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ABSTRACT
As an extension of our previous work, we investigate the dynamical instability against non-
axisymmetric bar-mode deformations of differentially rotating stars in Newtonian gravity by
varying the equations of state and velocity profiles. We performed the numerical simulation and
the follow-up linear stability analysis by adopting polytropic equations of state with polytropic
indices n = 1, 3/2 and 5/2, and with two types of angular velocity profiles (the so-called
j-constant-like and Kepler-like laws). It is confirmed that rotating stars with a high degree
of differential rotation are dynamically unstable against bar-mode deformation, even when
the ratio of the kinetic energy to the gravitational potential energy β is of order 0.01. The
criterion for the onset of bar-mode dynamical instability depends weakly on the polytropic
index n and the angular velocity profile, as long as the degree of differential rotation is high.
Gravitational waves from the final non-axisymmetric quasi-stationary states are calculated
using the quadrupole formula. For proto-neutron stars of mass 1.4 M�, radius ∼30 km and
β � 0.1, such gravitational waves have a frequency of ∼600–1400 Hz, and the effective
amplitude is larger than 10−22 at a distance of about 100 Mpc, irrespective of n and the angular
velocity profile.

Key words: gravitational waves – stars: neutron – stars: oscillations – stars: rotation.

1 I N T RO D U C T I O N

In our previous paper (Shibata et al. 2002), we studied dynami-
cal bar-mode stabilities of differentially rotating stars in Newtonian
gravity. In that study, we adopted a polytropic equation of state with
polytropic index n = 1 and the so-called ‘j-constant-like’ angular
velocity profile in which the magnitude of the angular velocity de-
creases as �−2 at large values of � , where � denotes the cylindrical
radius. We found that rotating stars with a high degree of differen-
tial rotation are dynamically unstable even for β ≡ |T /W | ∼ 0.03,
where T and W are the rotational and gravitational potential ener-
gies. This value is much smaller than the long-believed criterion
of β ≈ 0.27 for the onset of the bar-mode dynamical instability of
rotating stars (see Shibata et al. 2002 for a review). We also found
that after the instability sets in, such unstable rotating stars with
0.03 � β � 0.15 eventually settle down to non-axisymmetric ellip-
soidal quasi-stationary states.

There are, however, two questions which have not been answered
in the previous work (Shibata et al. 2002). One is associated with our
choice of the j-constant-like angular velocity profile. It is well known
that accretion discs around a central body with constant specific an-
gular momentum are unstable against the Papaloizou–Pringle in-
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stability (Papaloizou & Pringle 1984). On the other hand, accretion
discs are stable if the velocity profile is Kepler-like. One could claim
that the bar-mode instability that we found would not be universal
and might set in only for a very special rotational profile such as
the j-constant-like law as in the Papaloizou–Pringle instability. In
addition, we focused only on a stiff equation of state with n = 1 in
the previous paper, so that one could also ask if the instability sets
in for softer equations of state.

To answer these questions, we have performed numerical simu-
lations of differentially rotating stars for which we vary the poly-
tropic index and the angular velocity profile. We report the nu-
merical results in this paper. We will show that irrespective of the
polytropic index n and the angular velocity profile, a rotating star
with a high degree of differential rotation is dynamically unsta-
ble against bar-mode deformation even when β is of order 0.01.
We will also show that an unstable star with a small value of
β eventually settles down to a non-axisymmetric quasi-stationary
state, which is a strong emitter of quasi-periodic gravitational
waves.

The paper is organized as follows. In Section 2, we describe our
methods of numerical analysis, and the numerical results are pre-
sented in Section 3. Section 4 is devoted to a summary and discus-
sion. Throughout this paper, we use the geometrical units G = c =
1 where G and c denote the gravitational constant and the velocity
of light, respectively.
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2 M E T H O D

2.1 Differentially rotating axisymmetric stars

We set a differentially rotating star in equilibrium, and investigate
the dynamical stability. Rotating stars in equilibrium are modelled,
using the polytropic equations of state, as P = Kρ� where P , ρ, K
and � = 1 + 1/n denote the pressure, density, polytropic constant
and adiabatic index, respectively. We choose n = 1, 3/2 and 5/2
(� = 2, 5/3 and 7/5).

As the angular velocity profile �(� ), we choose the so-called
j-constant-like law

� = �0 A2

� 2 + A2
, (1)

and the so-called Kepler-like law

� = �0

(
A2

� 2 + A2

)3/4

, (2)

where A is a constant, and �0 is the angular velocity about the sym-
metric axis. The parameter A controls the steepness of the angular
velocity profile: for smaller values of A, the profile is steeper and
as A → ∞, the rigid rotation is recovered. In this work, the values
of A are chosen to satisfy 0.1 � Â ≡ A/Req � 1, where Req is the
equatorial radius of the rotating star. For the rotation laws (1) and
(2), at large cylindrical radius, � behaves asymptotically as �−2

and �−3/2. This is why we refer to the profiles (1) and (2) as the
j-constant-like and Kepler-like laws.

In the limit as A → 0 with the profile (1), the specific angular
momentum becomes constant everywhere and � diverges at � =
0. We note that this profile has often been used in studies of non-
axisymmetric instabilities in tori and annuli (Papaloizou & Pringle
1984; Goodman & Narayan 1988; Tohline & Hachisu 1990; An-
dalib, Tohline & Christodoulou 1997). Here, however, we do not
consider tori and annuli and focus only on spheroidal stars for which
the density is not zero at � = 0. Thus, we cannot adopt this limiting
profile.

A rotating star is determined in terms of β = T /|W | and Â, for a
given rotational profile and polytropic index. Thus, in the following
we often refer to these two parameters to specify a rotating star.
Here, T and W are defined as

T = 1

2

∫
ρ� 2�2 d3x, (3)

W = 1

2

∫
ρφ d3x, (4)

where ρ and φ are the mass density and the Newtonian gravitational
potential. To specify a particular model, we may choose the axis
ratio of the rotating stars to be Ca instead of β. Here Ca is defined
as the ratio of the polar radius Rp to the equatorial radius Req, i.e.
Ca = Rp/Req. For the equations of state and the angular velocity
profiles that we study here, the value of Ca monotonically decreases
with an increase of β for a given set of Â and n. This is the reason
that Ca can be a substitute for β.

2.2 Investigation of dynamical stability

To investigate the dynamical stability against non-axisymmetric bar-
mode deformations, we performed a numerical simulation as well as
a linear stability analysis. We explain the methods of our numerical
computation separately below.

2.2.1 Numerical simulation

In the hydrodynamic simulation, we initially superimpose a
non-axisymmetric density perturbation on to an axisymmet-
ric equilibrium star. We focus mainly on the fundamental bar
mode, and simply add a nodeless density perturbation of the
form

δρ = δρ0(�, z)
x2 − y2

R2
eq

, (5)

where ρ0(� , z) denotes the density of the axisymmetric configura-
tion and δ is a constant. Throughout this work, we choose δ = 0.1.
For simplicity, the velocity is left unperturbed at t = 0. The growth
of the bar mode can be followed by monitoring the distortion pa-
rameter

η ≡ (
η2

+ + η2
×
)1/2

, (6)

where

η+ ≡ Ixx − Iyy

Ixx + Iyy
, (7)

η× ≡ 2Ixy

Ixx + Iyy
, (8)

and I ij(i , j = x , y, z) denotes the quadrupole moment defined
by

Ii j =
∫

ρxi x j d3x, (9)

where xi = (x , y, z). Simulations are performed using a 3D numer-
ical hydrodynamic implementation in Newtonian gravity (Shibata
et al. 1997; see also Shibata 2000 for results of various test simula-
tions with the identical hydrodynamic numerical scheme but in gen-
eral relativity). We adopt a fixed uniform grid of size 141 × 141 ×
141 in x, y, z coordinates, which covers an equatorial radius with
50 grid points initially. We also performed test simulations of size
71 × 71 × 71 (i.e. the grid spacing becomes twice as large) for
several selected cases and confirmed that the results depend weakly
on the grid resolution. We assume reflection symmetry with respect
to the equatorial plane. Since several of the rotating stars that we
chose have a flattened configuration, we set the grid spacing of z to
half of that of x and y.

2.2.2 Linear stability analysis

In the linear stability analysis, we employ the scheme developed
by Karino et al. (2000) and Karino, Yoshida & Eriguchi (2001).
The Euler perturbations of the physical quantities are replaced by
functions of the form f (r , θ ) eimϕ−iωt in the linearized hydrody-
namic equations. Here m is the azimuthal mode number. As a result,
the problem reduces to an eigenvalue problem for an eigenvalue ω

and the corresponding eigenfunctions of the perturbed quantities.
We assume an adiabatic relation between the Euler perturbation of
the pressure and of the density. Since the fundamental mode of the
m = 2 or bar-type oscillations is nodeless, we checked whether
the obtained eigenfunctions satisfy that condition. We have anal-
ysed the stability of the equilibrium configurations of n = 1
polytropes for two rotation laws (1) and (2) with several values
of Â.
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3 N U M E R I C A L R E S U LT S

3.1 Dynamical bar-mode stability

3.1.1 Results of the numerical simulation

The dynamical stability is studied for various combination of �, Â
and β, and for two angular velocity profiles in the numerical simu-
lation. In Figs 1 and 2, we summarize the results with regard to the
dynamical bar-mode stability for the j-constant-like and Kepler-like
angular velocity profiles, respectively. Here, the circles (crosses)
indicate that the stars of a given set of Â and β are dynamically un-
stable (stable). We focus only on spheroidal stars which are located
below the dashed curves plotted in Figs 1 and 2. (If the value of β

is larger than that on this curve for a given value of Â, the star is
toroidal.)

It is found that many rotating stars with a high degree of differen-
tial rotation with Â = 0.1 and 0.3 are dynamically unstable even for
β of order 0.01. In the case of the j-constant-like angular velocity
profile, most rotating stars with β � 0.01 and Â = 0.3 are dynami-

Figure 1. The dynamical bar-mode stability is shown in the β, Â plane for
the j-constant-like angular velocity profile. The circles and crosses indicate
that the rotating stars are unstable and stable, respectively. The dashed curves
denote the boundary which distinguishes spheroidal stars from toroidal stars
(spheroidal stars are located below the curves).

Figure 2. The same as Fig. 1 but for the Kepler-like angular velocity profile.

cally unstable for both � = 2 and 5/3. In the case of the Kepler-like
angular velocity profile, the threshold of Â for the onset of instabil-
ity for a given set of β and � appears to be slightly smaller than that
in the j-constant-like case. This is because the Kepler-like angular
velocity profile is not as steep as the j-constant-like profile for the
same value of Â. Indeed, for � = 2 and 5/3 and for Â = 0.3, there
is a wide parameter space around β ∼ 0.15 in which the stars are
stable against bar-mode deformation in the Kepler-like case. Such a
wide parameter space is absent in the j-constant-like angular veloc-
ity profile for Â = 0.3. For Â = 0.1, however, stars in a wide range
of β are unstable even in the Kepler-like angular velocity profile.
Thus, rotating stars with a high degree of differential rotation with
β of order 0.01 are dynamically unstable even in the Kepler-like
angular velocity profile.

The threshold of Â for the onset of dynamical instability for a
given angular velocity profile also appears to depend on �: for a
smaller value of �, the threshold of Â is smaller. For example, com-
pare the results with � = 5/3 and 7/5 in Fig. 2. For � = 5/3, stars
with Â = 0.3 and 0.03 �β � 0.1 are unstable, but for � = 7/5, all
the stars with β < 0.2 that we studied are stable for Â = 0.3. The
reason is that rotating stars with smaller values of � have a more
centrally condensed structure and as a result the effective degree of
differential rotation of the central core for stars with soft equations of
state can become very high only for a sufficiently small value of Â.

Rotating stars with a high degree of differential rotation are also
dynamically unstable for high values of β (�0.2) (see the results
for Â = 0.6 and 1 for the j-constant-like law and for Â = 0.3 for
the Kepler-like law). The axial ratio Ca of these stars is very small
(Ca � 0.3). In particular, for unstable stars with the Kepler-like
angular velocity profile with β � 0.2 and Â = 0.3, Ca ∼ 0.15.
Thus, they have an almost toroidal shape. On the other hand, for
unstable stars with a small value of β (�0.10), Ca � 0.5 and hence
the shape is not significantly toroidal.

An interesting feature is found for � = 2 and Â = 0.6 of the
j-constant-like angular velocity profile, and for � = 5/3, 2 and
Â = 0.3 of the Kepler-like angular velocity profile. In these cases,
the stability does not change monotonically with increase of β:

(1) stars with a sufficiently small value of β (�0.01) are stable
(we have not carried out simulations for β < 0.01, but since the
value of Ca with β � 0.01 is larger than 0.9, i.e. the star is almost
spherical, we assume that stars with β � 0.01 are stable);

(2) stars with 0.01 � β � 0.1 are unstable;
(3) stars with 0.1 � β � 0.2 are again stable; and
(4) stars with a sufficiently large value of β (�0.2) are again

unstable.

It has been widely believed that the value of β is a good indica-
tor to distinguish between unstable and stable stars. The examples
shown here, however, illustrate that β is not a good indicator for the
determination of dynamical stability of rotating stars with a high
degree of differential rotation.

The reason the stability does not change monotonically with β

is not clear. The likely reason is that the mode associated with the
stability for a high value of β is different from that for a small value.
This interpretation cannot, however, be proved at present because
of the following facts.

(i) The property of the unstable modes for a high value of β, such
as the perturbed density profile and the magnitude itself (β � 0.2),
is essentially the same as that for the well-known bar mode (i.e. the
m = 2 toroidal mode, see Chandrasekhar 1969). Hence, we identify
the unstable modes with a high value of β with the f modes.
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(ii) On the other hand, for a small value of β, the perturbed
density profile is also nodeless, and furthermore the real part of the
eigenfrequency is approximately proportional to (M/R3

eq)1/2 (see
Figs 10 and 11 below). These are the properties that the f mode
should have. This suggests that the unstable modes for a small value
of β might also be f modes.

We suspect that there is something different between two unstable
modes of high and low values of β. To find the difference, however,
it is necessary to understand precisely the definition of the f mode
against the bar deformation for differentially rotating stars. It is
not clear at present what properties, besides the nodeless density
profile and the eigenfrequency of order of magnitude ∼(M/R3

eq)1/2,
characterize the f mode, i.e. we do not know what to prove. Precisely
defining the f mode for differentially rotating stars is beyond scope
of this paper, and is left as a problem for the future.

Before closing this section, we address the following point. As
pointed out by Centrella et al. (2001), dynamical instability for the
m = 1 mode may set in for rotating stars with a high degree of
differential rotation. We have found no evidence that such instability
sets in. This seems to be due to the fact that we adopted only the stiff
equations of state. Centrella et al. (2001) studied the instability for
differentially rotating stars with a very soft equation of state with
n = 10/3. In such a soft equation of state, the instability associated
with the m = 1 mode plays an important role. However, this is not
likely to be the case in the stiff equations of state. Indeed, recently
Saijo et al. (2003) have pointed out that the instability of the m =
1 mode sets in only for differentially rotating stars with very soft
equations of state (n � 2.5) and with a large value of β (�0.15).

3.1.2 Results of the linear analysis

In Fig. 3, we display the numerical results of the linear stability
analysis for the same equilibrium models as shown in Figs 1 and
2 for the n = 1 polytrope. These figures show that the results of
the numerical simulation agree well with those of the linear sta-
bility analysis, which confirms the conclusion that rotating stars
with a high degree of differential rotation are dynamically unsta-
ble even for small values of β, irrespective of the angular velocity
profile. We note that the solid curve in the upper panel of Fig. 3
denotes the threshold of dynamical stability (i.e. above this curve
the star is dynamically unstable) against the well-known bar mode
(Chandrasekhar 1969) which was calculated and reported by Karino
& Eriguchi (2003).

3.2 Fate of unstable stars

In this section, we focus on rotating stars with the Kepler-like angu-
lar velocity profile, since the results for the j-constant-like angular
velocity profile with � = 2 are presented in the previous paper
(Shibata et al. 2002) and, moreover, we have found that the results
for � = 5/3 show qualitatively identical features.

In Figs 4–7, we display the time evolution of η as a function of �0t
for (�, Â) = (2, 0.3), (5/3, 0.3), (5/3, 0.1) and (7/5, 0.1). As shown
here, the value of η does not reach a value of order 1 but saturates
at order 0.1. This implies that the growth of the instability saturates
at a weakly non-linear stage. We note that for unstable stars with
β � 0.2 and Â = 0.3, the value of η increases to ∼1 irrespective of
�, implying that a highly deformed star is produced. There are sev-
eral numerical simulations in which such a highly non-axisymmetric
structure results after the onset of dynamical instability of differen-
tially rotating stars with a high value of β (e.g. Williams & Tohline
1987, 1988; Houser & Centrella 1996). The outcome of simulations
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Figure 3. The results of the linear stability analysis are shown in the β, Â
plane for (a) the j-constant-like and (b) the Kepler-like angular velocity pro-
files. The circles and crosses indicate that the rotating stars are unstable and
stable, respectively. The solid curve in the upper panel denotes the thresh-
old of the dynamical instability against the well-known bar mode which
was calculated by Karino & Eriguchi (2003). The dotted curves denote the
approximate threshold of the stability for small values of β.

Figure 4. Time evolution of η as a function of �0t for � = 2 and Â = 0.3,
and for the Kepler-like angular velocity profile.

for unstable stars with a high value of β found in the present numer-
ical computation is qualitatively the same as that in previous papers.
Thus, we do not discuss the results for such cases in the following.

After the perturbation saturates, the amplitude of η settles down
to a value of order 0.1. The approximate final values of η are

ηf




∼0.1 for (�, Â) = (2, 0.3),

�0.1 for (�, Â) = (5/3, 0.3),

∼0.2 for (�, Â) = (5/3, 0.1),

∼0.03 for (�, Â) = (7/5, 0.1).

(10)
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Figure 5. The same as Fig. 4 but for � = 5/3 and Â = 0.3.

Figure 6. The same as Fig. 4 but for � = 5/3 and Â = 0.1.

Figure 7. The same as Fig. 4 but for � = 7/5 and Â = 0.1.

Comparing the results of (�, Â) = (5/3, 0.3) and (5/3, 0.1) for
an identical value of Ca, it is found that ηf is larger for the smaller
value of Â. This implies that a stronger degree of differential rotation
increases the magnitude of the non-axisymmetric deformation.

It is also found that for smaller values of �, the final value of η is
smaller. This is because stars with smaller values of � have a more
centrally condensed structure and hence the effective steepness of
the differential rotation is smaller for smaller values of � for a given
set of Ca and Â.

Figure 8. The density contour curves at selected time steps for � = 2, Â =
0.3 and Ca = 0.7 and for the Kepler-like angular velocity profile. Here, P0

is 2π/�0. The contour curves are drawn for ρ/ρmax = 0.95, 0.9, 0.8, 0.7,
0.6, 0.5, 0.4, 0.3, 0.2, 0.1 0.01 and 0.001, where ρmax denotes the maximum
density at each time slice. The dashed curves are plotted for ρ/ρmax = 0.01
and 0.001.

Figure 9. The same as Fig. 8, but for � = 5/3, Â = 0.3 and Ca = 0.8.

In Figs 8 and 9, we display the snapshots of the density contour
curves in the equatorial plane at selected time steps for (�, Â, Ca) =
(2, 0.3, 0.7) and (5/3, 0.3, 0.8). The value of β is about 0.071 and
0.045, respectively. In both cases, the initial non-axisymmetric per-
turbation grows, changing the shape of the rotating stars to el-
lipsoidal. However, the perturbation does not grow to the highly
non-linear stage and hence neither a spiral arm nor a large bar is
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Figure 10. f̄ r of the ellipsoids formed after the onset of dynamical insta-
bility for the j-constant-like angular velocity profile. Filled circles and open
squares denote the results for (�, Â) = (2, 0.3) and (5/3, 0.3).

Figure 11. The same as Fig. 10, but for the Kepler-like angular velocity
profile. Filled circles, open squares, filled triangles and crosses denote the
results for (�, Â) = (2, 0.3), (5/3, 0.3), (5/3, 0.1) and (7/5, 0.1).

formed, in contrast to the outcome of simulations with a high value of
β � 0.2. Instead, a slightly deformed ellipsoid is the final outcome.
Since the deformed ellipsoid is almost stationary, η+ and η× oscillate
quasi-periodically in the late phase of the simulations. This result
is qualitatively the same as that for stars with the j-constant-like
angular velocity profile (Shibata et al. 2002).

In Figs 10 and 11, we show the frequency f r of the oscillation
of an ellipsoidal star in units of (M/R3

eq)1/2 as a function of initial
values of β for various sets of � and Â. The value of f r is determined
by the Fourier transform of η+ in the time domain. We note that the
rotational period of the ellipsoid is 2/ f r, and that the frequency
of the gravitational waves is f r. It is interesting to note that for
� = 2 and 5/3, the non-dimensional quantity f̄ r ≡ fr(R3

eq/M)1/2

lies in a narrow range between 0.2 and 0.35, irrespective of Â,
β and the angular velocity profile. For � = 7/5, f̄ r is between
0.4 and 0.55, which is larger than the values for � = 2 and 5/3.
However, it is still in a narrow range. The fact that the value of f̄ r

depends weakly on β suggests that the excited mode may be an
f mode.

3.3 Gravitational waves

As discussed in our previous paper (Shibata et al. 2002), dynamically
unstable rotating stars, which are deformed to non-axisymmetric
ellipsoidal objects, are likely to be sources of quasi-periodic gravi-
tational waves. In Figs 12–14, we show the gravitational waveforms
of the + mode along the z-axis (h+) and the luminosity (Ė) as a

Figure 12. Gravitational waves for h+ in units of M2/Req and the lumi-
nosity of gravitational waves Ė in units of (M/Req)5 as a function of �0t
for (�, Â) = (2, 0.3) and Ca = 0.705 (β ≈ 0.071).

Figure 13. The same as Fig. 12, but for (�, Â) = (5/3, 0.1) and Ca = 0.705
(β ≈ 0.046).

Figure 14. The same as Fig. 12, but for (�, Â) = (7/5, 0.1) and Ca = 0.705
(β ≈ 0.047).
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function of time for (�, Â) = (2, 0.3), (5/3, 0.1) and (7/5, 0.1). For
all the models discussed here, Ca = 0.705. The value of β is ≈0.071,
0.046 and 0.047, respectively. We note that the waveforms for the ×
mode are essentially the same as those for the + mode except for
the phase difference of π/4. Here, we calculate gravitational waves
using the quadrupole formula (Misner, Thorne & Wheeler 1973)
and define the waveforms by

h+ ≡ Ïxx − Ïyy

r
, h× ≡ 2 Ïxy

r
, (11)

and the luminosity by

Ė ≡ 1

5

∑
i, j

I−(3)
i j I−(3)

i j , (12)

where

I−i j = Ii j − δi j

3

∑
k

Ikk,

Ïi j = d2 Ii j

dt2
, I−(3)

i j = d3 I−i j

dt3
,

(13)

and r is the distance from the source to the detector. h+ and h× are
the waveforms observed along the z-axis.

In the early phase before the growth of the non-axisymmetric per-
turbation saturates, the amplitude of gravitational waves increases
gradually, together with the magnitude of η. Then the growth of the
amplitude saturates and subsequently quasi-periodic gravitational
waves are emitted for a much longer time than the rotational period.
The amplitude of quasi-periodic gravitational waves depends on �

and Â, as in the case of the saturated value of η. For a given set
of Â and Ca (or β), it is smaller for smaller values of �, because a
star with smaller values of � is more centrally condensed and hence
the magnitudes of the quadrupole moments are smaller for identical
mass and radius.

We found that for the parameters we studied (β �0.1, Â � 0.6 and
angular velocity profiles (1) and (2)), typical values of the amplitude
and luminosity of gravitational waves for � = 2 are rh+,× ∼ 0.1–
0.2(M2/Req) and Ė ∼ 0.005–0.01 (M/Req)5. For � = 5/3, the
magnitudes are only slightly smaller than those for � = 2. For � =
7/5, however, they are significantly smaller: rh+,× ∼ 0.05(M2/Req)
and Ė ∼ 0.001(M/Req)5.

Using the results shown in Figs 12–14, we can estimate the ex-
pected effective amplitude of gravitational waves from the non-
axisymmetric outcomes formed after the dynamical instability sat-
urates. Here, we pay particular attention to proto-neutron stars which
are likely to be formed soon after supernovae with mass ∼1.4 M�
and with a radius of several tens of kilometres. For the luminosity
Ė = 0.001ε(M/Req)5 where ε is a parameter of magnitude 1–10,
the emission time-scale of gravitational waves can be estimated as

τ ∼ T

Ė
= 100α0ε

−1

(
β

0.1

)(
Req

M

)4

M

= 6.1 sα0ε
−1

(
β

0.1

)(
Req

30 km

)4 (
M

1.4 M�

)−3

, (14)

where we set T = α0βM2/Req, and α0 is a constant which depends
on the value of � but very weakly on Â; for β � 0.1, α0 ∼ 0.8, 0.9
and 1.2, for � = 2, 5/3 and 7/5, respectively, within ∼10 per cent
error.

The characteristic frequency of gravitational waves is

f = fr ≈ 790 Hz

(
f̄ r

0.3

)(
Req

30 km

)−3/2 (
M

1.4 M�

)1/2

. (15)

Assuming that the non-axisymmetric perturbation would not be dis-
sipated by viscosity or magnetic fields on the emission time-scale of
gravitational waves (e.g. Baumgarte, Shapiro & Shibata 2000), the
accumulated cycles of a gravitational wave-train N are estimated as

N ≡ f τ = 4.8 × 103α0

(
ε

5

)−1 (
f̄ r

0.3

)

×
(

β

0.1

)(
Req

30 km

)5/2 (
M

1.4 M�

)−5/2

. (16)

The effective amplitude of gravitational waves is defined by heff ≡
N 1/2h where h denotes the characteristic amplitude of periodic grav-
itational waves. Using this relation, we find (Thorne 1987; Lai &
Shapiro 1995; Liu & Lindblom 2001; Liu 2002)

heff ≈ 3.2 × 10−22α
1/2
0

(
h̄

0.1

)(
ε

5

)−1/2 (
β

0.1

)1/2 (
f̄ r

0.3

)1/2

×
(

Req

30 km

)1/4 (
M

1.4 M�

)3/4 (
100 Mpc

r

)
(17)

where h̄ ≡ hr Req/M2. Since f̄ r, h̄, ε and β depend on the values
of �, Â and Ca, heff can vary by a factor of ∼3. However, for all the
rotating stars that we studied, heff is always larger than 10−22 at a
distance of ∼100 Mpc with Req ∼30 km and M ∼ 1.4 M�. Further-
more, the frequency of gravitational waves is about 1 kHz for Req ∼
30 km and M ≈ 1.4 M�. Thus, gravitational waves from proto-
neutron stars with a high degree of differential rotation, of mass
∼1.4 M� and with radius � 30 km at a distance of ∼100 Mpc, are
likely to be sources for laser interferometric detectors such as LIGO
(Thorne 1995), if the other dissipation processes are negligible.

4 S U M M A RY A N D D I S C U S S I O N

We have studied the dynamical bar-mode instability of differen-
tially rotating stars of polytropic equations of state. We chose three
polytropic indices and two angular velocity profiles in this study.
We found that rotating stars with a high degree of differential rota-
tion are dynamically unstable against non-axisymmetric bar-mode
deformation even with β � 0.27, irrespective of the polytropic in-
dices and angular velocity profile. The criterion of the value of β

for the onset of the instability depends on the rotational profile and
the equations of state, but the dependence is very weak if the degree
of differential rotation is high enough so that Â ∼ 0.1.

We estimated the effective amplitude of gravitational waves from
non-axisymmetric objects formed after the onset of dynamical insta-
bility. For typical proto-neutron stars of mass ∼1.4 M� and radius
several tens of kilometres, the effective amplitude of gravitational
waves at a distance of ∼100 Mpc is larger than 10−22, and the fre-
quency is ∼ 1 kHz. Therefore, gravitational waves can be sources for
laser interferometric detectors such as advanced LIGO (e.g. Thorne
1995).

As we mentioned above, this conclusion is drawn under the as-
sumption that dissipation of non-axisymmetric perturbations by vis-
cosity and magnetic fields is negligible. The dissipation time-scale
due to molecular viscosity and magnetic braking is likely to be
longer than 10 s (e.g. Baumgarte et al. 2000). Thus, these effects can
be safely neglected. However, turbulent magnetic viscosity (Balbus
& Hawley 1998) may be relevant for redistribution of the angular
momentum profile. This implies that a differentially rotating star
might be forced to adopt a rigidly rotating state on a dynamical
time-scale and hence the non-axisymmetric structure might disap-
pear. Much theoretical work has shown that the magnetic viscous
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effect can redistribute the angular momentum distribution of accre-
tion discs around central objects on a dynamical time-scale (Balbus
& Hawley 1998). To the best of our knowledge, however, there is no
work on the magnetic field effect for self-gravitating rotating stars.
The magnetic field would redistribute the angular momentum of the
differentially rotating stars on a dynamical time-scale, but it is not
clear whether it is strong enough to force rotating stars into an ax-
isymmetric state in a dynamical time-scale. To clarify this problem,
it is necessary to carry out magnetohydrodynamic simulations for
rotating stars. Such work should be done in the future.
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