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We present a new method for extracting the instantaneous orbital axis only from gravitational wave
strains of precessing binary systems observed from a particular observer direction. This method enables us
to reconstruct the coprecessing frame waveforms only from observed strains for the ideal case with the high
signal-to-noise ratio. Specifically, we do not presuppose any theoretical model of the precession dynamics
and coprecessing waveforms in our method. We test and measure the accuracy of our method using the
numerical relativity simulation data of precessing binary black holes taken from the SXS Catalog. We show
that the direction of the orbital axis is extracted within ≈0.07 rad error from gravitational waves emitted
during the inspiral phase. The coprecessing waveforms are also reconstructed with high accuracy; the
mismatch (assuming white noise) between them and the original coprecessing waveforms is typically a few
times 10−3 including the merger-ringdown phase, and can be improved by an order of magnitude focusing
only on the inspiral waveform. In this method, the coprecessing frame waveforms are not only the purely
technical tools for understanding the complex nature of precessing waveforms but also direct observables.
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I. INTRODUCTION

The three detections (and one candidate) of gravitational
waves from binary black hole mergers achieved by
Advanced LIGO [1–4] have marked the beginning of the
era of gravitational-wave astronomy. In particular, the first
detection was achieved with significantly large signal-to-
noise ratio. The information provided by the gravitational-
wave observation surely enhances our knowledge about the
universe, and in particular, the black holes. A number of
merger events will be detected by Advanced LIGO and the
following running of the other ground-based detectors,
such as VIRGO [5], and KAGRA [6]. In addition, third-
generation ground-base detectors, for which the sensitivity
is by an order of magnitude higher than the current
detectors, are proposed [7]. Furthermore, space-based
detectors, such as LISA [8] and DECIGO [9], will be
powerful observatories to detect massive binary black holes
with significantly high signal-to-noise ratios.
If either of the directions of two black-hole spins is not

aligned with the orbital axis, the orbital precession occurs
in the inspiral phase of the binary coalescence [10,11].
Such orbital precession strongly affects the gravitational

waveforms by modulating both amplitude and phase. The
complex nature of the waveforms from a precessing binary
contains richer information about the binary parameters
than without the orbital precession [12–15]. However, the
complexity also makes it difficult to understand the
dependence of waveforms on the parameters.
Many efforts have been made to model precessing

waveforms, and many frameworks have been developed
to simplify those complex features [16–26]. Most remark-
ably, in Refs. [16,22–25], it is shown that the inspiral
waveforms from a precessing binary can be dramatically
simplified in the so-called “coprecessing frame,” which
follows the instantaneous orbital plane of the binary. The
precessing waveforms in such a frame become just as if
they are from a nonprecessing binary. Also, the approxi-
mate mapping between the precessing waveforms and
nonprecessing waveforms has been proposed [25].
Working in the coprecessing frame enables us to under-
stand and to model the waveforms from precessing binaries
much more easily than working in the inertial frame. We
note that, even for the case that the binary is not precessing,
the modulation arises for an observer due to the mode
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coupling if the line of sight is misaligned with the
orbital axis.
However, to extract the instantaneous orbital axis and to

obtain the coprecessing frame waveforms, we need knowl-
edge of gravitational waveforms observed from all the
directions, or at least, l ¼ 2 components of the spherical
harmonics in the inertial frame. On the other hand, we can
only obtain the strain from a particular observer direction in
real observations. Therefore, it is difficult to apply the
framework of coprecessing frame directly for the observa-
tion, and hence, the coprecessing waveforms have only
been treated as the intermediates for modeling the wave-
forms in the inertial frame.
In this paper, we present a new method for extracting the

instantaneous orbital axis and for reconstructing the copre-
cessing frame waveforms only from gravitational wave
strains observed from a particular observer direction. To
introduce our method and to show that the systematic error
associated with our method is acceptably small, as a first
step, we assume the case that the detector noise is negligible
to analyze the waveforms directly. We test and measure the
accuracy of our method using the numerical relativity
simulation data of the precessing binary black holes taken
from SXS Catalog [27–30]. Our analysis does not presup-
pose any theoretical model of the precession dynamics and
coprecessing waveforms, and thus, the method can also be
used for the case that the time evolution does not obey the
prediction of general relativity. Our method is composed of
two basic ideas: One is the transformation, whichwe call the
mode decomposition, that decomposes the wave strain into
Fourier(-like) components in terms of the harmonic modes
in the coprecessing frame rather than the frequency. The
other is the procedure to extract the “orbital phase” of
the binary for use in the mode decomposition only from the
precessing wave strain.
Before moving to the explanation of our method, we

summarize conventions and basic assumption which we
employ in this paper. Throughout this paper, we employ the
geometrical units c ¼ G ¼ 1, where c andG are the speed of
light and the gravitational constant, respectively. We refer to
the total mass of the system at the infinite separation as M.
Among several definitions for the coprecessing frame
[16,23–25], in this paper, we employ the so-called quadru-
pole-preferred frame [referred to as the quadrupole-aligned
(QA) frame or the QA method in the following] introduced
in Refs. [24,25]. We refer to z-axis obtained by the quadru-
pole-preferred frame as the direction of the orbital angular
momentum or the instantaneous orbital axis, L̂ (jL̂j ¼ 1),
just for simplicity.We note that L̂ does not always agreewith
and rather slightly deviates from the Newtonian orbital
angular momentum, L̂N, defined in Refs. [11,16] due to the
higher order post-Newtonian corrections.
To describe the precession of the binary, we introduce a

coordinate system as follows. First, we describe the
direction of the source in the sky by two polar angles, θ

and ϕ, and define a unit vector, N̂, as the direction from the
source to the observer. Next, we introduce two bases in the
plane perpendicular to N̂, θ̂, and ϕ̂, which are the unit
vectors in the directions of ð∂=∂θÞi and ð∂=∂ϕÞi, respec-
tively. Then, we introduce a Cartesian coordinate system,
ðx; y; zÞ, in the source frame in such a way that x, y, and z
directions agree with ϕ̂, θ̂, and N̂, respectively (see Fig. 1).
We describe the direction of the orbital angular momentum,
L̂ðtÞ, by introducing two polar angles, θLðtÞ and φLðtÞ, in
the source frame defined by

θLðtÞ ¼ cos−1 ½L̂zðtÞ�; ð1Þ
φLðtÞ ¼ Arg½L̂xðtÞ þ iL̂xðtÞ� −

π

2
; ð2Þ

where L̂iði ¼ x; y; zÞ is a component of L̂ in the source
frame. We note that we shift φL by −π=2 so that L̂ lies in
yz-plane for the case φL ¼ 0.
We denote a complex waveform strain by h ¼ hþ − ih×,

where hþ and h× are the plus and cross modes of
gravitational-wave polarization defined by

hþ ¼ 1

2
ðhTT

θ̂ θ̂
− hTT

ϕ̂ ϕ̂
Þ; ð3Þ

h× ¼ −hTT
θ̂ ϕ̂
: ð4Þ

Here, hTTij is a transverse-traceless component of the metric
perturbation. We note that the sign of h× is opposite from
the usual definition due to our different choice of the
coordinate system.
In this paper, we focus only on the case that the complex

waveform strain, h, is known and do not consider the effect
of the noise to demonstrate the usefulness of our method.
Using ground-based detectors, multiple detectors are
needed to determine h. The sky localization of the event
is also important to determine h accurately. The follow-up

source
observer

FIG. 1. The definitions of the angles in the source frame. The
unit vector, N̂, denotes the direction from the source to the
observer. θ̂ and ϕ̂ denote unit vectors in the directions of ð∂=∂θÞi
and ð∂=∂ϕÞi, respectively, where those two angles describe the
sky position of the source.
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observations of electromagnetic counterparts will help for
determining the sky location of the events including
neutron stars [31]. In the observations of binary black
holes by space-based detectors such as LISA and DECIGO,
our method will be useful because they could determine the
sky position accurately [32,33]. We leave the study on how
the errors in the observation influence the accuracy of
extracting the orbital axis in our method for future study.
We also note that, in this paper, our method is only tested
for the data of precessing binary black holes for which the
precessing time scale is always much longer than their
orbital period except just before the mergers.

II. METHOD

A. Mode decomposition

The waveforms from a precessing binary observed in the
inertial frame can be described by using coprecessing frame
waveforms as [24,25],

hðtÞ ¼
X∞
l¼2

Xl

m¼−l
e−2iφLðtÞ

−2Y
l
m½−θLðtÞ;−ψLðtÞ�hQAlm ðtÞ; ð5Þ

where −2Y
l
m is the spin-weighted spherical harmonics,

hQAlm ðtÞ is the ðl; mÞ mode in the coprecessing frame, and
ψLðtÞ is the angle defined by

ψLðtÞ ¼ −
Z

t

0

_φLðt0Þ cos θLðt0Þdt0; ð6Þ

which comes from the minimal rotation condition of
coprecessing frame [22]. The initial value of ψL can be
chosen arbitrarily, and we set it to be zero in this work.
Here, we assume that the time scales of the orbital
precession and the gravitational-radiation reaction are
much longer than the orbital period. Then, as the wave-
forms in the coprecessing frame have similar features to
nonprecessing waveforms, we can approximately decom-
pose hQAlm into slowly evolving amplitude part, AQA

lm ðtÞ and
rapidly evolving phase part, e−imΦQAðtÞ. This has been
verified with the post-Newtonian waveforms in
Ref. [34]. Here, ΦQAðtÞ is the orbital phase of the binary
defined by the half of the phase of ðl; mÞ ¼ ð2; 2Þ mode in
the coprecessing frame. We note that ΦQAðtÞ is slightly
different from the orbital phase in the standard post-
Newtonian framework which is defined with respect to
the relative coordinate separation of the binary (see
Ref. [34]). Then, we can rewrite Eq. (5) as

hðtÞ ≈
X∞
l¼2

Xl

m¼−l
e−2iφLðtÞ

−2Y
l
m½−θLðtÞ; 0�AQA

lm ðtÞ

× e−im½ΦQAðtÞþψLðtÞ�: ð7Þ
Equation (7) shows that the waveforms in the inertial
frame can be described by the superposition of the

wave components for which the phase is −mΦðtÞ ¼
−m½ΦQAðtÞ þ ψLðtÞ�, with relatively slowly evolving
part of e−2iφLðtÞ

−2Y
l
m½−θLðtÞ; 0�AQA

lm ðtÞ. In particular, the
dominant modes of gravitational waves are contained in the
wave components with ðl; mÞ ¼ ð2;�2Þ.
If ΦðtÞ is known a priori, we can decompose each wave

component in Eq. (7) by performing a transformation as

~hðmÞ ¼
Z

∞

−∞
hðtÞe−imΦðtÞ _ΦðtÞdt: ð8Þ

This transformation, which we refer to as the mode
decomposition in the following, is the Fourier transforma-
tion of h not with respect to time but with respect to the
phase Φ. We can easily reconstruct the time-domain
waveforms from the mode spectrum, ~hðmÞ, by the inverse
transformation,

hðtÞ ¼ 1

2π

Z
∞

−∞
~hðmÞeimΦðtÞdm: ð9Þ

We note that there is practically a degree of freedom in
the choice of the phase variable for the mode decompo-
sition. For example, if we consider αðtÞ as a function which
evolves much slower than ΦðtÞ, and employ Φþ α as a
phase variable for the mode decomposition, Eq. (8) leads to

~hðmÞ ¼
Z

∞

−∞
hðtÞe−im½ΦðtÞþαðtÞ�½ _ΦðtÞ þ _αðtÞ�dt

≈
Z

∞

−∞
hðΦÞe−im½ΦþαðΦÞ�dΦ

≈ e−imα0

Z
∞

−∞
hðΦÞe−imð1þα0

0
ÞΦdΦ

¼ e−imα0 ~h½mð1þ α00Þ�: ð10Þ
Here, α0 and α00 denote the value of α and dα=dΦð≪1Þ at
Φ ¼ 0, respectively. For the transformation from the
second line to the third line, we expand the α up to the
linear order ofΦ and neglect the higher order terms because
the time evolution of α is much smaller than that of Φ.
Equation (10) shows that the mode spectrum is shifted only
slightly, and its amplitude does not change by the change of
the phase variable. Therefore, adding a slowly evolving
function, for example φL, to the phase variable has only a
minor effect on the mode decomposition and, in particular,
on the extraction of the dominant modes, of which
procedure is introduced in Sec. II C.
As an illustration, we perform the mode decomposition

of precessing waveforms using the waveforms derived in
numerical relativity simulations. As an example, we
employ SXS:BBH:0058 in Refs. [27–29], which is a
waveform of a binary black hole for the case that the
mass ratio is 5, only the larger mass black hole has a
dimensionless spin with 0.5, and the black-hole spin
initially lies in the orbital plane. In this model, the orbital
angular momentum is misaligned with the initial total
angular momentum by ≈0.5 rad, and ≈1 cycle of the
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precession occurs before the merger. We note that this
precession range is similar to the one of the model
employed in Ref. [35], where the complexity of the
precessing waveforms is discussed. We generate the com-
plex waveform strain observed from a specific direction
by employing all the components of spherical harmonics
up to l ¼ 8 in the inertial frame. In this section, we
specifically choose the direction of the observation that
satisfies θL ¼ π=2 and φL ¼ 0 at the initial time of the
simulation. The results for different directions are shown in
Sec. III. We use ΦQAðtÞ as the phase variable for perform-
ing the mode decomposition in Eq. (8).
Figure 2 plots the resulting mode spectrum (see the plot

referred to asΦQA). This shows that the mode spectrum has
peaks at integer values of m, and each peak is clearly
separated. This suggests that we can approximately extract
m-mode wave components of h by performing the mode
decomposition Eq. (8). Then, applying an appropriate filter
or window function to the mode spectrum ~hðmÞ, it is
possible to approximately reconstruct the time-domain
waveforms by Eq. (9) (see Sec. II C).

B. Extracting the orbital phase

To practically perform the mode decomposition of the
observed waveforms themselves, we need to extract the
orbital phase of the binary from the observational data. If
the binary is not precessing and the observer is located
along the orbital axis, the orbital phase of the binary in the
inspiral orbits can be extracted from the waveforms by

Φ0ðtÞ ¼ 1

2

Z
t

0

jIm½h�ðt0Þ _hðt0Þ�j
jhðt0Þj2 dt0; ð11Þ

where h� denotes the complex conjugate of h. However, if
the binary is precessing, we cannot obtain the orbital phase
directly from Eq. (11). In Fig. 3, we plot the time derivative
ofΦ0ðtÞ calculated by Eq. (11) as well as that ofΦQA for the
same waveforms as those used in Fig. 2. We find that _Φ0ðtÞ
is strongly oscillating due to the mixing of wave compo-
nents with different frequencies, while _ΦQAðtÞ evolves
monotonically. Therefore, we cannot use Φ0ðtÞ directly for
the mode decomposition.
Instead of employing Φ0ðtÞ, we have to extract the

nonoscillatory part of Φ0ðtÞ for the mode decomposition.
While Φ0ðtÞ oscillates strongly, it still behaves in a similar
manner to ΦQAðtÞ if we take the time average. Therefore,
we expect that we can approximately extract the “orbital
phase” which can be used for the mode decomposition if
we remove the oscillation from Φ0ðtÞ. In this work, we
extract the nonoscillatory part by fitting Φ0ðtÞ with a
nonoscillating function defined by

ΦfitðtÞ ¼
�Φins

fit ðtÞ t ≤ t0;

b0 þ c1ðt − t0Þ þ b1½e−ðt−t0Þ=c22 − 1� t ≥ t0;

ð12Þ

where Φins
fit ðtÞ is the inspiral part defined by

Φins
fit ðtÞ ¼ aþ a1ðt1 − tÞ5=8 þ a2ðt1 − tÞ3=8

þ a3ðt1 − tÞ1=4 þ a4ðt1 − tÞ1=8 þ að1Þ5 ln ðt1 − tÞ
þ ½að0Þ6 þ að1Þ6 ln ðt1 − tÞ�ðt1 − tÞ−1=8
þ a7ðt1 − tÞ−1=4: ð13Þ

Here, the functional form of Eq. (13) is motivated by
Taylor-T3 approximant [36,37]. For this prescription, t0 is
taken to be the time of global maximum of jhðtÞj
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FIG. 2. The mode spectra of the gravitational waveforms from a
precessing binary (SXS:BBH:0058). We used the waveforms
observed from the direction in which θL ¼ π=2 and φL ¼ 0 are
satisfied at the initial time of the simulation. The curves “ΦQA”
and “Φfit” show the mode spectra using ΦQA and Φfit as the
orbital phase in Eq. (8), respectively. The curve “extracted
ðjmj ¼ 2Þ” shows the mode spectra to which a window function
Eq. (16) is applied.
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FIG. 3. The comparison of orbital frequencies obtained by
several methods. The curves “dΦ0=dt,” “dΦQA=dt,” and
“dΦfit=dt” show orbital frequencies obtained by the time deriva-
tive of Φ0, ΦQA, and Φfit, respectively.
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(t0 ¼ 7857M for this case), and b0 and b1 are chosen
so that ΦfitðtÞ and _ΦfitðtÞ are continuous at t ¼ t0. We
determine anðn ¼ 1;…; 7Þ, c1, c2 and t1 > t0 by the least-
square fitting method using Φ0ðtÞ. We only use the data
from t ¼ 1000M (t ¼ 0 is the time at which the simulation
starts) to the time that jhðtÞj becomes smaller than 5% of its
peak value for the first time. This time window is chosen to
avoid the unphysical modulation in the beginning of the
simulation and the unimportant part of the waveforms after
the onset of merger.
In Fig. 3, we plot _ΦfitðtÞ. We find that _Φfit agrees with

_ΦQAðtÞ within 2% up to the merger. We also plot the mode
spectrum of the waveform obtained using ΦfitðtÞ in Eq. (8)
in Fig. 2. Although there is slight deviation from the ones
obtained usingΦQAðtÞ, we find that the mode spectrum has
peaks in integer values of m and each peak is clearly
separated. This suggests that ΦfitðtÞ can be a good sub-
stitute for ΦQAðtÞ to perform the mode decomposition.
We note that _ΦfitðtÞ does not strictly agree with neither
_ΦðtÞ nor _ΦQAðtÞ, but rather agrees well with _ΦðtÞ þ
_φLðtÞsign½cos θLðtÞ�. We can also prove this analytically
by assuming that ðl; mÞ ¼ ð2;�2Þ modes in the coprecess-
ing frame are the dominant modes. Because j _φLj is much
smaller than j _ΦðtÞj, the deviation of ΦfitðtÞ from ΦðtÞ only
weakly affect the accuracy of the mode decomposition at
least for extracting the dominant modes in the inspiral
orbits.

C. Extracting the wave components

We introduce here a window function to extract specific
wave components in the mode spectra. We define a one-
sided amplitude of the mode spectra by

AðmÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~hðmÞj2 þ j ~hð−mÞj2

q
: ð14Þ

AðmÞ has the largest peak in jmj ≈ 2, and small side peaks
in integer values of m. As we mentioned above, the
information of the dominant modes of gravitational waves
is contained primarily in the modes of jmj ¼ 2. To single
out only the information around jmj ≈ 2, we performed the
extraction in following three steps. First, we fit AðmÞ
around jmj ≈ 2 by a Lorentzian function,

Lðm;A0; mp; m1=2Þ ¼
A0

1þ ðm −mpÞ2=m2
1=2

; ð15Þ

where A0 is the peak amplitude, mp and m1=2 are the
location of the peak and the half-width at half maximum,
respectively. We perform the least-square fitting to deter-
mine these fitting parameters. We note that mp is also a
fitting parameter, while its initial guess is set to be 2. We
find that the value after the fitting deviates from the initial
value only by ≈0.02.

Next, we introduce a window function wðmÞ defined by

wðmÞ

¼

8>>><
>>>:

1 jm −mpj < Δm1;

HðmÞ þ ½1 −HðmÞ� LðmÞ
AðmÞ Δm1 ≤ jm −mpj < Δm2;

LðmÞ
AðmÞ Δm2 ≤ jm −mpj;

ð16Þ

where

HðmÞ ¼ 1

2

�
1þ cos

�
π
jm −mpj − Δm1

Δm2 − Δm1

��
: ð17Þ

Here, we chose Δm1 ¼ 0.35 and Δm2 ¼ 0.75. Finally,
we define the extracted mode spectrum ~hextðmÞ by
~hextðmÞ ¼ wðmÞ ~hðmÞ.
Applying this window function, the amplitude of the

mode spectra in jm −mpj > Δm1 is continuously sup-
pressed and normalized to LðmÞ, and the peaks in
jmj ≠ 2 are suppressed. Indeed, a plot for the extracted
mode spectrum, ~hextðmÞ, in Fig. 2 shows that only the peaks
in jmj ¼ 2 are remaining. We can then obtain the wave
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FIG. 4. The comparison of the original and extracted wave-
forms in the time domain. The upper panel shows the real part of
the original complex waveform strain, h, and sum of m ¼ �2
wave components extracted from the mode spectrum with respect
to ΦfitðtÞ, and the middle panel shows the difference between
those two waveforms. The bottom panel shows the real part of
m ¼ 2 and m ¼ −2 mode wave components.
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components for m ¼ 2 and −2 in the time domain, hextm¼2ðtÞ
and hextm¼−2ðtÞ, by performing the inverse transformation of
the spectra for each peak using ΦfitðtÞ. Figure 4 compares
the original and extracted waveforms in the time domain.
The original waveforms and sum of m ¼ �2 wave com-
ponents agree approximately with each other (see the upper
panel in Fig. 4), and the difference between these two
waveforms oscillates in different frequency from the
dominant-mode frequency (see the middle panel in
Fig. 4). This suggests that wave components of m ≠ �2
are removed and only dominant wave components are
extracted from the original strain. The bottom panel in
Fig. 4 shows the real part ofm ¼ 2 andm ¼ −2modewave
components. The smooth change in the amplitude reflects
the orbital precession [see Eq. (18)].

D. Extracting the instantaneous orbital axis

Assuming that the extracted wave components of
jmj ¼ 2 are dominated by the l ¼ 2 components of the
spherical harmonics, Eq. (7) gives the description for these
wave components as

hextm¼�2ðtÞ ≈
1

8

ffiffiffi
5

π

r
½1� cos θLðtÞ�2AQA

22 ðtÞe−2i½φLðtÞ�ΦðtÞ�:

ð18Þ
If we further assume that the system has an approximate

equatorial symmetry in the coprecessing frame,1 and hence,
AQA
22 ðtÞ ¼ AQA

2−2ðtÞ holds, we can measure θLðtÞ, φLðtÞ, and
ΦðtÞ by

θLðtÞ ¼ cos−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijhextm¼2ðtÞj
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijhextm¼−2ðtÞj

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijhextm¼2ðtÞj

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijhextm¼−2ðtÞj
p

�
; ð19Þ

e−4iφLðtÞ ¼ hextm¼2ðtÞhextm¼−2ðtÞ
jhextm¼2ðtÞjjhextm¼−2ðtÞj

; ð20Þ

and

e−4iΦðtÞ ¼ hextm¼2ðtÞhext;�m¼−2ðtÞ
jhextm¼2ðtÞjjhextm¼−2ðtÞj

: ð21Þ

ΦQAðtÞ is determined from ΦðtÞ and ψLðtÞ, where ψLðtÞ
is determined by Eq. (6) using the extracted result of θLðtÞ
and φLðtÞ [note that φLðtÞ is only determined up to multiple
times π=2 in our method]. Using θLðtÞ, we can determine
AQA
22 ðtÞ (or AQA

2−2ðtÞ) from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijhextm¼2ðtÞj

p
(or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijhextm¼−2ðtÞj
p

).
Then, the ðl; mÞ ¼ ð2;�2Þ modes in the coprecessing
frame are reconstructed by AQA

2�2ðtÞe∓2iΦQAðtÞ.

III. APPLICATION

In this section, we examine the extraction method
introduced in the previous section. First, we use the
waveform strain generated from the data of SXS:
BBH:0058, which were also used in Figs. 2 and 3.
Figure 5 shows the comparisons of θLðtÞ and φLðtÞ
obtained from the original QA method and the ones
obtained from the extraction procedure using the mode
decomposition. In this figure, we find that θLðtÞ and
φLðtÞ agree well between two methods, and we find
the deviations are always smaller than 0.07 rad until
t ≈ 7857M.
Next, we check how accurately the coprecessing wave-

forms are reconstructed. We compare the ðl; mÞ ¼ ð2; 2Þ
mode in the coprecessing frame obtained by the original
QA method and the ones reconstructed by our method.
Here, instead of using the QAwaveforms directly, we take
the average of the ðl; mÞ ¼ ð2;�2Þ modes, namely, h̄QA22 ¼
ðhQA22 þ hQA;�2−2 Þ=2 for the QA method. This average is taken
so that the equatorial symmetry in the coprecessing frame is
imposed. This is consistent with the assumption which we
made in the extraction procedure. In addition, this removes
the most parts of the residual modulations in hQA22 and hQA2−2
which remain even after transforming to the coprecessing
frame [21,26]. Since these modulations, for which the
oscillation frequency is different from the dominant mode,
are expected to be removed by the extraction procedure, it
is reasonable to use the averaged waveforms.
In the top and middle panels in Fig. 6, we compare

the coprecessing frame amplitude by the two methods
and show the phase difference between two waveforms,
respectively. The two waveforms agree well with each
other in both amplitude and the phase until t ≈ 7800M.
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FIG. 5. The comparison of θL and φL obtained from the original
QA method and the ones obtained from the extraction procedure
using the mode decomposition.

1Strictly speaking, this is not true as Ref. [26] has pointed out
that there remains some asymmetric modulation in the waveforms
even in the coprecessing frame. However, while it can be the
source of error in the analysis, we neglect such a contribution in
this paper since it is expected to be small.
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Their deviations are enhanced for t ¼ 7800–8000M, while
the deviation in the phase remains smaller than ≈0.5 rad
until the peak amplitude is reached. This late-time deviation
is also found in the comparisons of θLðtÞ and φLðtÞ. We
suspect that these deviations would be due to the fact that
the precession timescale becomes short and comparable to
the orbital period just before the merger. If we perform the
mode decomposition focusing only on the waveforms after
t ≈ 7800M, the width of the peaks in the spectra becomes
broad and overlap with each other as two time scales
become comparable. This suggests that some part of
information in the merger-ringdown stages leaks to the
other peaks in the spectra. The prescriptions for the phase
fitting in Eq. (12) and the window function in Eq. (16) can
also be the source for the errors. If this is the case, further
improvement is needed for these functional forms. We
leave the further investigation for the origin of their errors
as the future task.
To discuss the agreements of the waveforms more

quantitatively, we define the mismatch between two com-
plex waveform strains, h1 and h2, by

Mðh1; h2Þ ¼ 1 −max
φc

Re½ðh1jh2eiφcÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh1jh1Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðh2jh2Þ

p ; ð22Þ

where ð·j·Þ is the Hermitian inner product defined by

ðh1jh2Þ ¼
Z

tf

ti

h�1ðtÞh2ðtÞdt: ð23Þ

Here, ti is the lower bound of the integral which is
always set to be 1000M in this work, and tf is the upper
bound of the integral. We note that our definition of the
mismatch is different from the usual one that is employed
in previous data-analysis studies (see, e.g., Ref. [21]).
Our definition is identical to the case that the noise
spectrum density of the detector is assumed to be white
[25]. We employ the definition in Eqs. (22) and (23) in
this paper because we can calculate the mismatch in the
time domain and easily show in which part of the
waveforms the error is induced. We find that mismatches
calculated by Eqs. (22) and (23) for ðti;tfÞ¼ð1000M;∞Þ
are similar to the values calculated by the usual definition
of mismatch assuming M ¼ 10 M⊙ and using a designed
noise curve of Advanced LIGO (for the zero-detuned
high power configuration [38]).
In the bottom panel of Fig. 6, we plot the mismatch

between the two waveforms as a function of the upper
bound of integral, tf . We find that the mismatch is always
below 10−4 until the time of peak amplitude, and rapidly
increases to the order of 10−3 after the peak time. This
shows that the reconstructed waveforms have the largest
error around the time of peak amplitude.
To further show the usefulness of our method for a

variety of precessing binaries, we calculate the mismatches
of the coprecessing ðl; mÞ ¼ ð2; 2Þ mode between those
obtained by the QA method and by the mode decom-
position method, picking up three precessing binary black
hole models, SXS:BBH:0058, SXS:BBH:0037, and SXS:
BBH:0164 in SXS Catalog [27–30]. For SXS:BBH:0037
and SXS:BBH:0164, the orbital angular momenta are
misaligned with the initial total angular momenta by
≈0.3 and 0.2 rad, and the numbers of the precession cycles
are ≈1 and 2 before the merger, respectively. For each
model, we generate five complex waveform strains
observed from five different inclination angles. We again
set ti ¼ 1000M for computing the mismatches. We com-
pute two mismatches for each model adopting different
upper bound of the integral tf . One is computed by setting
tf to be infinity, and the other is by setting tf to be the
time earlier by 100M than the peak of amplitude. The
parameters of the models, the inclination angles of the
observers, and the calculated mismatches are summarized
in Table I.
For every waveform strain derived from SXS:BBH:0058,

mismatches are always a few times 10−3 for the case that the
ringdown waveforms are included (ðti; tfÞ ¼ ð1000M;∞Þ).
Mismatches decrease remarkably by an order of magnitude
by excluding the waveforms in the merger and ringdown
stages (ðti; tfÞ ¼ ð1000M; t0 − 100MÞ). Hence, the error of

 0.0

 0.1

 0.2
|h

22
|

[SXS:BBH:0058, L(0)= /2, L(0)=0]

Coprecessing frame
Reconstructed

-2.0
-1.0
0.0
1.0
2.0

22
[r

ad
] Phase difference

 10-5

 10-4

 10-3

 10-2

 7000  7200  7400  7600  7800  8000

M
is

sM
at

ch

t/M

FIG. 6. The comparison of the coprecessing frame waveforms
obtained by the QA method and the ones reconstructed from
extracted waveforms using the mode decomposition. The top
panel compares of the coprecessing frame amplitude of the
ðl; mÞ ¼ ð2; 2Þ mode. The middle panel shows the phase differ-
ence between two waveforms for the case that the mismatch for
ðti; tfÞ ¼ ð1000M;∞Þ is the minimum [see Eq. (22)]. The bottom
panel shows the mismatch between the two waveforms as a
function of the upper bound of integral, tf . The lower band of the
integral, ti, is always set to be 1000M. We note that we take the
average of the ðl; mÞ ¼ ð2;�2Þ modes for the QA waveforms to
impose the equatorial symmetry. The vertical dashed line denotes
the peak time of the amplitude.
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the reconstructed coprecessing frame waveforms is pri-
marily accumulated in the merger and ringdown stages, as
has already been found in Fig. 6.
For SXS:BBH:0037 and SXS:BBH:0164, the features of

mismatches are quite similar to those of SXS:BBH:0058. In
particular, the result for SXS:BBH:0164 shows that our
extraction method can be useful not only for single-
spinning binary black holes but also for double-spinning
binaries (see Figs. 7 and 8). However, for θLð0Þ ¼ 0, π=4
and π of SXS:BBH:0037 and θLð0Þ ¼ 0 and π of SXS:
BBH:0058, we find that the mismatches are worse than the
other cases of different θLð0Þ values or models. In par-
ticular, the improvement of mismatches by excluding the
merger and ringdown stages is not as remarkable as for the
other cases. This suggests that the reconstructed waveforms
have errors not only in the merger and ringdown stages but
also in the inspiral stage for these cases. One possible
source of these errors is induced when extracting φLðtÞ
from the waveform strain. As is seen in Eq. (18), the norms
of hextm¼−2 and hextm¼2 become close to zero for the case that
θLðtÞ is close to 0 or π (i.e., the line of sight agrees with the

orbital axis), respectively. In such cases, the extraction of
φLðtÞ becomes quite sensitive to the error in hextm¼�2. Indeed,
it is shown in Fig. 7 that φLðtÞ has a large error at which
θLðtÞ passes by 0. ΦðtÞ also suffers from the error for the
same reason [see Eq. (21)]. Therefore, the match can be
deteriorated if θLðtÞ passes by 0 or π. In fact, in the
extracted data in θLð0Þ ¼ 0, π=4 and π of SXS:BBH:0037
and θLð0Þ ¼ 0 and π of SXS:BBH:0164, we find that there
is some interval that θLðtÞ passes by 0 or π during its
evolution, and the phase error relative to the QA method
increases during this period (see Figs. 7 and 8).
Fortunately, the error in ΦQA would be much smaller

than the errors in φLðtÞ and ΦðtÞ because these errors are
canceled out by taking the combination. For example, for
the case that θLðtÞ is close to 0, _ΦQAðtÞ is approximately

TABLE I. The mismatch between the ðl; mÞ ¼ ð2; 2Þ mode in
the coprecessing frame obtained by the original QA method and
the one obtained by our method. The first left column shows the
model names in SXS Catalog [27–30] as well as their mass ratios
and their black-hole spins. The numbers in the brackets describe
the x, y, and z components of the black-hole spin in the source
frame with θL ¼ 0 and φL ¼ 0. The second left column shows
the initial values of θL, which describe the initial direction of the
observer with respect to the orbital axis. Here, we chose the
observer so that the initial values of φL are 0. The third column
shows the relative contribution of the dominant modes in the
strain defined by Eq. (24). The fourth and fifth columns show
the mismatches employing ðti; tfÞ ¼ ð1000M;∞Þ and ðti; tfÞ ¼
ð1000M; t0 − 100MÞ, respectively. We note that our definition of
the mismatch is different from the usual one that is employed in
previous data-analysis studies [see the sentences below Eq. (23)].

M M
ti ¼ 1000M ti ¼ 1000M

Model θLð0Þ f2�2 tf ¼ ∞ tf ¼ t0 − 100M

SXS:BBH:0058 0 0.020 1.13 × 10−3 2.13 × 10−4

π=4 0.018 1.40 × 10−3 1.66 × 10−4

m1=m2 ¼ 5 π=2 0.038 1.71 × 10−3 5.58 × 10−5

S1 ¼ ð0.5; 0; 0Þ 3π=4 0.055 2.54 × 10−3 1.81 × 10−4

S2 ¼ 0 π 0.020 1.02 × 10−3 1.19 × 10−4

SXS:BBH:0037 0 0.007 4.05 × 10−3 1.11 × 10−3

π=4 0.009 5.93 × 10−3 5.03 × 10−3

m1=m2 ¼ 3 π=2 0.037 1.32 × 10−3 8.36 × 10−5

S1 ¼ ð0.5; 0; 0Þ 3π=4 0.031 1.81 × 10−3 2.31 × 10−4

S2 ¼ 0 π 0.007 9.18 × 10−3 2.95 × 10−3

SXS:BBH:0164 0 0.001 6.94 × 10−3 5.73 × 10−3

π=4 0.001 2.42 × 10−3 5.56 × 10−4

m1=m2 ¼ 1 π=2 0.005 1.35 × 10−3 8.41 × 10−5

S1 ¼ S2 3π=4 0.002 3.17 × 10−4 1.31 × 10−5

¼ ð0.52; 0; 0.3Þ π 0.001 6.93 × 10−3 5.72 × 10−3

-1.5

-1.0

-0.5

0.0

0.5

1.0

an
gl

es
 [

ra
d]

[SXS:BBH:0164, L(0)= /4, L(0)=0]

L

L

L(Extracted)

L(Extracted)

-0.3
-0.2

-0.1

0.0

0.1

0.2

0.3

 1000  1500  2000  2500  3000  3500  4000  4500

di
ff

er
en

ce
 [

ra
d]

t/M

L

L

-1.0

-0.5

0.0

0.5

1.0

an
gl

es
 [

ra
d]

[SXS:BBH:0037, L(0)= /4, L(0)=0]

L

L

L(Extracted)

L(Extracted)

-3.0
-2.0
-1.0
0.0
1.0
2.0
3.0

 1000  2000  3000  4000  5000  6000  7000  8000

di
ff

er
en

ce
 [

ra
d]

t/M

L

L

FIG. 7. The same as Fig. 5 but for θLð0Þ ¼ π=4 of SXS:
BBH:0164 (top panel) and SXS:BBH:0037 (bottom panel). For
the comparison, we shift the extracted result of φL by π=2 and
restrict its value to ½−π; π� due to its uncertainty in the extraction
[see Eq. (20)].
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written as _ΦðtÞ þ _φLðtÞ using Eq. (6). On the other hand,
ΦðtÞ þ φLðtÞ is determined only from argument of hextm¼2ðtÞ.
Since hextm¼−2ðtÞ contains the main source of the error in this
situation, ΦQAðtÞ is expected to have smaller error than
φLðtÞ or ΦðtÞ. However, as is found in Fig. 8, some error
still remains in ΦQAðtÞ, and thus, we still have a room to
improve the method for the case that its value passes by 0 or
π. We note that, for θLð0Þ ¼ 0 and π of SXS:BBH:0058,
θLðtÞ also pass by 0 and π, respectively. However, the errors
in phases are smaller than the cases in SXS:BBH:0037 and
SXS:BBH:0164 because the precessing time scale is
shorter and the interval staying close to 0 and π are shorter.
We note that our extraction procedure is only applicable

for the case that the ðl; mÞ ¼ ð2;�2Þ modes in the
coprecessing frame dominates the observed waveforms.
While this seems to be a reasonable assumption for the
inspiral-stage gravitational waves, to show that this
assumption actually holds for the waveforms we employed,

we define the relative contribution of the dominant modes
for each waveform model by

f2�2 ¼ 1−
hPm¼2;−2j−2Y2

m½−θLðtÞ;−ψLðtÞ�hQA2m ðtÞj2i
hP8

l¼2

P
l
m¼−l j−2Yl

m½−θLðtÞ;−ψLðtÞ�hQAlm ðtÞj2i ;

ð24Þ

and summarize f2�2 for each waveform model in Table I.
Here, h·i denotes the time average over t ¼ 1000M to the
end of the data. We note that f2�2 depends on the observer
direction. Table I shows that the ðl; mÞ ¼ ð2;�2Þ modes in
the coprecessing frame dominate the observed waveforms
for all the waveform models we employed in this paper.

IV. DISCUSSION

In this paper, we proposed a new method for extracting
the instantaneous orbital axis and for reconstructing
the coprecessing waveforms from gravitational waves
observed for generic precessing binary black holes. The
advantage of our method is as follows: The standard
analysis, such as the matched-filter method, requires the
template waveform models, in which a particular dynamics
of the instantaneous orbital axis is assumed. For example,
for black hole-neutron star binaries in close orbits, the
orbital precession may not be well described analytically. In
such a case, we have an issue for systematically construct-
ing templates. On the other hand, our method does not
require a particular model for the dynamics of the instanta-
neous orbital axis. Thus, it has an advantage to extract the
instantaneous orbital axis regardless of its evolution detail;
for example, it can be used even in the case that the orbit
precesses in a way different from that general relativity
predicts as far as the assumptions hold (see the discus-
sions below).
The axis of the precession and the precessing frequency

also provide us the information of the total angular
momentum of the system for a single spinning binary.
The amplitude and the phase of the coprecessing frame
waveforms are also reconstructed without modeling their
evolutions. Thus, using our method, the coprecessing frame
waveforms are direct observables that can be constructed
only from detector outputs. The parameter estimation from
the precessing waveforms (and the nonprecessing wave-
forms but observed from inclined direction) can be sim-
plified by using the reconstructed coprecessing waveforms
since the higher mode templates are not needed or, at least,
less needed than using the inertial frame waveforms. In
such a case, the number of the template models to cover the
parameter space can be reduced by using the approximate
mapping between the coprecessing waveforms and non-
precessing waveforms [25].
There are many other possible applications and exten-

sions for our method. Our method can be extended to
extract the higher modes in coprecessing frame, such as
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m ¼ 1 and m ¼ 3 components. In fact, we find that the
coprecessing ðl; mÞ ¼ ð3;�3Þ modes agree quite well with
the wave components extracted from jmj ¼ 3. The ampli-
tude of m ¼ 1 and m ¼ 3 modes can be used to solve the
degeneracy of parameter estimation between the symmetric
mass ratio and the black-hole spin magnitude [12–15].
Furthermore, our method can be applied to the data analysis
of the waveforms from precessing black hole-neutron star
mergers. The previous numerical studies [39–42] pointed
out that the location of the cutoff in the gravitational wave
spectra (the cutoff frequency), caused by tidal disruption of
neutron stars, can be used to constrain the neutron star
radius. However, the orbital precession (and the inclination
of the observer) obscures the location of the cutoff by
inducing the modulation in the spectra [43]. Since this
problematic modulation is due to the mixing of the different
harmonic components, the method we introduce in this
work can be useful to remove such modulation, and may
enable us to measure the cutoff frequency in the spectra
using the reconstructed coprecessing waveforms [44].
These applications and extensions are now in progress.
In our method, we made the following assumptions in

the analysis: First, we assumed the situation that the
complex wave strain is determined with sufficiently high
accuracy, and hence, we neglect the effect of the noise
and the error of the sky localization for simplicity. Second,
we assumed that ðl; mÞ ¼ ð2;�2Þ modes of spherical
harmonics in the coprecessing frame dominate the strain.
Third, the approximate equatorial symmetry is imposed for
gravitational waves in the coprecessing frame. The first
assumption is made because our purpose is to demonstrate
that the direct extraction of the orbital axis and the
coprecessing frame waveforms is possible only from the
information which we can obtain from the detection in

principle. However, of course, data always suffer from the
noise in reality. In particular, the sky localization error
would be an important source of the error. We should test
how well our method works in the presence of the noise and
errors, and show what is the required signal-to-noise ratio
for achieving the extraction in the required accuracy. The
second assumption is made to derive Eqs. (11) and (18).
Although the waveform models we employed in this paper
satisfy this assumption (see Table I), those are not still
enough to cover the parameter space of the precessing
binaries, and we need to extend our exploration to various
configurations of precessing binaries; for example, we need
to check our method for the case that the “transitional
precession” occurs [10], for which higher-mode contribu-
tions to the strain can be significant. The third assumption
holds only approximately. As pointed out in Ref. [26], the
equatorial symmetry of the waveforms in the coprecessing
frame breaks down in the presence of black hole spin
components parallel to the orbital plane. We need to check
whether this assumption is appropriate for the case that the
in-plane components are large.
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