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Gravitational waves induced by a spinning particle falling into a rotating black hole 

Yasushi Mine, Masaru Shibata, and Takahiro Tanaka 
Department of Earth and Space Science, Faculty of Science, Osaka University, Toyonaka, Osaka 560, Japan 

(Received 31 July 1995) 

Using the formalisms of Teukolsky and of Sasaki and Nakamura for the perturbation around a 
Kerr black hole we calculate the energy flux and the waveform of gravitational waves induced by a 
spinning particle of mass F and spin S falling from infinity with zero in-fall velocity into a rotating 
black hole of mass M > p and spin a along the z axis. The calculations are performed combining 
the Teukolsky formalism with the equations of motion of a spinning particle derived by Papapetrou 
and the energy-momentum tensor of a spinning particle derived by Dixon. Thus, there appear two 
additional effects due to the spin of the particle: one is due to the spin-spin interaction force which 
appears in the equations of motion and the other is due to the contribution of the energy-momentum 
tensor of the spinning particle. From numerical calculations, it is found that these spin effects are 
very important: In the case of a = S = 0.99M, the total energy flux becomes 0.0106(p/M)2MM1 
which is almost the same as that obtained by Davis et al. for a = S = 0, while in the case of 
a = -S = O.SSM, it becomes O.O298(p/M)‘M, i.e., about three times larger. We also show that 
the contribution of the energy-momentum tensor of the spinning particle dominates over that of 
the spin-spin interaction term in the equations of motion. The results obtained in this paper will 
be an important guideline to quantitative estimates of gravitational waves in numerical relativistic 
simulations of the head-on collision of two spinning black holes. 

PACS number(s): 04.30.Db, 04.25.N~ 
I. INTRODUCTION 

The last stage of coalescing compact binaries composed 
of neutron stars and/or black holes is one of the most 

promising sources of gravitational waves for the kilome- 
ter size laser-interferometric detectors such as the Laser 
Interferometric Gravitational Wave Observatory (LIGO) 
[l], VIRGO [z], and the laser-interferometric detector in 
space such as the Laser Interferometer Space Antenna 
(LISA) [3]. The evolution of such a binary can be classi- 
fied into two phases. One is the inspiraling phase [4]. In 
this phase, the binary evolves in the adiabatic manner ra- 
diating periodic gravitational waves. It has been recently 
realized that if we can detect the signal of gravitational 
waves in such a phase, and compare it with a theoretical 
template, we may be able to obtain not only a variety of 
parameters of binary such as the mass, spin, ,etc. [5,6], but 
also the cosmological parameters [5,7]. Hence theoretical 
research on this phase is a potentially important field of 
relativity [8]. On the other hand, research on the merging 
phase is also very important. When the separation of the 
binary becomes very small, the centrifugal force cannot 
be balanced with the strong gravity of general relativ- 
ity [4] or the tidal force [9], so that the binary cannot 
maintain the bound orbit and finally merges. In such a 
phase, the binary is in the strongly nonlinear gravity be- 
cawe the characteristic length scale of the system is less 
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than ten times of the Schwarzschild radius of the system. 
Therefore, by the detection of gravitational waves &xn 
merging of compact binary, we will be able to obtain the 
information of a highly general relativistic spacetime. 

In order not to fail to detect such a signal and in order 
to extract maximum information about the strong grav- 
itational field, however, we need to make a great deal of 
theoretical efforts. The reason is that the expected sig- 
nal is very weak [the typical signal-to-noise ratio (SNR) 
is less than lo]. To confirm the detection of such a signal 
and to extract ihformation from the signal of such a SNR, 
we have to predict the waveform of gravitational waves 
theoretically with a sufficient accuracy. In order to pre- 
diet the waveform accurately, a fully general relativistic 
three-dimensional (3D) simulation is necessary. However, 
it is extremely difficult to perform the simulation with a 
sufficient accuracy throughout the large dynamic range 
from the initial inspiral with a large separation to the 
final merging. In order to carry it out, we have to solve 
many problems, i.e., to find appropriate gauge and slice 
conditions for 3D numerical relativity. Moreover, it will 
be very time consuming to perform many simulations for 
several possible parameters of binary systems. Although 
much effort is focused on this field and much progress 
can be expected [lO,ll], it would be very helpful if we 
could adopt a more economical and sufficiently reliable 
approximate method to calculate the waveform and the 
energy flux of gravitritional waves. 

The perturbation calculation around a black hole is 
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II GRAVITATIONAL WAVES INDUCED BY A SPINNING 623 
expected to be an appropriate approximation method to 
treat coalescing binary black holes, in which we calcu- 
late gravitational waves induced by a particle of mass 
p orbiting around a black hole of mass M > p and 
spin a. Although we neglect the nonlinear effect of grav- 
ity induced by the small mass particle [i.e., we neglect 
O((@Q2) terms in the metric], it is still possible to in- 
vestigate that of the background rotating black hole. In 
fact, it is well known that the perturbation calculation 
gives a fairly good approximation to numerical relativis- 
tic calculations; the waveform and the total energy flux of 
gravitational waves in the head-on collision of two equal 
mass black holes [12] agree with the extrapolated value 
[p/(M,+p) --t l/2] of those obtained by perturbation cal- 
culation [13] with a fairly good accuracy (5 15%) 1121. 
The waveforms obtained in the simulations of the stellar 
core collapse 1141 also agree with those calculated by an 
approximate perturbation study of a rotating ring inspi- 
raling into a Schwarzschild black hole 115). Furthermore, 
the results obtained in the perturbation calculations are 
almost exact in the case when the mass of a companion 
/I is much smaller than the black hole, mass M. Thus 
in this paper, we pursue the perturbation calculation in 
order to make an approximate model of coalescence of 
spinning black holes. In particular, we here consider the 
head-on collision of two spinning black holes as a first 
step. 

When we calculate gravitational waves from merging 
of binary black holes, we should specify their masses and 
spins in general. Hence, to make an approximate model 
of coalescence of the rotating binary black holes by the 
perturbation calculation, we need to take into account 
the spin of the small mass particle as well as that of 
the background black hole. In the previous works the 
latter effect was incorporated but the former has not 
been considered [15]. To incorporate the former effect, 
one must know (1) the equations of motion and (2) the 
energy-momentum tensor of the small mass particle. For- 
tunately, we know that (1) have already been derived 
by Papapetrou (161, Dixon (171, and Wald [18], and so 
on, and (2) has also already been derived by Dixon [17]. 
Hence, by using the energy-momentum tensor of a spin- 
ning particle by Dixon as the source term in the Teukol- 
sky formalism [19], we can calculate the waveform and 
the energy flux of gravitational waves by a spinning small 
mass particle falling and/or orbiting around a rotating 
black hole. Here, a word of caution is appropriate. A 
Kerr black hole of mass p and spin S, where S is de- 
fined so that ISIp represents the spin angular momen- 
tum, has the quadrupole moment which becomes ps2 
and higher multipole moments (a &) as well. Since we 
neglect the contribution of these higher multipole mo- 
ments in this paper, our treatment is not complete to 
model the Kerr black hole. Incorporation of the higher 
multipole moments to represent the Kerr black hole is 
a future problem to be investigated. However, we stress 
that in our treatment, the terms related to the spin are 
taken into account, and they always appear even in the 
head-on collision of two equal mass black holes. Further- 
more, the spin effect remarkably affects the waveform 
and the energy flux of gravitational waves as shown be- 
low. This means that the spin effect must be important 
for the head-on collision of two spinning black holes of 
nearly equal masses. Thus the results obtained in this 
paper will be an important quantitative guideline to a 
future coming analysis of gravitational waves in realis- 
tic numerical simulations of the head-on collision of two 
spinning black holes, which have not been performed yet. 

The paper is organized as follows. In Sec. II, we re- 
view the energy-momentum tensor of a spinning parti- 
cle. Although there exists an excellent review by Dixon 
[17], his consideration is restricted to the case in which 
the spinning particle neither is a strongly self-gravitating 
body, nor possess the event horizon. Since we want to 
use his results extensively to examine the two black hole 
collision, some justification is necessary. We discuss this 
point at the end of this section. In Sec. III, by making 
use of this energy-momentum tensor in the context of 
Teukolsky formalism [19] which is a method to handle 
the metric perturbations on a Kerr background, we per- 
form numerical calculations of the energy flux and the 
waveform of gravitational waves induced by a spinning 
particle falling along the t axis. This is an extension 
of the perturbation calculations by Davis et al. [13], in 
which they considered gravitational waves by a nonspin- 
ning particle falling into a Schwarzschild black hole and 
that by Sasaki and Nakamura 1201, in which they consid- 
ered gravitational waves by a nonspinning particle falling 
along the t axis into a Kerr black hole. Calculating the 
energy flux and the waveform of gravitational waves for 
a wide range of the spin parameters of the particle and 
the Kerr black hole, we show the importance of the spin 
effect in the head-on collision of two spinning black holes. 

Throughout this paper, we use the unit of c = G = 1. 
We define the signature of the metric as (-, f, +, +) and 
the Riemann tensor as 

R pYx”w7 = 2V[pV4”X, 

where V, and uLT denote the covariant derivative and an 
arbitrary vector, respectively. The square bracket means 
the antisymmetrization. 

II. THE ENERGY-MOMENTUM TENSOR 
OF A SPINNING PARTICLE 

The energy-momentum tensor and the equations of 
motion of a particle with multipole moments in a curved 
spacetime have been discussed by many authors [16-N]. 

The equations of motion of a spinning particle were 
first derived by Papapetrou 1161, and then reformulated 
by Dixon [17], in which he discussed a general situation 
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where the particle has arbitrary higher multipole mo- 
merits. Here, we follow the Dixon’s approach neglecting 
the higher multipole moments other than mass monopole 
and spin dipole moments. In this case, the equations of 
motion become 

.$‘(~) = -;RM y,s(~(~))~“(T)sys(T), 

(2.1) 

where the vector pup(~) and the antisymmetric tensor 
&?“(T) represent the total momentum and the angu- 
la momentum, respectively, and U”(T) := dz’(~)/d~. 
Here we use the notation D/h to represent vpV,, and 
V, denotes the covariant derivative with respect to the 
background metric. Since we do not have the evolution 
equation of W”(T), in order to close this set of equations, 
we need to impose a supplementary condition which de- 
termines the center of mass of the spinning particle [17]: 

Y(T)U”(7) = 0. (2.2) 

Noting that the above equations of motion are 
reparametrization invariant, we can fix the orbital pa- 
rameter 7 to satisfy 

2Ly++(T) = -1. (2.3) 

Then using Eq. (2.3) with Eq. (2.2), the relation between 
tP and UP becomes 
V”(T) -U”(T) = -; (1 - ~RClo.(*(~))SCn(,)SB~(,)) -* S~“(7)RY7b~(7)~‘(~)S~~(~). (2.4) 
Thus, Eqs. (2.1) determine the orbital evolution of a spin- 
ning particle. 

This system has several conserved quantities. Regard- 
less of the symmetry of the background spacetime, we 
can show that upuP and S““S,,, conserve along the orbit 
[lS]. Hence we can normalize them as 

uhlII = -1, 

(2.5) 
9‘“s”” = 29. 

In the case when there is a Killing vector field [,, which 
satisfies the Killing equation 
1 
V(&") := p7'4 + v&J = 0, 

the quantity 

(24 

Q := up&, + ;YV,[,, (2.7) 

becomes a conserved quantity. From Eqs. (2.1), it can be 
easily verified that Q conserves along the orbit. 

Although it is originally given in a slightly different 
form, the energy-momentum tensor of the spinning par- 
ticle is described by Dixon as 117) 
6(4)(2 - E(7)) 
~ U@y2,T)V”)(2,7) - v7, su(~(l,T)11Y)(2,r)b(4)(~(r)))), (2.8) 

where 

6qz - Z(T)) = S(zO - zyT))s(z’ - Z’(T))S(Z” - Z”(T))S(2 -z”(T)). (2.9) 
Her‘?, we introduced bitensors u~~(z,~),u~(z,T), 
S’“(~,T) which are the extensions of variables 
@(T),@(T), S@(T) defined only along the world line1 

‘from now on, we use ti, v as the tensor indices associated 
with I and a,0 as that with z. 
I 

Z(T). To define v”(~,~),~“(~,~),s~~(~,~), we introduce 
a bitensor #‘.Jz, z) [21] which satisfies 

liiz p.&. 2) = Pa, 

(2.10) 

lim VUgFa(Z, 2) = 0. 
o--ti 
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For the present purpose, further specification of @‘=(z, z) 
is not needed. Using $‘a(~rt), we define u“(z,T), 
v+,T), and S’“(Z,T) as 

@(1,7) = B~P(~,4~)ww, 

q&7) = B”&,44w(+ (2.11) 

S’“(r,7) = s”a(~,z(T))~“p(~,z(~))s~~(T). 

It is easy to see that the divergence free condition of the 
energy-momentum tensor in Eq. (2.8) gives Eqs. (2.1). 
Noting the relations 

V,ji’&, +w (x, 2) = 0, 

(2.12) 

@(“)VP 

the divergence of Eq. (2.8) becomes 
I 
Since the third and fourth lines must vanish separately, 
we obtain Eqs. (2.1). 

All above results are obtained under the assumption 
that the particle is not a strongly self-gravitating body. 
Since we dare to use the Dixon’s formalism to the case 
of a rotating black hole, we need to give a certain justifi- 
cation of this extensive use. One crude argument is that 
if we believe that the strong equivalence principle holds, 
we will not be able to distinguish the black hole from an 
ordinary extended body of the same mass and spin. This 
might be also stated in the following way. 

We consider to put the spinning particle on a flat space- 
time. We denote the metric perturbation from the flat 
spacetime by h’” = figMy - +‘“, where g is the deter- 
minant ofg,,. Setting the harmonic coordinate condition 

h#” (Y = 0, 

the Einstein equation becomes 

(2.14) 

Ohpu = lG?r(-g)T’” + iF[h], (2.15) 

where we denote the flat d’Alembertian operator by 0 
and the energy-momentum tensor of the spinning par- 
ticle by 7”‘“. The second term of the right-hand side 
represents the nonlinear terms with respect to hp”. For 
simplicity, we choose t axis along the direction of the mo- 
tion and z axis along the direction of spin. In the linear 
approximation, we obtain the solution of Eq. (2.15) as 

h,,dx’dzY = -kdt2 - T2 
+Sxdy- ydxdt 

T T 
> (2.16) 

where the indices of h’” are lowered by the flat metric 
q,,“. On the other hand, the Kerr metric in the harmonic 
coordinate is written as 

h,.dz’dr”=-(~+~)dt’-~dra 

4+9rdy- ydr -- 
r2 T 

dt + 6h,,dx’dxY, (2.17) 

where 6h,, is of order (~/r)~ or @/r3. As long as 
M >> /L and A4 > S hold, these residual terms can be ne- 
glected because the background curvature scale is 2 M. 
Thus we can say that the metric perturbation caused by 
the energy-momentum tensor Eq. (2.8) denotes a correct 
leading asymptotic behavior of Kerr black holes with re- 
spect to the spin term. 

However, there may be several objections to this ar- 
gument. First, as already mentioned before, it might be 
impossible to justify to neglect these residual terms when 
we extrapolate p and S to the order of M. We only ex- 
pect that the extrapolation is meaningful as was so in the 
nonrotating particle case. 

Secondly, even in the case M > p, there is a sub- 
tle issue. The first two terms of Eq. (2.17) indicate the 
monopole contribution of the particle which also appears 
in the asymptotic metric of the Schwarzscbild black hole. 
The third term of Eq. (2.17) comes from the spin effect 
of the particle. Comparing Eq. (2.16) with Eq. (2.17), 
we find that the fame order or larger terms (i.e., $ 
terms) than the spin terms are neglected when we use 
the energy-momentum tensor Eq. (2.8). These terms are 
derived from Eq. (2.15) as a consequence of the next it- 
eration including the nonlinear source term A”“. Thus 
our following analysis using the energy-momentum ten- 
sor Eq. (2.8) might be only a qualitative estimate of the 
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spin effect. Howev&r, we would like to remind again that 
the neglected terms did not bring any serious quantita- 
tive error in the nonspinning particle case. Therefore, 
we expect that the present analysis also gives a fairly 
good quantitative estimate of gravitational waves from 
the head-on cdllision of two spinning black holes. 

III. GRAVITATIONAL WAVES INDUCED 
BY A SPINNING PARTICLE FALLING 

INTO A KERR BLACK HOLE 
ALONG THE .z AXIS 

In this section, we first briefly review the perturbation 
formalism of a Kerr black hole which was originated by 
Teukolsky [19] and developed by Sasaki and Nakamura 
[20]. Then, substituting the energy-momentum tensor 
discussed in the preceding section into the source term 
for the perturbation formalism, we evaluate gravitational 
waves induced by the spinning particle. 

A. Teukolsky formalism 

In the Teukolsky formalism, the waveform and the en- 
ergy flux of gravitational waves are calculated from the 
fourth Newman-Penrose quantity [22], which is expanded 
as 

$4 = (T - ia cos e)-” J & e--iwt 
x =g CP -y R,,,(r). (3.1) 

Here, -zSpz(S) is the spheroidal harmonics normalized 

by 

J * I-ZS~,W(B)IZ+n6’dfl = 1, 
0 

and its eigenvalue is X. Rlmw obeys the Teukolsky equa- 
tion as 

V(r) = - 
K2 + 4i(r - M)K + 8iwr + x 

A (3.4) 

where A = rz - 2Mr + a= and K = (T” + a2)w - ma. 
The sowce term Tl,,,,(r) is constructed from the energy- 
moment tensor of the matter, and its explicit form is 
given later. By using the Green’s function method, the 
solution of the Teukolsky equation’& infinity is written 
as 

Ri,, = R@),(ce)W-’ 0” r J - TLm,R!o)A-Zdr I” 7 (3.5) ‘i 
where T+ denotes the radius of the event horizon. Rf”\ 
and R!‘) are two homogeneous solutions, which satisfy 
the fol%ving boundary conditions at infinity: 

R, + r3C,,,e (0) i!dr* + r-lCi”e-“““, 

where CQUt and Ci, are two complex constants and T* is 
the tortoise coordinate defined by 

(3.7) 

with T* = M f v’m. The Wronskian factor is 
determined by 

,jR@) (0) 
W .= -A-1$) 9. out+ + A-1,i;)+ = 2iwCi,. 

(3.3) 

In order to calculate gravitational waves at infinity, we 

must know accurate values of RI,? and C;, numerically, 
but it is difficult to obtain Ci, accurately because of the 

bad behavior of Rji) at infinity. Also, since Z,, for large 

T diverges as + r3 in the present case (see below), the 
convergence property of the integral in Eq. (3.5) is not 
guaranteed [20]. Thus, as was done in the previous nu- 
m&cal works [23,24], we use the Sasaki-Nakamura (SN) 
equation [20], which is obtained by changing the vwi- 
ables from the Teukolsky equation. In their formalism, 
the equation becomes 

(3.9) 

and the potentials F(r) = A(lnr),~/(? + a’) and U(T) 

behave: respectively, as O(r--) and (iK/(? + a”))” + 
O(T-“),n 2 2, at T* + fco. Hence the boundary condi- 
tions of the homogeneous equation at T* + fca are well 
behaved as 

xi”,; + B&P* + &e-i”“, 

x,@) -$ e--ibr*, T* + --03 
rn 

where k = w - ma/2Mr+. Thus accurate values of X[;’ 
and Ai, are easily obtained numerically in the SN equa- 
tion contrary to the Teukolsky one. 

Slmy(~) is related to the source term of the Teukolsky 
equation by 

S 
hw = +2 + q/2 ~A7wmw exp (-i/;&j, (3.11) 

‘The detailed descriptions of F, U, and 7 are shown in 
Refs. [23] and/or [25]. 
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where 

(3.12) 

Tbis equation is integrated under the boundary condition 
W,,, + + at T t co, so that, S,,, + T+P at 
T + rn. The solution of gravitational waves at infinity is 
obtained by the Green’s function method: 

Xl,, = x’“$0,+- J 
- sr,,x!“) 

0” 
22wAin -rn y 

‘rl dr’ 1 (3.13) 

where cg is a constant, li%+,7 (r) [20]. Thus the con- 
vergence property of the integration is guaranteed. 

Once Xi,, is obtained, the waveform of gravitational 
waves at infinity is calculated from 

(3.14) 

From Eq. (3.14), the energy flux and the total energy 
flux, respectively, become 

and 

B. Equations of motion and source term 

In solving Eqs. (2.1) for ZL“ and S“” on the Kerr space- 
time, it is convenient to introduce the tetrad f?ame as 

(3.17) 

e; = (O,O,d%,O), 

r2+azsins 
-sin8,0,0, ~ 

a 
, 

where C = r2 + a2cosz 8, and e; = (e;,e:,e&e;) for 
a = 0 N 3. Here we use the latin indices to denote the 
tetrad component. 

In the tetrad component, Eqs. (2.1) are rewritten as 
where w,bc := eie;V,e: is the Flicci rotation coefficient. 
For the convenience, we write the explicit expressions of 
w,*’ and Raked in the Appendix. 

Since we now consider the case where the spinning 
particle falls along the z axis (i.e., 8,= 0) and its spin 
is parallel to the z axis, it is very natural to set that 
d = u3 = 0, and the only nonvanishing component of 
spin tensor is $3 =: S. Then, u” = va follows from 
Eq. (2.4). Under these conditions, we find 

> (3.19) 

where Co = T’ + a’. From these equations, we can see 
that the spin-spin interaction acts as the repulsive (at- 
tractive) force in the case of parallel (antiparallel) spin, 
i.e., aS > 0 (a.9 < 0). 

To solve the above equations, we can utilize the con- 
servation law which is obtained by setting .$” in Eq. (2.7) 
as the timelike Killing vector of the Kerr spacetime. The 
tetrad components of the timelike Killing vector and its 
covariant derivative are given by 

(3.20) 

Thus we get 

(3.21) 

(3.221 

It can be easily verified that these u” and u1 solve the 
Eqs. (3.19) with the aid of the relations 

Thus in the present case, we obtain the conserved qua. 
tity I& 8s 

Hereafter, by setting Eo = pr we concentrate on the case 
where the particle is at rest at infinity. 

For the later convenience, we define t(r) regarding the 
coordinate time of a particle as a function off. For this 
purpose, we numerically solve the equation, 
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g+(l-?.?!g) 

x [(l-y)‘-&]-“‘, (3.24) 

which is derived from the Eqs. (3.22) and (3.23), under 
the boundary condition t(r) = 0 at r = T+ + E, where E 
is an appropriately small constant - 10-14M. 

Since the system is axially symmetric in the present 
case, we have only to consider, the axially symmetric 
mode, i.e., rn = 0. Then, by using the components of 
the energy momentum tensor with respect to the null 
tetrad which is defined by 
p = 
$ 

;(e: i-47, 

np = ;&g-e:), (3.25) 

d = (7 + ia cosily 
lr 

gee; +iei), 

the source term of the Teukolsky equation is given by 

T,ow = 4 
s 

dt sinC3d6dppp-5/5-‘(BL + B’,)@s, 

(3.26) 

where 
B; = -~p’~L-1[p-~Lo(p-~p-~Tnn)] - ~p8~~z~-l~p-4p~~+(p-~~-~~-~~~~)], 

(3.27) 

and 

p = cr - ia cose)-l, 

L. = a, - a~ sin0 + .9 cot@, 

iwco 
J+=a,+.. 

(3.28) 

In the above equations, an overbar denotes the complex conjugate. Substituting Eq. (3.27) into Eq. (3.26) and 
performing integral by part, we obtain 

J dt sin 0 dtl dcp eiwt -iLt{p-4L~(-zSp,Wp3)}T~~ + ~L~(-&wp~)J+ 
WP 

+ 
I 

, (3.29) 
where Lb = 80 + aw sin0 + scot8. Using the energy- 
momentum tensor of the spinning particle Eq. (2.8), we 
can calculate the source term of Teukolsky equation TloY. 
After a somewhat long calculation, we find that TLC,, be- 
comes TioV = T;,, + TA,, + TA,, which are defined by 

where ~(7) = t(r) + T*, pi, = (Y + ia)-‘, and 

(3.31) 
In total, 

T,,, =-4,,wA2&[(~+,S)($9-W~] 

x,wd (3.32) 

We note that in the case 0 = 0, Tam does not contribute 
to both the spin-dependent and -independent terms, and 
also Tan does not contribute to the spin-independent 
term. Tt= does not,depend on S. (This term has al- 
ready been obtained by Sasaki and Nakamwa [20].) On 
the other hand, Ti,, and TA, are spin dependent. (Note 
that T:“, TA,, and Th, diverge as ?I’, #, and r3 at 
T -+ co.) T,,, 1 is zero when aS = 0, so that it repre- 
sents the spin-spin coupling term. On the other hand, 
TA, involves not only the spin-spin coupling terms, but 
also the other contributions which do not vanish even if 
the spin of black hole is zero. Hence we may consider 
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that it involves a contribution from the energy momen- 
tum of the spinning particle. Once the source term of 
the Teukolsky equation iS obtained, Wlow in Eq. (3.12) 
is integrated from a large radius, rmsu, to T+ under the 
boundary condition Wlow + ~~1’ at r = 7max [ZO]. Then, 
from Eq. (3.11), we obtain a source term of the SN equa- 
tion Slow(~) which behaves well at r + 00. 

Finally, we briefly explain the numerical strategies. To 
obtain the waveform and the energy flux of gravitational 
waves, i.e., to obtain Xm,, we need to calculate the fol- 
lowing quantities, numerically: (1) the coordinate time 
of the particle trajectory as a function of T, t(r), (2) 
the homogeneous radial wave function with the ingoing 

boundary condition X[,? and Ai,, (3) the spheroidal har- 
monics -#pow, and (4) the source term of the SN equa- 
tion Slo,., (or Wlo,). Once the above quantities are calcu- 
lated, we can obtain Xlow by performing the numerical 
integration in Eq. (3.13). The numerical methods are 
the same as those adopted in Ref. [23]. For each model 
of a and S, Xlou is solved from I = 2 to 1 = 6. Er- 
ror caused by the neglect of higher multipole modes is 
found to be at most - 10e4. For each 1, Xl,, is solved 
for -1.4M-’ 5 w 5 1.4M-’ following Sasaki and Naka- 
mura [20]. In calculating the energy flux, we adopt the 
step size of w to be Aw = O.O2M-‘, and in calculating 
the waveform, we adopt Aw = 0.005Mm1 because if we 
use a step size as large as Aw = O.O2M-‘, the spurious 
period 2n/Aw stands out in the waveform. To check the 
dependence of Au on the energy flux, we also perform 
the calculation using the other Aw. We found that the 
energy flux changes 0.2% for the case when the spin wc- 
tars of the black hole and the particle are antiparallel and 
IaS] is large - M’, but the error is typically less than 
0.1%. 

C. Numerical results 

We have calculated the total energy flux and the wave- 
form of gravitational waves induced by a spinning parti- 
cle of mass /I and spin S falling into a Kerr black hole 
of mass M and spin a for a wide variety of spin param- 
eters -1 5 S/M < 1 and 0 5 a/M 5 0.99. In Fig. 1, 
we show the total energy flux AE,,s for 0 5 a/M 5 0.9 
and -0.9 < S/M 5 0.9. We here note that when we re- 
gard the spinning particle as a compact object, the spin 
of the particle S must be at most of order p. Thus, 
if we consider the ca~e 1-1 < M, the spin must be very 
small (S < M) and its effect is negligible. However, 
OUT purpose is to see the spin effect in the case p 5 M 
and S 5 M extrapolating p -+ O(M), so that we re- 
gard S as a quantity of order M. From Fig. 1, we will 
soon recognize that in the case of the antiparallel spin, 
a larger amount of the energy flux is emitted: For the 
case a = S = 0, the total energy flux is 0.0104(~/M)~M 
[13], and for a = S = O.SM, it is almost the same (see 
Fig. 2). On the other hand, for a = -S = 0.9M, the to- 
tal energy flux becomes O.O249(p/M)‘M and it becomes 
0.0298(~/M)2M for a = 0.99M and S = -0.99M. This 
is consistent with the interpretation of Wald [18] about 
the radiation efficiency expected from the Hawking’s area 
FIG. 1. The total energy flux AE,,sIM of gravitational 
waves by a’spinning particle falling into a Kerr black hole for 
a variety of spin parameters a and S. 

theorem 1261, in which he mentioned that the energy qf 
the spinning particle [i.e., (A/Co)1/2uo] is gained due 
to the spin-spin interaction for the antiparallel spin case 
and lost for the parallel spin case during the in-fall into a 
black hole [see Eq. (3.21)], so that AE,,s for an antipar- 
allel collision may well be larger than that for a parallel 
collision. However, the detailed mechanism for this prop- 
erty seems due to a somewhat different reason from that 
he considered. 

To investigate the reason for this property of the total 
energy flux in detail, let us pay close attention to the 
total energy flux as a function of a and S. In Fig. 3(a), 
we show the total energy flux for a = 0 as a function of 
S/M, AEo,s, and that for S = 0 as a function of a/M, 
AE,,,. In Fig. 3(b), we also show logl~(AE~,~/AEo,o-l) 
(open circle) and log,o(AE,,o/AEo,o - 1) (filled circle) as 
a function of loglo(S/M) and log,,(a/M), respectively. 
This figure shows that both AE,,s and AEa,o are well 
approximated by the formula AEo,s = AEo,o + ClS’ 
and A&,,,, = AEo,o f C&, respectively, except for large 
a/M 2 0.7 (C, and Cz are constants.) We should note 
that in the case a = 0, there does not appear the spin- 

,025 

.Ol 

-1 -.5 0 .5 1 

S/M 

FIG. 2. The total energy flux of gravitational waves in units 
of (p/M)‘M as a function of S/M in the case a = 0 (open 
circle) and a = 0.9M (filled circle). 
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spin interaction term in the equations of motion, so that 
the motion of the spinning particle is not affected by its 
spin. Nevertheless, the total energy flux increases with 
the incl’ease of the spin of the particle. This means that 
the contribution of the energy-momentum tensor of the 
spinning particle to the total energy flux is significant. 
Figures 3(a) and 3(b) also show that the two curves do 
not coincide (i.e., C1 < Cz). This seems mainly due to 
the difference of the frequencies of the quasinormal model 
(QNM) between the Schwarzschild and Kerr black holes: 
For a = 0 and S # 0, the difference of the total en- 
ergy flux among different S is only caused by the energy- 
momentum tensor of the spinning particle. On the other 
hand, for S = 0 and a # 0, both the energy-momentum 
tensor of the Kerr black hole and the change of the 
QNM tiequency of the Kerr black hole [15] contribute 
to the difference of the total energy flux among dif- 
ferent a. Since the frequency of the fundamental 
QNM (1 = 2,711 = 0) of a Kerr black hole is always 
larger than that of the Schwarzschild black hole [27] and 

3 
E.014 
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0 .2 .4 .6 .8 1 

a/M mSlM 
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logloW or lxlo(S/M) 

FIG. 3. (a) The total energy flux of gravitational waves 
in units of (p/M)=M for the case a = 0, S # 0 (open cir- 
cle) and a # 0, S = 0 (filled circle). (b) The behavior 
of the total energy flux as a function of the spin parame- 
ters a or S in the case a = 0, S # 0 and a # 0, S = 0. 
The horizontal axis shows loglo(ajM) or log,o(S/M), and 
the vertical axis shows logm(AEo,s/AEo,o - 1) (open circle) 
or logm(AE,,o/AEo,o - 1) (filled circle). We can see that 
both AEo,s and A&,o are well approximated by formulas 
AEo,s = AEo,o + C# and AE,,o = AEo,o + Cm’, respec- 
tively. Here, CI and CZ are constants, and CI < CL 
the total energy flux is roughly proportional to square of 
the frequency, Cz may well become larger than C,. In 
any case, the total energy flux of gravitational waves is 
changed by the following two reascms in the case when 
we include the spin of the particle. One is due to the 
spin-spin interaction which appears in the equations of 
motion, and the other is due to the contribution of the 
energy-momentum tensor of the spinning particle to the 
source term of the Teukolsky equation. In the following, 
let us explain that the latter contribution is larger. 

In Fig. 4, we show the waveforms of gravitational waves 
observed on the equatorial plane for a = 0, and S/M = 0, 
0.45, and 0.9 (the solid, dashed, and dotted lines, respec- 
tively). It is very interesting to note that the + mode 
of gravitational waves is not affected by the spin, while 

the x mode is highly affected. This indicates that the 
increase of the energy flux with the increase of 1.71 is due 
to the excitation of the x mode. This feature can also 
be seen even for a # 0. In Figs. 5 and 6, we show the 
waveforms for a = 0.6M and a = 0.9M with various til- 
ues of S/M. In Fig. 5, the solid, dashed, dotted, long 
dashed, and dotted-dashed lines show the waveforms for 
S/M = 0, -0.6, -0.9,0.6, and 0.9, respectively, and in 
Fig. 6, solid, dotted, and dashed lines show the wave- 
forms for S/M = 0, -0.9, and 0.9. Like in the case 
a = 0, the + mode is not affected so much by the spin 
in all cases, but the x mode is highly affected. Thus by 

.I 

t r* 

FIG. 4. Waveforms of gravitational waves in units of fi for 
a = 0 and S/M = 0 (solid line), 0.45 (dashed line), and 0.9 
(dotted line). Note that for h+, three lines agree. 
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FIG. 5. Waveforms of gravitational waveg in units of p for 
a/M =, 0.6 and S/M = 0 (solid line), -0.6 (dashed line), -0.9 
(dotted line), 0.6 (long dashed line), and 0.9 (dotted-dashed 
liXE). 

the inclusion of the spin of the particle, the x mode is 
excited so much, but the + mode is not almost altered by 
the spin of the particle. This fact suggests that the effect 
of the energy-momentum tensor of the spinning particle 

dominates over that of the spin-spin interaction which 
appears in the equations of motion. In fact, the effect of 
the spin-spin interaction is small. In Fig. 7, ye show the 
in-fall velocity Idr/dtl as a function of T for a = 0.9M 
and S/M = -0.9 (dotted line), 0 (solid line), and 0.9 
(dotted-dashed line). We note that for a = 0.9M, the 
event horizon locates at T N 1.436M. Figtie 7 indicates 
that, the spin-spin interaction does not alter the in-fall 
velocity so much even just before the collision. If the 
spin-spin interaction were effective, the in-fall velocity of 
the spinning particle should be largely altered by the ef- 
fect, and the amplitude of the + mode of gravitational 
waves would change. Hence we can coqclude that the 
spin-spin interaction is not effective compared with the 
effect of the energy-momentum tensor of the spinning 
particle. 

It is worth noting that for the antiparallel spin case, the 
amplitude of the x mode monotonically increases with 
the increase of ISI. On the other hand, for the parallel 
spin case, its amplitude becomes minimum around S - 
a. Also, the amplitude of the + mode is not altered so 
much when the parameters of spin a and S are changed. 
-250 -200 -150 -100 -50 0 

I - r' 

-.2 

I,,, I,,, I,,, 

-250 -200 -150 -100 -5c , 0 
1-I’ 

FIG. 6. Waveforms of gravitational waves in units of fi for 
a/M = 0.9 and S/M = 0 (solid line), -0.9 (dotted line), and 
0.9 (dashed line). 

This means that the total energy 5ux is almost the same 
as that for a = S = 0 in the case a = S. In reality, 
the total energy 5~x3 for a/M = S/M = 0.1 to 0.99 
coincide with that for a = S = 0 within 2% error (see 
Fig. 8). Therefore, we may conjecture that in the head- 
on collision of two spinning black holes of masses Ml and 

.4 

2 4 6 8 10 

r 

FIG. 7. The absolute value of the in-fall velocity of the 
spinning particle, Idr/dtl, as a function of r for a = 0.9M 
and S/M = -0.9 (dotted line), 0 (solid line), and 0.9 (dot- 
ted-dashed line). The location of the event horizon for 
a = 0.9M is at T N 1.436M. 
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FIG. 8. The total energy flux in units of (p/M)‘M in the 
case of a = s. 

M,, the total energy 5ux would be almost independent 
of their spins if a1 = a2 holds. 

Finally, we mention the point where the QNM begins 
to be excited. In Fig. 9, we show the retarded time t --T* 
as a function of T for a/M = 0, 0.6, 0.9, and S = 0. 
We note that the figure hardly depends on S because the 
trajectories do not depend on the spin-spin interaction 
effect so much (see Fig. 7). Comparing Figs. 4, 5, and 6 
with Fig. 9, we can find that the points where the QNM 
begins to be excited are T N 3 - 4M irrespective of a. 
These coincide with the points where the spin-spin in- 
teraction is most effective (see Fig. 7). Nevertheless, the 
spin-spin interaction effect is still small to affect gravita- 
tional waves so much. Therefore, we can conclude again 
that the effect of the spin-spin interaction is small. 

IV. SUMMARY AND DISCUSSION 

In this paper, to investigate the features of gravita- 
tional waves in the head-on collision of two spinning black 
holes, we have calculated the energy flux and the wave- 
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-100 

2 4 ‘6 8 10 

I 

FIG. 9. The retarded time t - T* as a function of T for 
a/M = 0, 0.6, 0.9, and S = 0. 
form of gravitational wasws induced by a’spinning par- 
title falling into a rotating black hole along the z axis. 
Calculations are performed incorporating the equations 
of motion of the spinning particle derived by Papapetrou 
[16] and its energy-momentum tensor derived originally 
by Dixon 1171 into the formalisms of Teukolsky and of 
Sasaki and Nakamura. We obtained the following results. 

(A) In a head-on collision where a small mass particle 
of mass ~1 and spin S collides with a black hole of mass 
M and spin a, the total energy 5ux for the antiparallel 
spin collision is larger than that for the parallel one. 

(B) There are two spin effects of the particle to gravita- 
tional waves; one is due to the contribution of the energy- 
momentum tensor of the spinning particle to the source 
term of the Teukolsky equation, and the other is due to 
the spin-spin interaction between the black hole and the 
spinning particle which appears in the equations of mo- 
tion. 

(C) The above two spin effects mainly affect the h, 

mode of gravitational waves, while the h+ mode is hardly 
affected. This suggests that the former effect in (B) dom- 
inates over the latter effect. 

An actual numerical simulation of the head-on colli- 
sion of black holes could take into account other effects 
which are not included in the present perturbation calcu- 
lation: (1) the effects by the higher multipole moments 
(1 > 2) of the spinning particle c( /IS’ which were not 
taken into account in the equations of motion and the 
energy-momentum tensor of the spinning particle, (2) the 
tidal heating of the ,black hole event horizon [12], and (3) 
the final spin parameter of a merged black hole, which 
will become about (Ma + pS)/(M + p). Since gravita- 
tional waves for the head-on collision of two black holes 
will be mainly radiated by the excitation of the quasinor- 
ma1 mode (QNM) of the merged black hole, (3) must be 
correctly considered. 

As for (l), we will not know details until we perform an 
analysis including the effects of the higher multipole mo- 
ments of the spinning particle. However, we can expect 
the following effect of the quadrupole moment which is 
the leading term (1= 2) of the higher multipole moments 
from a simple analysis. In the Newtonian limit, the equa- 
tion of motion for a test body falling straightly toward 
another body of mass M and quadrupole moment Ma2 
becomes 

Thus the quadrupole moment reduces the attractive 
force. This means that if we include the contribution 
of the quadrupole moment of the spinning particle, the 
velocity will decrease and the total energy 5ux may re- 
duce. However, this effect seems to be small except for 
the case a 5 M because the excitation of the &NM oc- 
curs around T - 3 - 4M and at this point, the repulsive 
force of the quadrupole moment term is small compared 
with the leading term. As for (2), the kinetic energy of 
black holes iS dissipated by the tidal heating of the event 
horizons, so that the total energy 511x may reduce about 
a few ~10% [28,12]. As for (3), let ns consider the cases 



12 GRAVITATIONAL WAVES INDUCED BY A SPINNING.. 633 
M = ~1 and S = +a as examples. For S = a, the spin 
parameter of the merged black hole becomes a, so that 
results by the perturbation calculation can be applied 

without change. For S = -a, the final spin becomes 
zero, so that the l?equency of the &NM (jQNM) reduces 
0-12 % depending on a 1271. This means that the wave- 
length of gravitational waves becomes long. Also, since 
the amplitude may be expected not to change so much, 
the total energy flux (proportional to j&,) is expected 

to reduce about O-25%. 
In this way, the total energy flux may reduce about 

a few x10% in total compared with that obtained by 

extrapolating the results of the perturbation calculation 
[p/(M + p) -+ l/2]. However, the effects (l)-(3) may be 
regarded as small corrections, and we may expect that 
the essential feature of the output on gravitational wayes 
would not change so much. Therefore, the present results 
will be an important guideline to quantitative results of 
gravitational waves in the numerical simulation of the 
head-on collision of two spinning black holes, which has 
not been performed yet. 

So far, we have focused cm the head-on collision be- 
tween the spinning black hole and the spinning parti- 
cle. However, the method developed in the present paper 
will be useful to calculate gravitational waves for general 
three-dimensional coalescence case or for the case when 
the particle is orbiting around the black hole. These cal- 
culations are very important for checking results in 3D 
numerical relativistic simulations or the post-Newtonian 
calculations [4,8] of gravitational wave induced by two 

spinning bodies. As for the post-Newtonian formula on 
the energy flux of gnvitational waves by a spinning par- 
ticle in circular orbit, we will show the results in another 
paper 1291. 
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APPENDIX 

In this Appendix, we write down the explicit tetrad 
components of the F&ci rotation coefficient and the Rie- 
mann tensor for the convenience. 

The nonvanishing components of the F&ci rotation co- 

efficient of the Kerr spacetime are 

’ wl1° = wol = c3/2A’,z (m2 sin’ 6’ - MT’ 

+MaZcos2 b’), 
I 

R 
1 

1212 = R,m = ZRm~o = -;i lR ~323 = -Rzozo = -Rmso = 
Mr(3a2 cd 6’ - ?) 

c3 ’ 

R 
1 

um = -Rmo = -2R~oz3 = 
aM cosB(3r2 - a2cos20) 
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