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We develop a model for frequency-domain gravitational waveforms from inspiraling binary neutron
stars. Our waveform model is calibrated by comparison with hybrid waveforms constructed from our latest
high-precision numerical-relativity waveforms and the SEOBNRv2T waveforms in the frequency range of
10–1000 Hz. We show that the phase difference between our waveform model and the hybrid waveforms is
always smaller than 0.1 rad for the binary tidal deformability Λ̃ in the range 300≲ Λ̃≲ 1900 and for a mass
ratio between 0.73 and 1.We show that, for 10–1000Hz, the distinguishability for the signal-to-noise ratio≲50

and the mismatch between our waveform model and the hybrid waveforms are always smaller than 0.25 and
1.1 × 10−5, respectively. The systematic error of our waveform model in the measurement of Λ̃ is always
smaller than 20 with respect to the hybrid waveforms for 300≲ Λ̃≲ 1900. The statistical error in the
measurement of binary parameters is computed employing our waveform model, and we obtain results
consistentwith theprevious studies.We show that the systematic error of ourwaveformmodel is always smaller
than 20% (typically smaller than 10%) of the statistical error for events with a signal-to-noise ratio of 50.

DOI: 10.1103/PhysRevD.97.044044

I. INTRODUCTION

On 17 August 2017, three ground-based gravitational-
wave detectors—Advanced LIGO [1] and Advanced Virgo
[2]—reported the first detection of gravitational waves from
a binary neutron star merger referred to as GW170817 [3].
One of the monumental achievements of this detection is the
measurement of the tidal deformability of neutron stars.
Gravitationalwaves frombinary neutron stars contain rich in-
formation, in particular, regarding the masses and equation-
of-state quantities of the neutron stars. The simultaneous
measurement of these quantities of the neutron stars provides
a substantial constraint on the equation of state of nuclear
matter, which is yet poorly understood [4]. Among various
proposals, the tidal deformability of neutron stars has been
proposed as one of the most promising quantities related to
the equation of state that can be extracted from gravitational-
wave observations [5–20]. The observation of GW170817
has confirmed that the measurement of the neutron-star tidal
deformability is indeed possible. While various equations of

state are still consistent with the measurement of the tidal
deformability for this event, a number of detections of
gravitational waves from binary neutron stars by the
advanced detectors [1,2,21] are expected in the next few
years [3,22–24], and themeasurement of neutron-star proper-
ties from them will surely have a great impact on both
astrophysics and nuclear physics [25].
To extract the tidal deformability of neutron stars from the

observed gravitational-wave data, an accurate theoretical
waveform template is crucial. Many efforts have been made
to derive the waveform models. For the early inspiral stage,
the waveforms including the linear-order tidal effects are
derived using post-Newtonian (PN) calculations. The
Newtonian terms were first derived in Ref. [7], and the
first-PN-order (1PN) terms were derived in Ref. [11].
However, it was shown in Refs. [14,15,19,20] that these
waveforms are not accurate enough for the estimation of the
tidal deformability, because of the presence of a significant
systematic error due to the unknown higher-order PN terms.
In particular, the lack of higher-order PN terms in the
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point-particle part of gravitational waves is problematic
since the tidal effects are only significant in the last part
of the inspiral stage for f ≳ 400 Hz [10,12], where f is the
gravitational-wave frequency. To incorporate higher-order
PN effects, Damour and his collaborators derived the wave-
forms employing the effective-one-body (EOB) formalism,
including the tidal effects up to the 2.5PN order
[9,12,13,17,18]. In the EOB formalism, higher-order PN
corrections are included suing resummation techniques and
calibrated by comparing the model waveforms with those
derived by numerical-relativity simulations of binary black
holes. Hinderer et al. have pushed these works further and
derived the EOB waveforms considering dynamical tides
[26–28]. It was shown that these latest tidal-EOB (TEOB)
waveformscan be accurate evenup to≈3 msbefore theonset
of merger [29]. However, the phase difference between the
TEOB waveforms and the numerical-relativity results is still
larger than ≈1 rad after two neutron stars come into contact
for the case that the neutron-star radii are larger than≈13 km.
Thus, further improvement of thewaveformmodel is needed
to suppress the systematic error in the measurement of the
tidal deformability.
High-precision numerical-relativity simulations are a

unique method to predict the tidal effects in a regime
where the nonlinear effect of hydrodynamics should be
taken into account in the framework of general relativity
[28–37]. Recently, because of the progress of simulation
techniques and the increase of available computational
resources, the precision and duration of the numerical-
relativity waveforms have been remarkably improved. In
particular, the waveforms for more than 15 inspiral orbits
were derived with a subradian-order error in our previous
study [29]. Although our work has provided one of the
longest numerical-relativity waveforms for inspiraling
binary neutron stars to date, it is still too short to construct
an accurate waveform model. Hybrid waveforms employ-
ing analytic waveforms for the low-frequency part and
numerical-relativity waveforms for the high-frequency part
were used to solve this problem [16,36].
In this paper, we develop an accurate model for gravi-

tational waves from inspiraling binary neutron stars taking
tidal deformation of neutron stars into account. We cali-
brate our waveform model by employing hybrid waveforms
constructed from our latest numerical-relativity waveforms
and the TEOB waveforms. The waveform model is derived
in the frequency domain as in the “Phenom” series for
binary black holes [38] for convenience in data analysis.
We note that a gravitational waveform model for binary
neutron stars based on numerical-relativity waveforms was
also derived in Ref. [37] in a similar manner. The main
difference between our work and theirs is the different
numerical-relativity waveforms and the TEOB waveforms
used for the model calibration. Moreover, in Ref. [37] the
waveform model was derived in the time domain, and then
transformed to a frequency-domain waveform model by
employing the stationary-phase approximation, while our

waveform model is calibrated directly in the frequency
domain. We present a comparison between the model of
Ref. [37] and our model in Appendix E.
This paper is organized as follows. In Sec. II, we

summarize the waveforms used for deriving and calibrating
our waveform model, and present the method to derive our
waveform model. In Sec. III, we examine the validity of our
waveform model derived in Sec. II by computing the
distinguishability and the systematic error in the measure-
ment of binary parameters using the hybrid waveforms as
hypothetical signals. In Sec. IV, we compute the statistical
error in the measurement of the binary parameters based on
the standard Fisher-matrix analysis. We present the sum-
mary of this paper in Sec. V. Unless otherwise stated, we
employ the units c ¼ G ¼ 1, where c and G are the speed
of light and the gravitational constant, respectively.

II. MODEL

In this section, we derive a frequency-domain waveform
model for gravitational waves from inspiraling binary
neutron stars. The Fourier spectrum of gravitational waves
from a binary neutron star h̃ðfÞ can bewritten in terms of the
amplitude AðfÞ and phase ΨðfÞ as

h̃ðfÞ ¼ AðfÞe−iΨðfÞ: ð2:1Þ
For binary neutron stars, both the phase and amplitude of the
gravitational-wave spectrum depend on tidal deformation of
neutron stars. We define the tidal part of the gravitational-
wave phase by1

ΨtidalðfÞ ¼ ΨðfÞ − ΨppðfÞ; ð2:2Þ
where ΨppðfÞ is the gravitational-wave phase of a binary
black hole with the same mass as the binary neutron star
(hereafter referred to as the point-particle part of the phase).
Similarly, the tidal part of thegravitational-wave amplitude is
defined by

AtidalðfÞ ¼ AðfÞ − AppðfÞ; ð2:3Þ
whereAppðfÞ is the gravitational-wave amplitude of a binary
black hole with the same mass as the binary neutron star
(hereafter referred to as the point-particle part of the
amplitude). In this work, we employ the SEOBNRv2 wave-
forms [39] as the fiducial point-particle part of gravitational
waves. This is because we employ the SEOBNRv2Twave-
forms for the low-frequency part of the hybrid waveforms
(see Sec. II A), and the point-particle limit of the
SEOBNRv2T formalism agrees with the SEOBNRv2
formalism.
In the following subsections, the tidal-part models for the

gravitational-wave phase and amplitude are derived. First,

1See Sec. II B for the ambiguity in this definition due to the
time and phase shifts.
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we derive a frequency-domain model for the hybrid wave-
forms focusing only on equal-mass binary cases. Then, we
extend our study to unequal-mass binary cases.
We also derive simple analytic point-particle part models

for both the phase and amplitude of gravitational waves that
reproduce the SEOBNRv2 waveforms with reasonable
accuracy for a total mass in the range 2.4–3.0 M⊙ and
for a symmetric mass ratio in the range 0.244–0.25. We
employ these point-particle models for the analysis in
Secs. III and IV. The details and the derivation of these
point-particle models are presented in Appendix A.
We note that, in this work, we focus only on gravitational

waves for f ≤ 1000 Hz. The reason for this is that the
gravitational-wave spectra for f > 1000 Hz would be
affected by the post-merger waveforms: in Fig. 1, we show
the amplitude of the gravitational-wave spectra for several
binary neutron star models (see Sec. II A for the details
of binary neutron star models). Figure 1 shows that the
amplitude is no longer a monotonic function of the
gravitational-wave frequency for f ≳ 1100 Hz. This sug-
gests that both the amplitude and phase of the spectra are
affected by the waveforms after the merger, which can be
modified when detailed physical effects are considered (see
Appendix B for a detailed analysis). Thus, we have to
restrict our attention to frequencies f ≤ 1000 Hz. In this
work, we also focus only on the case where the spins of
neutron stars are absent. We leave the extension of our
waveform model for future work.

A. Time-domain hybrid waveforms

The hybrid waveforms employed for deriving and
calibrating our waveform model in this paper are composed

of the high-frequency part (≳400 Hz) and the low-
frequency part (≲400 Hz). For the high-frequency parts,
we employ our latest numerical-relativity waveforms
derived partly in Ref. [29]. The simulations are performed
by using the numerical-relativity code SACRA, in which an
adaptive-mesh-refinement (AMR) algorithm is imple-
mented (see Refs. [29,40] for details of the computational
setup). Binary neutron stars in quasicircular orbits with
small eccentricities ∼10−3 are numerically derived for the
initial conditions of the simulations using the spectral-
method library LORENE [41], and an eccentricity-reduction
procedure described in Ref. [42].
We employ numerical-relativity waveforms of binary

neutron stars with m0 ≈ 2.7 M⊙ and m0 ¼ 2.5 M⊙, where
m0 is the total mass of the binary at infinite separation.
More precisely, equal-mass models with each mass
m1 ¼ m2 ¼ 1.35 M⊙ and 1.25 M⊙, and unequal-mass
models with each mass ðm1; m2Þ ≈ ð1.21; 1.51Þ M⊙ and
ð1.16; 1.58Þ M⊙ are employed. We note that, for the
models with each mass ðm1; m2Þ ≈ ð1.21; 1.51Þ M⊙, we
employ results of simulations in which grid resolutions are
improved compared to those presented in Ref. [29]. The
simulations for the new models are performed in the same
way as in Ref. [29]. The orbital angular velocity of the
initial configuration Ω0 is chosen to be m0Ω0 ≈ 0.0155 and
0.0150 for m0 ≈ 2.7 M⊙ and m0 ¼ 2.5 M⊙, respectively.
Model parameters and grid configurations are summarized
in Table I. We note that the numerical-relativity waveforms
are expected to have a phase error of 0.2–0.6 rad up to the
time of peak amplitude (see Ref. [29] and Appendix C for
details of this estimation).
Five parametrized piecewise-polytropic equations of

state with two pieces [8,16,29,43] are employed to consider
the cases for a wide range of binary tidal deformability,
300≲ Λ̃≲ 1900. For any equations of state employed in
this paper, the maximum mass of spherical neutron stars is
larger than 2.0 M⊙, which is the approximate maximum
mass among the observed neutron stars to date [44,45]. The
radius and the dimensionless tidal deformability of spheri-
cal neutron stars of 1.16, 1.21, 1.25, 1.35, 1.51, and
1.58 M⊙ are listed in Table II. The 15H equation of state
might be incompatible with the observational results of
GW170817 [3], because the tidal deformability in this
equation of state for neutron stars of mass 1.35–1.40 M⊙ is
larger than 1000. However, the other equations of state are
compatible with the latest observational results.
For the low-frequency part, we employ the TEOB wave-

forms of Refs. [26–28], which are currently among the most
successful approximants in which the tidal effects as well as
higher-PN effects are taken into account. There exist two
types of TEOB formalism depending on the choice of point-
particle baseline: the SEOBNRv2T and SEOBNRv4T for-
malisms, of which the point-particle parts agree with the
SEOBNRv2 and SEOBNRv4 formalisms [46], respectively.
In thiswork, we employ the SEOBNRv2Twaveforms for the
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FIG. 1. A comparison of the Fourier spectra of gravitational
waves from binary neutron stars with three different equations of
state and with two values of total mass. AðfÞ,Deff , andm0 denote
the amplitude of the spectrum, the effective distance to the
gravitational-wave source, and the total mass of the binary,
respectively. The vertical dashed line denotes f ¼ 1000 Hz.
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low-frequency part of the hybrid waveforms. This is because
the point-particle baseline of the SEOBNRv2T formalism,
i.e., the SEOBNRv2 formalism is more suitable for deriving
waveforms for a nonspinning equal-mass binary (see
Appendix A).
For each binary neutron star model in Table I, the

SEOBNRv2T waveforms are generated by specifying the
mass and dimensionless tidal deformability Λi (i ¼ 1, 2) of
each neutron star. Other tidal parameters required for
generating the SEOBNRv2T waveforms—such as the
octupolar tidal deformability and f-mode frequency of
neutron stars—are determined from given values of Λi by
employing universal relations derived in Refs. [47,48]. The
initial gravitational-wave frequency of the SEOBNRv2T
waveforms is always set to 9 Hz, and we use the spectral
data only for f ≥ 10 Hz to suppress the unphysical

modulation due to the truncation of the waveforms at
the initial time.
The hybridization of the waveforms is performed using

the procedure described in Ref. [36]. First, we align the
time and phase of the SEOBNRv2T waveforms and the
numerical-relativity waveforms by searching for ts’s and
ϕs’s that minimize

I ¼
Z

tmax

tmin

jhNRðt0retÞ − hTEOBðt0ret þ tsÞeiϕs j2dt0ret; ð2:4Þ

where tret is the retarded time of the simulation, and hNR
and hTEOB are the time-domain complex waveforms
derived by numerical-relativity simulation and the
SEOBNRv2T formalism, respectively. Here, the complex
waveform h is defined by h ¼ hþ − ih×, with hþ and h×

TABLE I. The model name, mass of each neutron star mi (i ¼ 1, 2), equation of state (EOS) employed, chirp mass
Mc ¼ ðm1m2Þ3/5/ðm1 þm2Þ1/5, symmetric mass ratio η ¼ m1m2/ðm1 þm2Þ2, binary tidal deformability Λ̃ [see Eq. (2.19) for its
definition], location of outer boundaries along each axis L, and finest grid spacing of the simulation Δxfinest. The radius and the
dimensionless tidal deformability of neutron stars for each equation of state are listed in Table II.

Model m1 m2 EOS Mc η Λ̃ L [km] Δxfinest [m]

15H135-135 1.35 1.35 15H 1.175 24 0.25 1211 7990 86
125H135-135 1.35 1.35 125H 1.175 24 0.25 863 7324 79
H135-135 1.35 1.35 H 1.175 24 0.25 607 6991 75
HB135-135 1.35 1.35 HB 1.175 24 0.25 422 6392 69
B135-135 1.35 1.35 B 1.175 24 0.25 289 5860 63
15H121-151 1.21 1.51 15H 1.175 24 0.247 1198 7822 84
125H121-151 1.21 1.51 125H 1.175 24 0.247 856 7323 79
H121-151 1.21 1.51 H 1.17524 0.247 604 6823 73
HB121-151 1.21 1.51 HB 1.175 24 0.247 422 6324 68
B121-151 1.21 1.51 B 1.175 24 0.247 290 5991 64
15H116-158 1.16 1.58 15H 1.175 24 0.244 1185 7989 86
125H116-158 1.16 1.58 125H 1.175 24 0.244 848 7490 80
H116-158 1.16 1.58 H 1.175 24 0.244 601 6991 75
HB116-158 1.16 1.58 HB 1.175 24 0.244 421 6491 70
B116-158 1.16 1.58 B 1.175 24 0.244 291 5992 64
15H125-125 1.25 1.25 15H 1.088 19 0.25 1875 7822 84
125H125-125 1.25 1.25 125H 1.088 19 0.25 1352 7323 79
H125-125 1.25 1.25 H 1.088 19 0.25 966 6823 73
HB125-125 1.25 1.25 HB 1.088 19 0.25 683 6324 68
B125-125 1.25 1.25 B 1.088 19 0.25 476 5991 64

TABLE II. The EOS employed, radius RM, and dimensionless tidal deformability ΛM for spherical neutron stars of M ¼ 1.16, 1.21,
1.25, 1.35, 1.51, and 1.58 M⊙. RM is listed in units of km.

EOS R1.16 R1.21 R1.25 R1.35 R1.51 R1.58 Λ1.16 Λ1.21 Λ1.25 Λ1.35 Λ1.51 Λ1.58

15H 13.60 13.63 13.65 13.69 13.73 13.73 2863 2238 1875 1211 625 465
125H 12.90 12.93 12.94 12.97 12.98 12.98 2085 1621 1352 863 435 319
H 12.23 12.25 12.26 12.27 12.26 12.25 1506 1163 966 607 298 215
HB 11.59 11.60 11.61 11.61 11.57 11.53 1079 827 683 422 200 142
B 11.98 10.98 10.98 10.96 10.89 10.84 765 581 476 289 131 91
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denoting the plus and cross modes of gravitational waves,
respectively. We choose tmin ¼ 20 ms and tmax ¼ 40 ms
following Ref. [29]. After the alignment, two waveforms
are hybridized as

hHybridðtÞ¼

8>>>><
>>>>:

hTEOBðtÞ t≤ tmin;

½1−HðtÞ�hTEOBðtÞ
þHðtÞhNRðtÞ tmin< t< tmax;

hNRðtÞ tmax ≤ t;

ð2:5Þ

where we choose a Hann window function for HðtÞ as

HðtÞ ¼ 1

2

�
1 − cos

�
π

t − tmin

tmax − tmin

��
: ð2:6Þ

We find that the hybrid waveforms depend only weakly on
the choices of tmin and tmax. For example, employing tmin ¼
25 ms and tmax ¼ 45 ms instead changes the phase of the
hybrid waveforms only by ≲0.1 rad up to the time of the
peak amplitude, and in particular, the change in the phase is
always smaller than 0.05 rad until the gravitational-wave
frequency reaches 1000 Hz.

B. Computing the Fourier spectrum

The Fourier spectrum of gravitational waves h̃ðfÞ is
defined by [49]

h̃ðfÞ ¼
Z

tf

ti

hþðtÞe−2πiftdt; ð2:7Þ

where ti and tf are the initial and final time of the waveform
data, respectively. Note that, for binary neutron stars, the
Fourier transformation of h× results in approximately −ih̃.
To suppress the unphysical modulation in the spectrum,

we adopt a window function wðtÞ at the initial and final
times of the waveform data. We employ a tapered cosine
filter for wðtÞ defined by

wðtÞ¼

8>><
>>:
f1− cos ½πðt− tiÞ/Δti�g/2 ti ≤ t < tiþΔti;
1 tiþΔti ≤ t < tf −Δtf ;
f1− cos ½πðtf − tÞ/Δtf �g/2 tf −Δtf ≤ t < tf ;

ð2:8Þ

where Δti and Δtf are the widths of the tapering regions.
We choose Δti ≈ 10 s and Δtf ¼ 100m0.
The amplitude of the spectrum can be obtained directly

from the absolute value of h̃ðfÞ. To obtain ΨðfÞ as a
continuous function of f, we integrate dΨ/dfðfÞ in
frequency as

ΨðfÞ ¼
Z

f dΨ
df

ðf0Þdf0; ð2:9Þ

where dΨ/dfðfÞ is calculated by

dΨ
df

ðfÞ ¼ −
1

jh̃ðfÞj2 Im
�
h̃�ðfÞ dh̃

df
ðfÞ

�
; ð2:10Þ

and h̃�ðfÞ is the complex conjugate of h̃ðfÞ.
ΨðfÞ has degrees of freedom to shift its value by

ΨðfÞ → ΨðfÞ þ 2πft0 − ϕ0; ð2:11Þ

where t0 and ϕ0 can be chosen arbitrarily. Thus, to compare
the phases of different waveforms, we need to align the
time and phase origins of each phase. For this purpose, we
define the difference between gravitational-wave phasesΨ1

and Ψ2 by

ΔΨðfÞ ¼ Ψ1ðfÞ − Ψ2ðfÞ − 2πft0 þ ϕ0; ð2:12Þ
where t0 and ϕ0 are determined by minimizing

I0 ¼
Z

f1

f0

jΨ1ðfÞ − Ψ2ðfÞ − 2πft0 þ ϕ0j2df; ð2:13Þ

and f0 and f1 are the lower-bound and upper-bound
frequencies of the alignment, respectively. We note that,
in the following, we always align the phases by this
procedure to plot the phase difference.

C. Tidal part model for the
gravitational-wave phase

1. Equal-mass cases

First, we derive a phase model for the hybrid waveforms
focusing on equal-mass cases. Figure 2 shows the tidal part
of the gravitational-wave phase computed from the hybrid
waveforms ΨHybrid

tidal (¼ ΨHybrid −Ψpp, where ΨHybrid is the
phase of the hybrid waveforms), for the equal-mass binaries
normalized by the 2.5PN-order (equal-mass) tidal-part
phase given by2 [12]

Ψ2.5PN
tidal ¼ 3

32

�
−
39

2
Λ
�
x5/2

�
1þ 3115

1248
x − πx3/2

þ 28024205

3302208
x2 −

4283

1092
πx5/2

�
; ð2:14Þ

2Strictly speaking, this formula is not complete up to the 2.5PN
order because the 2PN-order tidal correction to gravitational-
radiation reaction is neglected. We overlook such correction in
this work because it is expected to be subdominant [12].
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where x ¼ ðπm0fÞ2/3 is a dimensionless PN parameter, and
Λ ¼ Λ1 ¼ Λ2 for the equal-mass cases. We note that the
tidal-part phase of the hybrid waveforms in Fig. 2 is aligned
with the 2.5PN-order tidal-part phase given by Eq. (2.14)
for 10 Hz ≤ f ≤ 50 Hz employing Eqs. (2.12) and (2.13).
We find that the tidal-part phase of the hybrid waveforms
deviates significantly from the 2.5PN-order tidal-part phase
in the high-frequency range, f ≳ 500 Hz (x≳ 0.075 for
m0 ¼ 2.7 M⊙), and the deviation depends nonlinearly
on Λ (note that the quantities shown in Fig. 2 are already
normalized by Λ). This indicates that the nonlinear con-
tribution of Λ is appreciably present in ΨHybrid

tidal for the high-
frequency range.
In Fig. 3, we plot the relative deviation of the tidal-part

phase of the hybrid waveforms from the 2.5PN-order tidal-
part phase normalized byΛ2/3, i.e., ðΨHybrid

tidal /Ψ2.5PN
tidal −1Þ/Λ2/3.

Figure 3 clearly shows that the relative deviation can be well
approximated by a power law in x. Furthermore, it shows that
the relative deviation is approximately proportional to Λ2/3

because all of the curves are aligned.We note that the relative
deviation for theB equation of state shows a slightly different
trend than the other cases. The reason for this is that the tidal
deformability is so small that its effect cannot be accurately
extracted from the numerical-relativity waveform for such a
soft equation of state.
To correct this deviation, we extend the 2.5PN-order

tidal-part phase formula of Eq. (2.14) by multiplyingΛ by a
nonlinear correction,

Ψem
tidal ¼

3

32

�
−
39

2
Λð1þaΛ2/3xpÞ

�
x5/2

×

�
1þ3115

1248
x−πx3/2þ28024205

3302208
x2−

4283

1092
πx5/2

�
;

ð2:15Þ

where a and p are fitting parameters. We note that the
exponent of the nonlinear term in Λ, p, is deduced to be
≈2/3 even if it is also set to be a fitting parameter and
determined by employing several hybrid waveforms. The
fitting parameters a and p are determined by minimizing

I00 ¼
Z

fmax

fmin

jΨHybrid
tidal ðfÞ −Ψem

tidalðfÞ − 2πft0 þ ϕ0j2df;

ð2:16Þ

where t0 and ϕ0 are parameters that correspond to the
degrees of freedom for choosing the time and phase origins.
Thus, we minimize I00 for the four parameters a, p, t0,
and ϕ0. The fitting is performed for fmin ¼ 10 Hz
and fmax ¼ 1000 Hz.
We use the hybrid waveform 15H125-125 to determine

the fitting parameters because the nonlinear contribution of
Λ is most significant for this model among the binary
neutron star models employed in this work. Then, we
obtain

a ¼ 12.55;

p ¼ 4.240: ð2:17Þ
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FIG. 2. The tidal part of the gravitational-wave phase
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Figure 4 shows the phase difference between the tidal
part of the hybrid waveforms and the tidal-part phase model
of Eq. (2.15) for the equal-mass cases, where the two
phases are aligned for 10 Hz ≤ f ≤ 1000 Hz employing
Eqs. (2.12) and (2.13). Although the fitting parameters are
determined by employing only the hybrid waveform
15H125-125 as a reference, we find that the error in the
tidal-part phase model [Eq. (2.15)] is always smaller than
0.05 rad except for 15H135-135. This result indicates that
there is only a small difference between the waveform
models determined from different hybrid waveforms (see
Appendix D). The phase error for 15H135-135 is as large as
0.08 rad for f ≈ 1000 Hz. However, it is smaller than the
phase error in the numerical-relativity waveforms associ-
ated with the finite differencing [29].

2. Unequal-mass cases

Next, we extend the tidal-part phasemodel of Eq. (2.15) to
unequal-mass cases. Considering the dependence on the
symmetric mass ratio, the 1PN-order tidal correction
to the phase can be written in terms of the symmetric
and antisymmetric contributions of neutron-star tidal
deformation as [19]

Ψ1PN
tidal ¼

3

128η

�
−
39

2
Λ̃
�
x5/2

×

�
1þ

�
3115

1248
−
6595

7098

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p δΛ̃
Λ̃

�
x

�
; ð2:18Þ

where Λ̃ and δΛ̃ are defined by

Λ̃ ¼ 8

13
½ð1þ 7η − 31η2ÞðΛ1 þ Λ2Þ

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4η

p
ð1þ 9η − 11η2ÞðΛ1 − Λ2Þ� ð2:19Þ

and

δΛ̃¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
1−4η

p �
1−

13272

1319
ηþ8944

1319
η2
�
ðΛ1þΛ2Þ

−
�
1−

15910

1319
ηþ32850

1319
η2þ3380

1319
η3
�
ðΛ1−Λ2Þ

�
;

ð2:20Þ

respectively. We refer to Λ̃ as the binary tidal deformability.
For realistic cases, the tidal contributions to the gravitational-
wave phase are dominated by the contributions from the Λ̃
terms [19]. Assuming that the contributions from the δΛ̃
terms and those from the higher-order terms are always
subdominant in the tidal part of the phase, we extend the
formula of Eq. (2.15) by replacing 3/32 by 3/128η [38]
and Λ by Λ̃,

Ψtidal¼
3

128η

�
−
39

2
Λ̃ð1þaΛ̃2/3xpÞ

�
x5/2

×

�
1þ3115

1248
x−πx3/2þ28024205

3302208
x2−

4283

1092
πx5/2

�
;

ð2:21Þ

where the values in Eq. (2.17) are used for a and p.
Figure 5 shows the phase difference between the hybrid

waveforms and the tidal-part phase model described in
Eq. (2.21) for the unequal-mass cases. Here, the two phases
are again aligned for 10 Hz ≤ f ≤ 1000 Hz employing
Eqs. (2.12) and (2.13). Although the fitting parameters
are determined only by employing the hybrid waveform
15H125-125 [Eq. (2.17)], we find that the phase error is
always smaller than ≈0.07 rad for these unequal-
mass cases.

D. Tidal-part model for the
gravitational-wave amplitude

We derive the tidal-part amplitude model using the
same approach as for the phase model: first we derive
the tidal-part amplitude model for the hybrid waveforms for
equal-mass cases, and then we extend it to unequal-
mass cases.
The tidal-part amplitude model for the hybrid waveforms

is derived based on the 1PN-order (equal-mass) formula for
the tidal-part amplitude given by [11,12,36]

A1PN
tidal ¼

ffiffiffiffiffiffi
5π

96

r
m2

0

Deff
Λx−7/4

�
−
27

16
x5 −

449

64
x6
�
; ð2:22Þ
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FIG. 4. The difference between the tidal-part phase of
the hybrid waveforms and the tidal-part phase model described
in Eq. (2.15) for the equal-mass cases, where the phases
are aligned for 10 Hz ≤ f ≤ 1000 Hz employing Eqs. (2.12)
and (2.13).
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where Deff is the effective distance to the binary (see
Ref. [36] for its definition). To take the higher-order PN
tidal effects into account, we add a polynomial term to
Eq. (2.22),

Aem
tidal ¼

ffiffiffiffiffiffi
5π

96

r
m2

0

Deff
Λx−7/4

�
−
27

16
x5 −

449

64
x6 þ bxq

�
;

ð2:23Þ
where b and q are the fitting parameters. We determine b
and q by minimizing

I000 ¼
Z

fmax

fmin

jAHybrid
tidal ðfÞ − Aem

tidalðfÞj2df; ð2:24Þ

where AHybrid
tidal is the tidal-part amplitude of the hybrid

waveforms, and fmin and fmax are set to be 10 and
1000 Hz, respectively. Employing the hybrid waveform
15H125-125 as a reference, we obtain b ¼ −4251 and
q ¼ 7.890.
As in the phase model, we extend Eq. (2.23) to unequal-

mass cases by replacing the leading-order coefficientffiffiffiffiffiffiffiffiffiffiffiffi
5π/96

p
and Λ by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5πη/24

p
and Λ̃, respectively,

Atidal ¼
ffiffiffiffiffiffiffiffi
5πη

24

r
m2

0

Deff
Λ̃x−7/4

�
−
27

16
x5 −

449

64
x6 þ bxq

�
:

ð2:25Þ
Figure 6 shows the relative error of the tidal-part amplitude
model defined by ðAHybrid

tidal − AtidalÞ/AHybrid, where AHybrid is
the amplitude of the hybrid waveforms. For Λ̃ ≤ 850, the
relative error of the tidal-part amplitude model is always

smaller than 10%. The relative error is larger for Λ̃ ≥ 850,
and in particular, it is larger than 15% for 15H135-135,
15H121-151, and 15H116-158. However, such large values
of the error are only present for f ≳ 900 Hz, and they have
only minor effects on the accuracy of our waveform model,
as is shown in the next section.

III. VALIDITY OF THE ANALYTIC MODEL

We constructed a frequency-domain gravitational-wave-
form model for binary neutron stars by employing the tidal-
part and point-particle part models of gravitational waves
derived in the previous section andAppendixA, respectively,
as

h̃model ¼ h̃modelðf;Mc; η; Λ̃;ϕ0; t0; DeffÞ
¼ ðATF2þ þ AtidalÞe−iðΨTF2þþΨtidalÞ: ð3:1Þ

This waveform model has six parameters: fθig6i¼1 ¼
fMc; η; Λ̃;ϕ0; t0; Deffg. In this section,we check thevalidity
of our waveform model using the hybrid waveforms as
hypothetical signals.

A. Distinguishability

To check the validity of our waveform model derived in
the previous section, we calculate the distinguishability
between our waveform model and the hybrid waveforms
assuming Advanced LIGO as a fiducial detector. For this
purpose, we define an inner product and the norm of the
waveforms by
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ðh̃1jh̃2Þ ¼ 4Re

�Z
fmax

fmin

h̃1ðfÞh̃�2ðfÞ
SnðfÞ

df

�
; ð3:2Þ

and

ρ ¼ kh̃k ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðh̃jh̃Þ

q
; ð3:3Þ

respectively, where Sn denotes the one-sided noise spec-
trum density of the detector. The distinguishability between
two waveforms h̃1 and h̃2 is defined by [16,50]

Δρðh̃1; h̃2Þ ¼ min
ϕ0;t0

kh̃1 − h̃2ðϕ0; t0Þk; ð3:4Þ

where ϕ0 and t0 are arbitrary phase and time shifts of the
waveforms, respectively. We also define the mismatch (or
unfaithfulness) between two waveforms h̃1 and h̃2 by

F̄ ¼ 1 −max
ϕ0;t0

ðh̃1jh̃2ðϕ0; t0ÞÞ
kh̃1kkh̃2k

: ð3:5Þ

Throughout this paper, we employ the noise spectrum
density of the zero-detuned high-power configuration of
Advanced LIGO [51] for Sn. The lower and upper bounds
of the integration in Eq. (3.2) are set to be 10 and 1000 Hz,
respectively. We note that ρ corresponds to the signal-to-
noise ratio [49], and Δρ ¼ 1 indicates that two waveforms

are distinguishable approximately at the 1σ level [50]. The
signal-to-noise ratio and the distinguishability are propor-
tional to the inverse of the effective distance Deff .
In Table III, we summarize the distinguishability

between our waveform model and the hybrid waveforms.
Here, the signal-to-noise ratio is always fixed to be 50 by
adjusting Deff because the tidal deformability is clearly
measurable only for events with a high signal-to-noise
ratio. For comparison, we also compute the distinguish-
ability of the SEOBNRv2T waveforms and PN waveform
models with respect to the hybrid waveforms. For the tidal
part of the PN waveform models, we employ the 2.5PN-
order phase and the 1PN-order amplitude formulas given
by [11,12,36]

Ψ2.5PN0
tidal ¼ 3

128η

�
−
39

2
Λ̃
�
x5/2

×

�
1þ3115

1248
x−πx3/2þ28024205

3302208
x2−

4283

1092
πx5/2

�
;

ð3:6Þ

and

A1PN0
tidal ¼

ffiffiffiffiffiffiffiffi
5πη

24

r
m2

0

Deff
Λ̃x−7/4

�
−
27

16
x5 −

449

64
x6
�
; ð3:7Þ

TABLE III. The distinguishability between our waveform model and the hybrid waveforms. The distinguishability
of the SEOBNRv2T waveforms and PN waveform models with respect to the hybrid waveforms is also shown. The number
in the parentheses denotes the mismatch with respect to the hybrid waveforms defined by Eq. (3.5). The signal-to-noise ratio is
always normalized to 50. We note that the parameters of our waveform model are determined employing the hybrid waveform of
15H125-125.

Model Λ̃ Our waveform model SEOBNRv2T PNtidal(TF2) PNtidalðTF2þÞ
15H135-135 1211 0.14 (4.1 × 10−6) 0.54 (5.0 × 10−5) 3.86 (3.0 × 10−3) 2.68 (1.4 × 10−3)
125H135-135 863 0.14 (4.0 × 10−6) 0.25 (1.2 × 10−5) 3.02 (1.8 × 10−3) 1.67 (5.6 × 10−4)
H135-135 607 0.12 (2.9 × 10−6) 0.12 (3.0 × 10−6) 2.48 (1.2 × 10−3) 0.95 (1.8 × 10−4)
HB135-135 422 0.11 (2.6 × 10−6) 0.14 (3.7 × 10−6) 2.18 (9.5 × 10−4) 0.50 (5.0 × 10−5)
B135-135 289 0.10 (2.0 × 10−6) 0.16 (5.3 × 10−6) 2.04 (8.3 × 10−4) 0.25 (1.3 × 10−5)
15H121-151 1198 0.18 (6.3 × 10−6) 0.68 (8.5 × 10−5) 4.05 (3.3 × 10−3) 2.79 (1.6 × 10−3)
125H121-151 856 0.11 (2.5 × 10−6) 0.26 (1.3 × 10−5) 3.16 (2.0 × 10−3) 1.70 (5.7 × 10−4)
H121-151 604 0.12 (2.8 × 10−6) 0.11 (2.3 × 10−6) 2.62 (1.4 × 10−3) 0.96 (1.8 × 10−4)
HB121-151 422 0.12 (3.0 × 10−6) 0.12 (3.1 × 10−6) 2.32 (1.1 × 10−3) 0.51 (5.2 × 10−5)
B121-151 290 0.13 (3.1 × 10−6) 0.19 (7.2 × 10−6) 2.16 (8.8 × 10−4) 0.24 (1.1 × 10−5)
15H116-158 1185 0.24 (1.1 × 10−5) 0.74 (1.1 × 10−4) 4.23 (3.6 × 10−3) 2.88 (1.7 × 10−3)
125H116-158 848 0.14 (3.8 × 10−6) 0.34 (2.4 × 10−5) 3.34 (2.2 × 10−3) 1.77 (6.3 × 10−4)
H116-158 601 0.12 (3.0 × 10−6) 0.12 (2.8 × 10−6) 2.76 (1.5 × 10−3) 0.98 (1.9 × 10−4)
HB116-158 421 0.14 (4.0 × 10−6) 0.11 (2.4 × 10−6) 2.45 (1.2 × 10−3) 0.50 (5.1 × 10−5)
B116-158 291 0.16 (5.0 × 10−6) 0.15 (4.6 × 10−6) 2.28 (1.0 × 10−3) 0.22 (1.0 × 10−5)
15H125-125 1875 0.09 (1.6 × 10−6) 0.83 (1.2 × 10−4) 4.63 (4.3 × 10−3) 3.51 (2.5 × 10−3)
125H125-125 1352 0.09 (1.6 × 10−6) 0.34 (2.4 × 10−5) 3.61 (2.6 × 10−3) 2.31 (1.1 × 10−3)
H125-125 966 0.13 (3.5 × 10−6) 0.18 (6.6 × 10−6) 2.83 (1.6 × 10−3) 1.36 (3.7 × 10−4)
HB125-125 683 0.16 (5.0 × 10−6) 0.20 (7.8 × 10−6) 2.36 (1.1 × 10−3) 0.71 (1.0 × 10−4)
B125-125 476 0.20 (8.3 × 10−6) 0.23 (1.0 × 10−5) 2.10 (8.8 × 10−4) 0.30 (1.8 × 10−5)

FREQUENCY-DOMAIN GRAVITATIONAL WAVEFORM … PHYS. REV. D 97, 044044 (2018)

044044-9



respectively.3 “PNtidal(TF2)” and “PNtidalðTF2þÞ” in
Table III denote PN waveform models employing
TaylorF2 and TF2+ (see Appendix A) as the point-particle
parts of gravitational waves, respectively. Here, the 3.5PN-
and 3PN-order formulas are employed for the phase and
amplitude, respectively, for the point-particle part of
TaylorF2 [38].
For all of the cases, the distinguishability and the

mismatch between our waveform model and the hybrid
waveforms are smaller than 0.25 and 1.1 × 10−5, respec-
tively. This means that the distinguishability of our wave-
form model from the hybrid waveforms is smaller than
unity even for ρ ¼ 200 in the frequency range 10–1000 Hz.
In Sec. II D, we found that the error of the tidal-part
amplitude model is relatively large for Λ̃ ≥ 850.
Nevertheless, the results in Table III show that our wave-
form model agrees with the hybrid waveforms within
reasonable accuracy.
The SEOBNRv2Twaveforms also show good agreement

with the hybrid waveforms for Λ̃≲ 600. On the other hand,
the SEOBNRv2T waveforms have larger values of the
distinguishability and the mismatch than our waveform
model for Λ̃≳ 700 with respect to the hybrid waveforms.
The value of the distinguishability is larger than 0.5 for the
cases with the 15H equation of state, and in particular, the
distinguishability is ≈0.8 for 15H125-125. These results
are consistent with the results of Refs. [26,29] in which a
larger phase difference between the SEOBNRv2T wave-
forms and the numerical-relativity waveforms was found
for the larger values of Λ̃. We note that the SEOBNRv2T
formalism is a time-domain approximant, and thus the
computational costs for data analysis would be higher than
our frequency-domain waveform model.
The PN waveform models PNtidal(TF2) and

PNtidalðTF2þÞ show poor agreement with the hybrid
waveforms. For PNtidal(TF2), the distinguishability and
the mismatch are always larger than 2 and 8 × 10−3,
respectively, and in particular, the distinguishability is
larger than 4 for 15H121-151, 15H116-158, and
15H125-125. This large distinguishability is due not only
to the lack of higher-order terms in the tidal part, but also to
the lack of those terms in the point-particle part of PNtidal
(TF2) waveforms. Indeed, the distinguishability of
PNtidalðTF2þÞ from the hybrid waveforms—which purely
reflects the difference of PNtidalðTF2þÞ from the hybrid
waveforms in the tidal parts of gravitational waves—is
always smaller than that of PNtidal(TF2), and in particular,
is as small as ∼0.3 for the cases with the B equation of state.

However, even for PNtidalðTF2þÞ, the distinguishability is
larger than ≈1.4 for Λ̃ ≥ 850. This indicates that the PN
tidal formulas of Eqs. (3.6) and (3.7) are not suitable for the
data analysis if Λ̃≳ 850 and ρ≳ 35, no matter how
accurate the point-particle model is.

B. Systematic error

Next, we estimate the systematic error of our waveform
model in the measurement of binary parameters.
Employing the hybrid waveforms as hypothetical signals,
the systematic error for each waveform parameter Δθi is
defined by θi − θTi , where θTi is a parameter of the hybrid
waveforms and θi is the corresponding best-fit parameter
determined from

min
fθig6i¼1

kh̃Hybrid½fθTi g6i¼1� − h̃model½fθig6i¼1�k; ð3:8Þ

where h̃Hybrid is the Fourier spectrum of the hybrid wave-
forms. We note that the systematic error does not depend on
the signal-to-noise ratio.
In Table IV, we summarize the systematic error of our

waveform model. For all of the cases, the systematic error
in the measurement of Λ̃ is within 20 for our waveform
model. The values of the systematic error in the measure-
ment of η and Mc are typically ∼10−5 and ∼10−7 M⊙,
respectively. The systematic error for any quantity is always
much smaller than the statistical error for ρ ¼ 50 presented
in the next section.
In Table IV, we also show the systematic error of

PNtidalðTF2þÞ for comparison. It is found that
PNtidalðTF2þÞ always has much larger values of the
systematic error than our waveform model. The systematic
error for this model increases for large values of Λ̃, and in
particular, Λ̃ is overestimated by more than 250 for
Λ̃≳ 1200. The systematic error in the measurement of Λ̃
is smaller than 100 if Λ̃ is smaller than ≈600. These results
indicate again that the PN tidal formulas of Eqs. (3.6) and
(3.7) are not applicable to the cases where the value of Λ̃ is
large, for example, the low-mass or stiff equation of state
cases. For PNtidalðTF2þÞ, the values of the systematic
error in the measurement of Mc and η are typically larger
by an order of magnitude than those in our wave-
form model.
The reason why PNtidalðTF2þÞ tends to overestimate

the value of Λ̃ can be understood as follows. As found from
Fig. 2, the tidal effects are nonlinearly enhanced for a high-
frequency region in the hybrid waveforms. On the other
hand, the nonlinear tidal contribution is not taken into
account in the tidal part of the phase for PNtidalðTF2þÞ
[Eq. (3.6)]. Hence, spuriously larger values of Λ̃ are needed
to complement such an enhancement of tidal effects.
It is not easy to estimate the systematic error of the

SEOBNRv2T waveforms with respect to the hybrid

3We note that for Eqs. (3.6) and (3.7) the dependence on the
mass ratio is considered only up to the leading order for sim-
plicity. This can be justified by the fact that the asymmetric-tidal
correction is expected to be subdominant [19]. Indeed, we find
that employing PN tidal formulas with full dependence on the
mass ratio changes the results in Table III only by ≲10%.

KYOHEI KAWAGUCHI et al. PHYS. REV. D 97, 044044 (2018)

044044-10



waveforms using Eq. (3.8) because the SEOBNRv2Twave-
form is a time-domain approximant, which requires rela-
tively high computational costs. Thus, we instead estimate
the systematic error of the SEOBNRv2T waveforms as
follows. In Fig. 7, we plot the absolute value of the systematic
error in the measurement of Λ̃ for our waveform model and
PNtidalðTF2þÞ as a function of the distinguishability for a
signal-to-noise ratio of 50, employing the values in Tables III

and IV. Figure 7 shows that the systematic error in the
measurement of Λ̃ is approximately correlatedwith the value
of the distinguishability. In particular, we find that the
correlation can be described by a fitting formula in the form
jΔΛ̃j ¼ c½Δρðρ ¼ 50Þ�r, where c and r are 104 and 0.89,
respectively.Assuming that this relation approximatelyholds
for the SEOBNRv2Twaveforms, the systematic error of the
SEOBNRv2T waveforms in the measurement of Λ̃ with
respect to the hybridwaveforms is as large as∼50 for the15H
equation of state, and in particular, ∼100 for 15H125-125.
This indicates that an improvement is needed for the TEOB
formalism for large values of Λ̃ (for example, for the low-
mass cases) ifwewant to constrain Λ̃within an error of∼100.

C. Variation of the binary tidal deformability
with respect to the masses

The binary tidal deformability Λ̃ is tightly correlated
with the chirp massMc for a given equation of state, while
it depends only weakly on the mass ratio for a reasonable
range (see also Fig. 2 of Ref. [19]). Figure 8 shows the
relation between Λ̃ and Mc in the mass ratio range
0.7 ≤ m1/m2 ¼ 1, or equivalently the symmetric mass ratio
range 0.242≲ η ≤ 0.25 [3]. The variation of Λ̃ at Mc ¼
1.35 M⊙/21/5 is less than 3% for the equations of state
adopted in this study. Quantitatively, the variation of Λ̃
between m1/m2 ¼ 0.7 (η ≈ 0.242) and 1 (η ¼ 0.25) is 35
(3%), 20 (2%), 19 (1.5%), 1 (< 1%), and 3 (< 1%) for

TABLE IV. The systematic error of our waveform model and the PN waveform model [PNtidalðTF2þÞ] in the measurement of binary
parameters using the hybrid waveforms as hypothetical signals.

Our waveform model PNtidalðTF2þÞ
Model Λ̃ ΔMc½M⊙� Δη ΔΛ̃ ΔMc½M⊙� Δη ΔΛ̃

15H135-135 1211 1.1 × 10−7 1.8 × 10−6 2.1 3.8 × 10−6 3.1 × 10−4 250
125H135-135 863 1.9 × 10−7 7.7 × 10−6 2.8 3.1 × 10−6 2.5 × 10−4 177
H135-135 607 2.2 × 10−7 9.0 × 10−6 0.1 2.0 × 10−6 1.6 × 10−4 105
HB135-135 422 2.3 × 10−7 8.8 × 10−6 −2.4 1.4 × 10−6 1.0 × 10−4 59
B135-135 289 1.7 × 10−7 6.0 × 10−6 −3.7 7.8 × 10−7 5.5 × 10−5 28.9
15H121-151 1198 4.1 × 10−7 2.4 × 10−5 9.8 3.9 × 10−6 3.1 × 10−4 245
125H121-151 856 2.2 × 10−7 1.0 × 10−5 2.1 3.2 × 10−6 2.5 × 10−4 175
H121-151 604 1.8 × 10−7 6.9 × 10−6 −1.9 2.1 × 10−6 1.6 × 10−4 105
HB121-151 422 2.6 × 10−7 1.1 × 10−5 −2.6 1.4 × 10−6 1.0 × 10−4 59
B121-151 290 1.6 × 10−7 5.3 × 10−6 −6.1 8.0 × 10−7 5.5 × 10−5 27
15H116-158 1185 6.3 × 10−7 4.0 × 10−5 14.7 4.0 × 10−6 3.2 × 10−4 243
125H116-158 848 5.0 × 10−7 2.9 × 10−5 6.7 3.4 × 10−6 2.6 × 10−4 176
H116-158 601 2.8 × 10−7 1.4 × 10−5 −1.5 2.2 × 10−6 1.6 × 10−4 105
HB116-158 421 2.3 × 10−7 9.7 × 10−6 −5.0 1.5 × 10−6 1.0 × 10−4 58
B116-158 291 1.4 × 10−7 2.9 × 10−6 −9.1 7.7 × 10−7 5.2 × 10−5 24
15H125-125 1875 1.7 × 10−7 4.3 × 10−6 1.5 2.5 × 10−6 2.6 × 10−4 296
125H125-125 1352 7.1 × 10−8 −3.2 × 10−6 −3.6 3.2 × 10−6 3.0 × 10−4 265
H125-125 966 5.3 × 10−8 −5.3 × 10−6 −8.1 2.2 × 10−6 2.0 × 10−4 168
HB125-125 683 −4.5 × 10−8 −6.9 × 10−6 −13 1.4 × 10−6 1.2 × 10−4 93
B125-125 476 −4.3 × 10−8 −1.5 × 10−5 −20 7.8 × 10−7 6.2 × 10−5 39
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FIG. 7. The absolute value of the systematic error in the
measurement of Λ̃ as a function of the distinguishability for a
signal-to-noise ratio of 50. The blue curve denotes a fitting
formula in the form jΔΛ̃j ¼ c½Δρðρ ¼ 50Þ�r, where c and r are
104 and 0.89, respectively.
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15H, 125H, H, HB, and B, respectively. This variation is
smaller than the statistical error in measuring Λ̃ shown in
Fig. 10, even for ρ ¼ 100 (see the next section for details).
Thus, a simultaneous measurement of the chirp mass Mc

and the binary tidal deformability Λ̃ is reasonably inter-
preted as the measurement of the tidal deformability Λ of a
neutron star with mass 21/5Mc ≈ 1.15Mc. In addition, the
variation of Λ̃ is usually larger than and at most comparable
to the systematic error of our waveform model shown in
Table IV. This suggests that the systematic error may not
degrade the performance of our waveform model unless the
mass ratio is determined very precisely.

IV. STATISTICAL ERROR

The standard Fisher-matrix analysis is useful to estimate
the statistical error in the measurement of binary parameters
[12,14,15,19]. The Fisher information matrix for our wave-
form model is defined by

Fij ¼
�∂h̃model

∂θi
���� ∂h̃model

∂θj
�
: ð4:1Þ

The standard error in the measurement of each parameter θi
is given by the diagonal component of the inverse of the
Fisher information matrix as

σθi ¼
ffiffiffiffiffiffiffiffi
F−1
ii

q
: ð4:2Þ

σθi approximately gives the statistical error in the meas-
urement of θi at the 1σ level. We note that σθi is

proportional to the inverse of the signal-to-noise ratio. In
the following, we always show σθi for the case that the
signal-to-noise ratio is 50.
Figure 9 shows the values of the statistical error in the

measurement of Mc (top panel) and η (bottom panel) as
functions of the upper-bound frequency fmax. The results
for three values of the chirp mass [Mc/ð1/4Þ3/5 ¼ 2.5, 2.7,
and 2.9 M⊙], two values of symmetric mass ratio (η ¼ 0.25
and 0.244), and two values of the tidal deformability
(Λ̃ ¼ 0 and 1200) are shown. The curves with different
colors denote the results for the cases with different
combinations of ðMc; Λ̃Þ. The solid and dashed curves
denote the cases with η ¼ 0.25 and 0.244, respectively. The100

1000

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6

q=0.7-1

m1=m2 for the equal-mass case [Msun]

15H
125H

H
HB

B

FIG. 8. Binary tidal deformability as a function of the chirp
mass in the mass ratio range 0.7 ≤ q ¼ m1/m2 ≤ 1. For a given
equation of state, we select masses m1 and m2 in this mass range
and plot the corresponding ðMc; Λ̃Þ with points. We only
consider neutron stars heavier than 1.0 M⊙ when drawing this
plot, following Ref. [19].
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FIG. 9. The values of the statistical error in the measurement of
Mc (the top panel) and η (the bottom panel) as functions of the
upper-bound frequency fmax for various binary parameters. The
curves with different colors denote the results for different
combinations of ðMc; Λ̃Þ. The black curves denote the results
of the analysis in which the tides are not considered. The solid
and dashed curves denote the cases with η ¼ 0.25 and 0.244,
respectively. The signal-to-noise ratio is always fixed to be 50.
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black curves denote the results for ðMc/ð1/4Þ3/5; Λ̃Þ ¼
ð2.7 M⊙; 0Þ, in the analysis of which the tides are not
considered (note that the tides are considered in the analysis
for the Λ̃ ¼ 0 cases for which the results are shown with
blue, green, and light-blue curves in Fig. 9).
The top panel in Fig. 9 shows that the statistical error in

the measurement ofMc depends only weakly on the upper-
bound frequency of the analysis for fmax ≳ 400 Hz. The
improvement of the statistical error by changing fmax from
400 to 1000 Hz is only ≈25%. Figure 9 also shows that the
statistical error becomes smaller for smaller values of Mc,
and depends only very weakly on η and Λ̃. The bottom
panel in Fig. 9 shows that the statistical error in the
measurement of η depends more strongly on the upper-
bound frequency than that of Mc. The statistical error is
reduced by ≈40% by changing fmax from 400 to 1000 Hz.
On the other hand, the statistical error of η depends only
very weakly on the binary parameters, such as Mc, η, and
Λ̃. The results of the analysis without tides show that, if
tides are considered, the statistical error ofMc increases by
≈25–40%, and that of η increases by a factor of 2. These
results are consistent with those found in Ref. [12].
Figure 10 shows the statistical error in the measurement

of Λ̃. The top panel of Fig. 10 shows that the statistical error
of Λ̃ is significantly reduced if the upper-bound frequency
is increased. The statistical error decreases approximately
in proportion to 1/f2max. On the other hand, the statistical
error depends only weakly on Mc and η. This dependence
on fmax and η is consistent with Eq. (23) in Ref. [10]. The
bottom panel of Fig. 10 shows the statistical error of Λ̃ as a
function of Λ̃ for the case fmax ¼ 1000 Hz. This indicates
that the statistical error of Λ̃ does not depend strongly on Λ̃,
and it is always 110–170 for the case that the signal-to-
noise ratio is 50 and fmax ¼ 1000 Hz. Thus, the systematic
error in our waveform model is likely to always be smaller
than the statistical error unless the signal-to-noise ratio is
larger than ∼300. We note that the statistical error of Λ̃
shown in Fig. 10 is slightly larger than that obtained in
Refs. [12,19]. This is because those works employed a
higher upper-bound frequency than in Fig. 10: the upper-
bound frequency was set to be the frequency of the
innermost stable circular orbit (f ≈ 1500–1800 Hz) or
the frequency at the contact of neutron stars
(f ≈ 1200–1800 Hz) in Refs. [12,19]. Indeed, we obtain
values consistent with Refs. [12,19] if we employ the same
upper-bound frequency as in Refs. [12,19]. However, we
restrict our model to < 1000 Hz because our model is
calibrated only up to 1000 Hz (see Appendix B.)
We neglected the effects of the neutron-star spins on the

waveforms in this work. We note that if we take into
account the effect of neutron-star spins, the statistical error
will increase [3,12]. For currently observed values of spin
parameters in Galactic binary pulsars [3,52,53], we may
incorporate the spin effects into our waveform model by

adding PN corrections to the formula: ≈0.03 is the largest
dimensionless-spin parameter observed in the binary neu-
tron star systems which will merge in the Hubble time
[3,52,53], assuming 1.35 M⊙ and 2 × 1045 g cm2 [54] for
the mass and the moment of inertia of the neutron star,
respectively. Up to such a magnitude of the neutron-star
spin, employing the spin correction up to the 3.5PN order
(including the 2PN quadratic spin correction) [38,55,56]
may be sufficient to describe the effects of the spins at the
level of our model uncertainty, if the spin contribution to
the tidal effects is negligible. Indeed, by employing the
SEOBNRv2 waveforms we found that the error induced by
neglecting the higher-order PN spin correction would be
only at most comparable to the fitting error of our wave-
form model for the case that the dimensionless spin
parameter of each neutron star is below 0.05 [3].

 0

 100

 200

 300

 400

 500

 600

 700

 800

 400  500  600  700  800  900  1000

~

fmax  [Hz]

fmin = 10 Hz,  = 50

Mc/(1/4)3/5 = 2.5 Msun, 
~

 = 0
Mc/(1/4)3/5 = 2.7 Msun, 

~
 = 0

Mc/(1/4)3/5 = 2.9 Msun, 
~

 = 0
Mc/(1/4)3/5 = 2.5 Msun, 

~
 = 1200

Mc/(1/4)3/5 = 2.7 Msun, 
~

 = 1200
Mc/(1/4)3/5 = 2.9 Msun, 

~
 = 1200

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  500  1000  1500  2000

~

 
~

fmin = 10 Hz,  fmax = 1000 Hz,  = 50

Mc/(1/4)3/5 = 2.5 Msun,  = 0.25
Mc/(1/4)3/5 = 2.7 Msun,  = 0.25
Mc/(1/4)3/5 = 2.9 Msun,  = 0.25

Mc/(1/4)3/5 = 2.5 Msun,  = 0.244
Mc/(1/4)3/5 = 2.7 Msun,  = 0.244
Mc/(1/4)3/5 = 2.9 Msun,  = 0.244

FIG. 10. (Top panel) The same as Fig. 9 but for Λ̃. (Bottom
panel) The statistical error in the measurement of Λ̃ as a function
of Λ̃. The upper-bound frequency is set to be 1000 Hz and the
signal-to-noise ratio is set to be 50.
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V. SUMMARY

In this paper, we derived a frequency-domain model for
gravitational waves from inspiraling binary neutron stars
employing the hybrid waveforms composed of the latest
numerical-relativity waveforms and the SEOBNRv2T
waveforms. In this work, we restricted the frequency range
of gravitational waves from 10 to 1000 Hz to focus on the
inspiral-stage waveforms. We obtained the tidal correction
to the gravitational-wave phase as

Ψtidal ¼
3

128η

�
−
39

2
Λ̃ð1þ12.55Λ̃2/3x4.240Þ

�
x5/2

×

�
1þ3115

1248
x−πx3/2þ28024205

3302208
x2−

4283

1092
πx5/2

�
;

ð5:1Þ

and that to the gravitational-wave amplitude as

Atidal ¼
ffiffiffiffiffiffiffiffi
5πη

24

r
m2

0

Deff
Λ̃x−7/4

�
−
27

16
x5−

449

64
x6−4251x7.890

�
:

ð5:2Þ

We showed that our waveform model reproduces the
phase of the hybrid waveforms in the frequency domain
within 0.1 rad error for 300≲ Λ̃≲ 1900 and for a mass
ratio between 0.73 and 1. We note that the model
parameters were determined using the hybrid waveform
of a specific equal-mass binary. The relative error of the
tidal-part amplitude model is always within 5% for
f ≲ 900 Hz, and in particular, is always within 10% for
Λ̃ ≤ 850 at 1000 Hz.
We checked the validity of our waveform model by

computing the distinguishability and the mismatch with
respect to the hybrid waveforms. We showed that the
distinguishability for a signal-to-noise ratio of 50 and the
mismatch between our waveform model and the hybrid
waveforms are always smaller than 0.25 and 1.1 × 10−5,
respectively. We found that the distinguishability and the
mismatch between the SEOBNRv2T waveforms and the
hybrid waveforms are as small as that of our waveform
model for Λ̃≲ 600, but they become larger for larger values
of Λ̃. Large values of the distinguishability and the
mismatch were found between the hybrid waveforms
and waveform models employing the PN tidal formulas
of Eqs. (3.6) and (3.7). We reconfirmed that the lack of the
higher-order PN terms in the point-particle part of gravi-
tational waves is problematic: we found that the PN
waveform model employing TaylorF2 as the point-particle
approximant of gravitational waves is not suitable for the
case that the signal-to-noise ratio is larger than 25 (which is
smaller than the signal-to-noise ratio of GW170817 [3]),
irrespective of the values of Mc, η, and Λ̃.

We also computed the systematic error of our waveform
model in the measurement of binary parameters, employing
the hybrid waveforms as hypothetical signals. We found that
the systematic error of our waveform model in the meas-
urement of Λ̃ is always smaller than 20.We also showed that
it is smaller than or at most comparable to the variation of Λ̃
with respect to the mass ratio. On the other hand, we found
that Λ̃ can be overestimated by ∼100 for Λ̃≳ 600 when
employing the PN tidal formulas of Eqs. (3.6) and (3.7).
Assuming that the approximate correlation between

ΔΛ̃ and the value of distinguishability found in Fig. 7 holds
for the SEOBNRv2Twaveforms, we found that the system-
atic error of the SEOBNRv2T waveforms in the measure-
ment of Λ̃ is as large as ∼50 for Λ̃≳ 1200, and in particular,
∼100 for Λ̃ ≈ 1900. This indicates that an improvement of
the TEOB formalism is needed for large values of Λ̃ to
accurately constrain Λ̃. We also note that, whilewe restricted
our analysis up to f ¼ 1000 Hz, the difference between the
hybrid waveforms and the SEOBNRv2T waveforms would
be more significant in a higher frequency range [29] (the
gravitational-wave frequency at the time of maximum
amplitude is ≈1500 Hz for 15H125-125 or 15H135-135,
and much higher for softer equations of state).
We estimated the statistical error in the measurement of

binary parameters employing the standard Fisher-matrix
analysis. We obtained results consistent with the previous
studies [10,12,19]: we reconfirmed that the statistical error
in the measurement of Λ̃ strongly depends on the upper-
bound frequency of the analysis, and not on η. We also
reconfirmed that the values of the statistical error in the
measurement of Mc and η become large, and in particular,
the statistical error of η increases by a factor of ∼2 if the
tides are considered in the analysis. We found that the
statistical error for the measurement of Λ̃ is more than 6
times larger than the systematic error for a hypothetical
event with a signal-to-noise ratio of 50. This suggests that
for events with a signal-to-noise ratio ≲100, the systematic
error in our waveform model is unlikely to cause serious
problems in the parameter estimation. We also showed that
the statistical error for the measurement of Λ̃ is larger than
the variation of Λ̃ with respect to the mass ratio even for a
signal-to-noise ratio of 100.
In this work, we focused only on frequencies up to f ¼

1000 Hz to avoid contamination from the post-merger
waveforms for f ≳ 1000 Hz. Pushing the upper-bound
frequency of the analysis to higher frequencies is impor-
tant to constrain Λ̃ more strongly. Thus, modeling the
post-merger waveforms is the next important task for
constructing the template of gravitational waves from
binary neutron stars.
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APPENDIX A: POINT-PARTICLE PART
MODEL FOR GRAVITATIONAL WAVES

To construct our waveform model in the frequency
domain, an analytic model is required for the point-particle
part of gravitational waves. TaylorF2 is not accurate enough
for this purpose in the high-frequency region (≳100 Hz).
There exists a phenomenological frequency-domain model
called PhenomD [38], which provides a more accurate
waveform model for the point-particle part of gravitational
waves thanTaylorF2.4However, PhenomD is not suitable for
our purpose, because the phase difference of the PhenomD
waveforms from the SEOBNRv2 waveforms (which we
employ as the fiducial point-particle approximant of gravi-
tational waves in this work) is as large as ∼0.05 rad for
10 Hz ≤ f ≤ 1000 Hz for a nonspinning equal-mass binary
withm0 ¼ 2.7 M⊙. This value of the phase error is as large
as that of our tidal-part phase model derived in Sec. II, and
thus, it may prevent the accurate estimation of both system-
atic and statistical errors of our tidal-part waveform model.
Therefore, we derive a phenomenological model for the
point-particle part of gravitational waves which reproduces
the SEOBNRv2 waveforms (where the error in the phase is
smaller than 0.01 rad) focusing on the typical mass range of
binary neutron stars [53].
In this work, we extend TaylorF2 by adding some

higher-order PN terms as in the prescription of
PhenomD. We employ the 3.5PN- and 3PN-order formulas
for the phase and amplitude, respectively, for TaylorF2
[38], and consider higher-order PN terms up to the 6PN
order, taking the dependence on the symmetric mass ratio
into account only up to the linear order of 1 − 4η. We note

that 1 − 4η ≈ 0.031 even for a mass ratio of 0.7. The form
of the phase model is given as

ΨTF2þ ¼ ΨTaylorF2 þ
3

128η
x−5/2

×

�X12
n¼9

½að0Þn þ að1Þn ð1 − 4ηÞ�xn/2
	
; ðA1Þ

where aðiÞn ðn ¼ 9 � � � 12; i ¼ 0; 1Þ are the fitting parameters
of the phase model. We neglect the 4PN term in the phase
model because it is a linear term with respect to the
gravitational-wave frequency and can be absorbed by
changing the time origin of the waveforms. To determine
these parameters, we generate the Fourier spectra of binary
black hole waveforms with η ¼ 0.2500, 0.2495, 0.2490,
0.2485, 0.2480, 0.2475, and 0.2470, employing the
SEOBNRv2 formalism. The fitting parameters are deter-
mined by searching for the values that minimize

Ĩ ¼
X
i

Z
fmax

fmin

jΨBBHðf; ηiÞ −ΨTF2þðf; ηiÞ

− 2πt0ðiÞf þ ϕ0ðiÞj2
df
f
; ðA2Þ

where ΨBBH denotes the frequency-domain phase of the
SEOBNRv2 waveforms, and i denotes the index of the
waveforms for each mass ratio. We use a weight of 1/f for
the fit so that the higher-order correction does not induce an
error in the low-frequency part of ΨTF2þ. The arbitrary
phase and time shifts of each waveform, ϕ0ðiÞ and t0ðiÞ, are
simultaneously optimized when we fit the parameters. fmin

and fmax are set to be 0.000 123 137m−1
0 and 0.029 553m−1

0 ,
respectively, to cover the frequency range 10–1500 Hz for
m0 ¼ 2.4–3.0 M⊙. The best-fit parameters are obtained as
follows:

að0Þ9 ¼ −31 638.7;

að0Þ10 ¼ 115 409;

að0Þ11 ¼ −206 911;

að0Þ12 ¼ 161 911;

að1Þ9 ¼ −57 537.8;

að1Þ10 ¼ 234 839;

að1Þ11 ¼ −525 206;

að1Þ12 ¼ 431 837: ðA3Þ

The amplitude model for the point-particle part of
gravitational waves is also derived in the same way: based
on the TaylorF2 approximant, we add higher-order PN
terms up to 6PN order, that is,

4There are frequency-domain gravitational-wave models for
binary black holes called SEOBNRv2/v4 reduced order models
[46,57], which accurately reproduce the spectrum of the
SEOBNRv2/v4 waveforms. However, since they are not described
in simple analytic forms, they are not suitable for the parameter
studies in this work, such as the standard Fisher-matrix analysis.
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ATF2þ ¼ ATaylorF2 þ
ffiffiffiffiffiffiffiffi
5πη

24

r
m2

0

Deff
x−7/4

×

�X12
n¼7

½Að0Þ
n þ Að1Þ

n ð1 − 4ηÞ�xn/2
	
; ðA4Þ

and we determine the fitting parameters AðiÞ
n by finding the

minimum of

Ĩ0 ¼
X
i

Z
fmax

fmin

jABBHðf; ηiÞ − ATF2þðf; ηiÞj2
df
f
; ðA5Þ

where ABBH is the amplitude of the SEOBNRv2 wave-
forms. The best-fit parameters for the amplitude model are
as follows:

Að0Þ
7 ¼ −330.379;

Að0Þ
8 ¼ 6330.7;

Að0Þ
9 ¼ −47 778.7;

Að0Þ
10 ¼ 171 693;

Að0Þ
11 ¼ −299 179;

Að0Þ
12 ¼ 208 802;

Að1Þ
7 ¼ 2100.87;

Að1Þ
8 ¼ −36 174.2;

Að1Þ
9 ¼ 223 988;

Að1Þ
10 ¼ −599 068;

Að1Þ
11 ¼ 597 067;

Að1Þ
12 ¼ −44 145.7: ðA6Þ

Figure 11 shows the phase error (top panel) and
amplitude error (bottom panel) of the point-particle part
models with respect to the SEOBNRv2 waveforms. In
particular, we compare these models with the SEOBNRv2
waveforms for the case where η ¼ 0.244, which are not
adopted in our parameter determination. We note that the
phase difference is computed after the phases are aligned by
employing Eqs. (2.12) and (2.13) for fmin ≤ f ≤ fmax. The
phase error is always smaller than 0.01 rad, and it is much
smaller than the phase error of our tidal-part phase model
derived in Sec. II. The relative error of the amplitude
defined by ðABBH − ATF2þÞ/ABBH is always smaller than
1%, which is also smaller than the relative error of the tidal-
part amplitude model derived in Sec. II. In particular, this
shows that—although the SEOBNRv2 waveforms with η ¼
0.244 are not used to determine the model parameters—the
point-particle-part models are accurate enough for our
analysis up to such a value of η. In this paper, we refer to
the waveform model composed of these point-particle-part
phase and amplitude models as TF2+.

We note that there is an updated version of the EOB
formalism for the point-particle part of gravitational waves:
the SEOBNRv4 formalism [46]. The SEOBNRv4 formal-
ism is calibrated employing more numerical-relativity
waveforms (in particular, the waveforms of spinning binary
black holes), and hence it may be expected to be more
accurate in a wider parameter region than the SEOBNRv2
formalism. However, if we focus specifically on a non-
spinning equal-mass configuration, we find that the
SEOBNRv2 waveforms agree with the numerical-relativity
waveforms better than the SEOBNRv4 waveforms.
In Fig. 12, we show the phase difference of the
SEOBNRv2/v4 waveforms from the numerical-relativity
waveforms taken from the SXS catalog (SXS:BBH:0180
[58,59], a nonspinning equal-mass binary black hole case).
Here, we align the waveforms for 1000m0 ≤ t ≤ 3000m0,
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FIG. 11. The phase error (top panel) and relative amplitude
error (bottom panel) of our point-particle part models (A1) and
(A4), with respect to the SEOBNRv2 waveforms. The phase
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Eqs. (2.12) and (2.13) for fmin ≤ f ≤ fmax. The relative error of
the amplitude is defined by ðABBH − ATF2þÞ/ABBH.
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where t denotes the time of the waveform data. We note that
the location of the alignment window does not affect the
results. We find that the phase difference of the
SEOBNRv4 waveforms from the numerical-relativity
waveforms is larger than 0.1 rad for the last ≈6 gravita-
tional-wave cycles before the amplitude peak is reached.
On the other hand, the phase difference of the SEOBNRv2
waveforms from the numerical-relativity waveforms is
always smaller than 0.1 rad for the last ≈2 cycles, and in
particular, it is smaller than 3 × 10−3 rad until the gravita-
tional-wave frequency reaches 1000 Hz for m0 ¼ 2.7 M⊙.
Therefore, in this paper, we employ the SEOBNRv2 and
SEOBNRv2T formalisms to derive the fiducial point-
particle part of gravitational waves and the low-frequency
part of the hybrid waveforms, respectively.

APPENDIX B: EFFECT OF THE
POST-MERGER WAVEFORMS IN THE

FREQUENCY-DOMAIN PHASE

In this work, we restrict the frequency range of gravi-
tational waves to 10–1000 Hz to avoid contamination from
the post-merger waveforms, which can be modified by
detailed physical effects that are not taken into account in
our current numerical-relativity simulations (see, e.g.,
Ref. [60] for simulations with physical viscosity). In this
section, we show that the effect of the post-merger wave-
forms is indeed present in the phase of the gravitational-
wave spectrum for f ≳ 1000 Hz.
To clarify the effect of the post-merger waveforms on the

phase of the gravitational-wave spectrum, we prepare
numerical-relativity waveforms from which post-merger
waveforms are removed by suppressing the amplitude after
the amplitude peak is reached. More precisely, we smoothly
suppressed the amplitude of the waveforms so that it
exponentially decays just before its first local minimum
is reached after the peak (see the top panel in Fig. 13). The
phase in the time domain is not modified in this procedure.

Employing these waveforms, we calculate the fre-
quency-domain phase difference between the numerical-
relativity waveforms with and without post-merger wave-
forms. As is shown in the bottom panel of Fig. 13, the phase
difference in the gravitational-wave spectra becomes larger
than 0.1 rad for f ≳ 1200 Hz, and in particular, it becomes
larger than 1 rad for f ≳ 1700 Hz for 15H125-125. This
clearly shows that the effect of the post-merger waveforms
is present in the phase of the gravitational-wave spectrum
for f ≳ 1200 Hz withΛ ≈ 1900. For this reason, we restrict
our study only up to 1000 Hz in this work.

APPENDIX C: PHASE ERROR OF
NUMERICAL MODELS

In Ref. [29], we performed simulations for the unequal-
mass models 15H121-151, 125H121-151, H121-151,
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HB121-151, and B121-151 with Δxfinest ¼ 102, 95, 89, 82,
and 78 m, respectively. With these grid spacings, the semi-
major diameter of the neutron stars is covered by about 220
grid points. We updated simulations for these models with
≈260 grid points, as shown in Table I. We also performed
simulations for new unequal-mass models 15H116-158,
125H116-158, H116-158, HB116-158, and B116-158,
and new equal-mass models 15H125-125, 125H125-125,

H125-125, HB125-125, and B125-125. In this appendix, we
summarize the phase error due to the finite grid spacing.
Table V shows the finest grid spacing in our AMR grid

(see Ref. [29] for details). Figure 14 plots phase differences
between the best-resolved run and the other resolution runs
for 15H121-151 (top panel), H116-158 (middle panel), and
B125-125 (bottom panel). As discussed in Ref. [29] for the
equal-mass model with 1.35 − 1.35 M⊙, the phase error
shows a nonmonotonic behavior with respect to the grid
spacing. That is, the absolute phase difference between
N ¼ 182 and 150 runs is larger than that between N ¼ 182
and N ¼ 130 runs up to a few milliseconds before the peak
amplitude is reached. Nonetheless, it is at mostOð0.01Þ rad
and the phase difference between N ¼ 182 and N ¼ 150
runs at the time that the peak amplitude is reached is
about 0.1 rad.
To estimate the phase error due to the finite grid spacing,

we check the convergence property of the phase at the time
that the peak amplitude is reached (hereafter referred to as
the peak phase). We assume that the peak phase for a run
with grid resolution N is written as

ϕpeakðNÞ ¼ ϕpeakð∞Þ − Δϕpeakð182Þ
�
182

N

�
p
; ðC1Þ

where ϕpeakð∞Þ, Δϕpeakð182Þ, and p denote the peak phase
for the continuum limit, the error of the peak phase for the
N ¼ 182 run due to the finite grid spacing, and the
convergence order, respectively. The difference of the peak
phase between the N ¼ 182 run and the other resolution
runs can be written as
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FIG. 14. Phase difference between the highest-resolution run
and the others as a function of time. The vertical dashed line
shows the time at which the gravitational-wave amplitude reaches
the peak for the highest-resolution run. (Top) 15H121-151.
(Middle) H116-158. (Bottom) B125-125.

TABLE V. Model name and the finest grid spacing Δxfinest in
the unequal-mass and equal-mass models. Δxfinest is listed for
N ¼ 182, 150, 130, 110, 102, and 90. Each refinement domain
consists of a uniform, vertex-centered Cartesian grid with
(2N þ 1, 2N þ 1, N þ 1) grid points for ðx; y; zÞ where we
impose an orbital plane symmetry.

Model Δxfinest (m)

15H121-151 84, 102, 118, 138, 150, 170
125H121-151 79, 95, 110, 130, 140, 159
H121-151 73, 89, 103, 121, 131, 148
HB121-151 68, 82, 95, 112, 121, 137
B121-151 64, 78, 90, 106, 114, 129
15H116-158 86, 104, 120, 142, 153, 173
125H116-158 80, 98, 113, 133, 143, 163
H116-158 75, 91, 105, 124, 134, 152
HB116-158 70, 85, 98, 115, 124, 140
B116-158 64, 78, 90, 106, 115, 130
15H125-125 84, 102, 117, 138, 149, 169
125H125-125 79, 95, 110, 129, 140, 158
H125-125 73, 89, 102, 121, 130, 147
HB125-125 68, 82, 95, 112, 121, 137
B125-125 64, 78, 90, 106, 114, 130
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ϕpeakð182Þ − ϕpeakðNÞ ¼ Δϕpeakð182Þ
��

182

N

�
p
− 1

�
;

ðC2Þ
and we determine Δϕpeakð182Þ and p by fitting the data
obtained by the simulations.

Figure 15 plots the difference of the peak phase between
the N ¼ 182 run and the other resolution runs as a function
of Δϕpeakð182Þ½ð182N Þp − 1� employing the values of
Δϕpeakð182Þ and p determined for each binary neutron
star model. Figure 15 shows that the nearly convergent
result is likely to be achieved for all of the cases, and the
order of the convergence is likely to be about 2–4.
However, a slight deviation of the data points from the
fitting function (C2) is also found irrespective of the value
of N. This suggests that the error of ≈0.1 rad which does
not converge monotonically with the improvement of the
grid resolution is present in the data. For the equal-mass
model with 1.25 − 1.25 M⊙, the convergence order is
larger than 4 for some cases, and this may be due to an
irregular error: because the difference of the peak phase
between the N ¼ 182 run and the other resolution runs is
typically smaller for the equal-mass model with
1.25 − 1.25 M⊙, the fit can be affected more strongly
by an irregular error than other mass models. According to
the determined values of Δϕpeakð182Þ, the error of the peak
phase for the N ¼ 182 run due to the finite grid spacing is
about 0.1–0.5 rad. Considering the presence of the irregular
error, we conservatively conclude that the phase error
stemming from the finite grid spacing is 0.2–0.6 rad. In
particular, it is smaller than 0.3 rad for the equal-mass
models with 1.25 − 1.25 M⊙, which are used to determine
the model parameters.
To quantify how the phase error due to the finite grid

spacing affects our analysis, we also calculate the distin-
guishability between the hybrid waveforms derived
employing the numerical-relativity waveforms of the
N ¼ 182 and 150 runs. We find that the value of the
distinguishability is always much smaller than 0.1 for a
signal-to-noise ratio of 50. This indicates that the phase
error of numerical-relativity waveforms due to the finite
grid spacing has only a minor effect on the results of the
analysis performed in this paper.

APPENDIX D: UNCERTAINTY IN FITTING
PARAMETERS

In Sec. II, the tidal-part model both for the phase and
amplitude is determined only by employing the waveform
of 15H125-125 as a reference (we refer to this tidal-part
waveform model as the fiducial model). The values of the
model parameters, however, depend on the choice of the
waveform for the parameter determination. In this section,
we examine the uncertainty of our tidal-part model, in
particular, for the gravitational-wave phase due to the
choice of the particular waveform for the parameter
determination.
Table VI shows the parameters of our tidal-part phase

model determined in the same way as in Sec. II C but by
employing different hybrid waveforms as references. For
most cases, while the parameters vary by 10–100%, the
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distinguishability with respect to our fiducial waveform
model is much smaller than 1 for 10 Hz ≤ f ≤ 1000 Hz.
Thus, there are practically only small differences among the
waveform models determined from different hybrid wave-
forms. The models determined from the waveforms of
B135-135 and B125-125 have relativity large distinguish-
ability values with respect to our fiducial waveform model.
This is due to the fact that, for B135-135 and B125-125, the
tidal deformability is so small that its effect cannot be
accurately extracted from the numerical-relativity wave-
form (i.e., the magnitude of the phase modified by the tidal
deformability is as small as the numerical error in phase).
We also examine the uncertainty due to the choice

of the version of the TEOB formalism: v2 or v4. In the
same way as in Sec. II, we construct the hybrid wave-
forms by employing the SEOBNRv4T waveforms as the
low-frequency part, and calculate their distinguishability
from the hybrid waveforms obtained by employing the
SEOBNRv2T formalism. We find that the distinguish-
ability between these two hybrid waveforms is typically
larger than 1 for ρ ¼ 50 for equal-mass cases with
m0 ¼ 2.7 M⊙. This large difference stems from the differ-
ence in the point-particle parts of gravitational waves in the
SEOBNRv2/v4 formalisms. Comparing only the tidal-part
phases of these two hybrid waveforms, we find that the
phase difference is always smaller than 0.05 rad.
Furthermore, the distinguishability between those two tidal
parts is always smaller than 0.2 for ρ ¼ 50 and for 10 Hz ≤
f ≤ 1000 Hz if we employ the same approximant for the
point-particle part of gravitational waves. Therefore,
employing the SEOBNRv4T formalism instead of the
SEOBNRv2T formalism makes only a small change to
the tidal-part waveform model.

APPENDIX E: COMPARISON WITH
DIETRICH+ 17

In this section, we compare our tidal-part phase model
with that in Ref. [37]. In Ref. [37], the tidal-part phase

model was derived in the time domain, and then it was
transformed to a frequency-domain model employing the
stationary-phase approximation. Their fitting formula is
qualitatively different from ours because the model of
Ref. [37] only considered the linear-order effects of the
tidal deformability, while the nonlinear term is considered
in our model.
To quantify the difference between two tidal-part phase

models, we compute the distinguishability between them
for 10 Hz ≤ f ≤ 1000 Hz employing TF2+ as the point-
particle part of gravitational waves. Specifically, Eq. (A4) is
employed for the amplitude to focus on the difference in
the phases of the tidal parts. In Fig. 16, we show the
distinguishability as a function of Λ ¼ Λ1 ¼ Λ2 for the
case of an equal-mass binary with m0 ¼ 2.7 M⊙.
The signal-to-noise ratio ρ is set to be 50. We find that
the distinguishability is larger than 0.9 for 500≲ Λ≲ 1100.
This indicates that the model of Ref. [37] and our model are
distinguishable at the 1σ level for ρ ≈ 55 for
500≲ Λ≲ 1100. Figure 16 also indicates that the differ-
ence between the waveform model of Ref. [37] and our
waveform model is larger than the difference between the
SEOBNRv2T waveforms and our waveform model.
The distinguishability increases as the value of Λ

increases for Λ≲ 800. It reaches a peak at Λ ≈ 800, and
decreases for Λ≳ 800. This behavior can be understood as
follows: the model of Ref. [37] gives a larger coefficient for
the linear term of Λ in the phase model than our model,
while the nonlinear correction is not present in Ref. [37],
and the difference between the two models increases as the

TABLE VI. The variation of the model parameters when
employing different hybrid waveforms for the parameter deter-
mination. Δρ denotes the distinguishability for 10 Hz ≤ f ≤
1000 Hz with respect to our fiducial waveform model for the case
where ρ ¼ 50, m0 ¼ 2.7 M⊙, η ¼ 0.25, and Λ1 ¼ Λ2 ¼ 1000.

Model a p Δρ

15H135-135 6.111 3.903 0.07
125H135-135 8.156 4.038 0.04
H135-135 8.230 4.054 0.04
HB135-135 15.26 4.367 0.15
B135-135 115.4 5.348 0.38
125H125-125 11.48 4.211 0.05
H125-125 11.32 4.227 0.13
HB125-125 23.64 4.611 0.31
B125-125 2981 6.950 0.75
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value of Λ increases. As the nonlinear correction in our
model becomes significant, the tidal effects in the phase are
enhanced in our model. This reduces the difference
between the two models, and thus the distinguishability
decreases as the value of Λ increases.
We also compare our waveform model with that of

Ref. [37], of which model parameters are recalibrated using
our hybrid waveforms. Here, the model parameters of
Ref. [37] are recalibrated by minimizing Eq. (2.16). As an
illustration, in Fig. 16, we show the cases where the hybrid
waveforms 125H125-125 (Λ̃ ≈ 1400) and H135-135

(Λ̃ ≈ 600) are used for the recalibration. We find that the
difference between our waveform model and that of
Ref. [37] does not become significantly small (and some-
times it even becomes large) even if we recalibrate the
model parameters of Ref. [37] by using our hybrid
waveform. This indicates that the difference between
our waveform model and that of Ref. [37] is not only
due to the difference in the coefficients of the liner terms
with respect to Λ̃, but also to the fact that the nonlinear tidal
correction is considered in our model but not in the model
of Ref. [37].
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