−11 g=cm3. Because of
the efficient amplification of the magnetic field in the
HMNS phase, the accretion torus would be strongly
magnetized at its birth and the typical magnetic-field
strength would be 1015 G at about 25 ms after the BH
formation [20]. The Landau quantization might play an
important role in the accretion torus phase because the
density becomes the same order of ρB. With the energy
difference between two Landau levels ΔELandau, the mag-
netic temperature is defined by

TB ≡ ΔELandau

kB
¼

0
@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2B
BQED

s
− 1

1
Amec2

kB
; ðA2Þ

where kB, BQED, and me are the Boltzmann constant,
the QED limit of the magnetic-field strength, and the
electron rest mass, respectively [43]. The second equality
holds for the density below ρB. If the temperature
exceeds the magnetic temperature, the Landau quantiza-
tion effect is diminished. With B ¼ 1015 G, TB ≈ 3−
4 MeVðB=1015 GÞ1=2. Because the typical temperature
inside the accretion torus is ∼10 MeV [44], the Landau
quantization effect is irrelevant for the early accretion
torus phase. However, in the neutrino cooling time scale,
the temperature will decrease and this effect would
become important.
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