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Gravitational waves induced by a spinning particle falling into a rotating black hole
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Using the formalisms of Teukolsky and of Sasaki and Nakamura for the perturbation around a
Kerr black hole we calculate the energy flux and the waveform of gravitational waves induced by a
spinning particle of mass p and spin S falling from infinity with zero in-fall velocity into a rotating
black hole of mass M >3 u and spin a along the z axis. The calculations are performed combining
the Teukolsky formalism with the equations of motion of a spinning particle derived by Papapetrou
and the energy-momentum tensor of a spinning particle derived by Dixon. Thus, there appear two
additional effects due to the spin of the particle: one is due to the spin-spin interaction force which
appears in the equations of motion and the other is due to the contribution of the energy-momentum
temsor of the spinning particle. From numerical calculations, it is found that these spin effects are
very important: In the case of a = § = 0.99M, the total energy flux becomes 0.0106{u/M)*M,
which is almost the same as that obtained by Davis et al. for a = § = 0, while in the case of
e = —8 = 0.99M, it becomes 0.0298(u/M)?M, i.e., about. three times larger. We also show that

" the contribution of the energy-momentum temsor of the spinuing particle dominates over that of

the spin-spin interaction term in the equations of motion. The results obtained in this paper will
be an important guideline to quantitative estimates of gravitational waves in numerical relativistic

simulations of the head-on collision of two spinning black holes.

PACS number(s): 04.30.Db, 04.25.Nx

L INTRODUCTION

The last stage of coalescing compact binaries composed
of neutron stars and/or black holes is one of the most
promising sources of gravitational waves for the kilome-
ter size laser-interferometric detectors such as the Laser
Interferometric Gravitational Wave Observatory (LIGO)
(1], VIRGO [2], and the laser-interferometric detector in
space such as the Laser Interferometer Space Antenna
(LISA) [3]). The evolution of such a binary can be classi-
fied into two phases. One is the inspiraling phase [4]. In
this phase, the binary evolves in the adiabatic manner ra-
diating periodic gravitational waves. It has been recently
realized that if we can detect the signal of gravitational
waves in such a phase, and compare it with a theoretical
template, we may be able to obtain not only a variety of
parameters of binary such as the mass, spin, ete. [5,6}], but
also the cosmological parameters [5,7]. Hence theoretical
research on this phase is a potentially important field of
relativity [8). On the other hand, research on the merging
phase is also very important. When the separation of the
binary becomes very small, the centrifugal force cannot
be balanced with the strong gravity of general relativ-
ity [4] or the tidal force [9], so that the binary cannot
maintain the bound orbit and finally merges. In such a
phase, the binary is in the strongly nonlinear gravity be-
cause the characteristic length scale of the system is less
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than ten times of the Schwarzschild radius of the system.
Therefore, by the detection of gravitational waves from
merging of compact binary, we will be able to obtain the
information of a highly general relativistic spacetime.

In order not to fail to detect such a signal and in order
to extract maximum information about the strong grav-
itational field, however, we need to make a great deal of
theoretical efforts. The reason is that the expected sig-
nal is very weak {the typical signal-to-noise ratio {SNR)
is less than 10]. To confirm the detection of such a signal
and to extract information from the signal of such a SNR,
we have to predict the waveform of gravitational waves
theoretically with a sufficient accuracy. In order to pre-
dict the waveform accurately, a fully general relativistic
three-dimensional {3D) simulation is necessary. However,
it is extremely difficult to perform the simulation with a
sufficient accuracy throughout the large dynamic range
from the initial inspiral with a large separation to the
final merging. In order to carry it out, we have to solve
many problems, ie., to find appropriate gauge and slice
conditions for 3D numerical relativity. Moreover, it will
be very time consuming to perform many simulations for
several possible parameters of binary systems. Although
much effort is focused on this field and much progress
can be expected [10,11], it would be very helpful if we
could adopt a more economical and sufficiently reliable
approximate method to calculate the waveform and the
energy flux of gravitational waves.

The perturbation calculation around a black hole is
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expected to be an appropriate approximation method to
treat coalescing binary black holes, in which we calcu-
late gravitational waves induced by a particle of mass
i orbiting around a black hole of mass M » p and
spin a. Although we neglect the nonlinear effect of grav-
ity induced by the small mass particle [l.e., we neglect
O((1/M)?) terms in the metric], it is still possible to in-
vestigate that of the background rotating black hole. In
fact, it is well known that the perturbation calculation
gives a fairly good approximation to numerical relativis-
tic calculations; the waveform and the total energy flux of
gravitational waves in the head-on collision of two equal
mass black holes [12] agree with the extrapolated value
[12/ (M + ) — 1/2] of those obtained by perturbation cal-
culation [13] with a fairly good accuracy (< 15%) [12].
The waveforms obtained in the simulations of the stellar
core collapse [14] also agree with those calculated by an
approximate perturbation study of a rotating ring inspi-
raling into a Schwarzschild black hole {15]). Furthermore,
the results obtained in the perturbation calculations are
almost exact in the case when the mass of a companion
4 is much smaller than the black hole mass M. Thus
in this paper, we pursue the perturbation calculation in
order to make an approximate model of coalescence of
spinning black holes. In particular, we here consider the
head-on collision of two spinning black holes as a first
step.

When we calculate gravitational waves from merging
of binary black holes, we should specify their masses and
spins in general. Hence, to make an approximate model
of coalescence of the rotating binary biack holes by the
perturbation calculation, we need to take into account
the spin of the small mass particle as well as that of
the background black hole. In the previous works the
latter effect was incorporated but the former has not
been considered [15]. To incorporate the former effect,
one must know (1) the equations of motion and (2) the
energy-momentum tensor of the small mass particle. For-
tunately, we know that (1) have already been derived
by Papapetrou [16], Dixon {17], and Wald [18], and so
on, and (2) bas also already been derived by Dixon [17].
Hence, by using the energy-momentum tensor of a spin-
ning particle by Dixon as the source term. in the Teukol-
sky formalism [19], we can calculate the waveform and
the energy flux of gravitational waves by a spinning small
mass particle falling and/or orbiting around a rotating
black hole. Here, a word of caution is appropriate. A
Kerr black hole of mass p and spin §, where S is de-
fined so that |S|p represents the spin angular momen-
tum, has the quadrupole moment which becomes p.§2
and higher multipole moments (ox #5?) as well. Since we
neglect the contribution of these higher muitipole mo-
ments in this paper, our treatment is not complete to
mode] the Kerr black hole. Incorporation of the higher
multipole moments to represent the Kerr black hole is
a future problem to be investigated. However, we stress
that in our treatment, the terms related to the spin are
taken into account, and they always appear even in the
head-on collision of two equal mass black holes. Further-
more, the spin effect remarkably affects the waveform

and the energy flux of gravitational waves as shown be-

. low. This means that the spin effect must be important

for the head-on collision of two spinning black holes of
nearly equal masses. Thus the results obtained in this
paper will be an important quantitative guideline to a
future coming analysis of gravitational waves in realis-
tic numerical simulations of the head-on collision of two
spinning black holes, which have not been performed yet.

The paper is organized as foliows. In Sec. II, we re-
view the energy-momentum tensor of a spinning parti-
cle. Although there exists an excellent review by Dixon
[17], his consideration is restricted to the case in which
the spinning particle neither is a strongly self-gravitating
body, nor possess the event horizon. Since we want to
use his results extensively to examine the two black hole
collision, some justification is necessary. We discuss this
point at the end of this section, In Sec. III, by making
use of this energy-momentum tensor in the context of
Teukolsky formalism [19] which is a method to handle
the metric perturbations on a Kerr background, we per-
form numerical calculations of the energy flux and the
waveform of gravitational waves induced by a spinning
particle falling along the z axis. This is an extension
of the perturbation calculations by Davis et al [13], in
which they considered gravitational waves by a nonspin-
ning particle falling into a Schwarzschild black hole and
that by Sasaki and Nakamura [20], in which they consid-
ered gravitational waves by a nonspinning particle falling
along the z axis into a Kerr black hole, Calculating the
energy flux and the waveform of gravitational waves for
a wide range of the spin parameters of the particle and
the Kerr black hole, we show the importance of the spin
effect in the head-on collision of two spinning black holes.

Throughout this paper, we use the unit of c =G = 1.
We define the signature of the metric as (—, 4,4, +) and
the Riemann tensor as

Ry = 2V, V,un,

where V,, and 4 denote the covariant derivative and an
arbitrary vector, respectively. The square bracket means
the antisymmetrization.

II. THE ENERGY-MOMENTUM TENSOR
OF A SPINNING PARTICLE

The energy-momentum tensor and the equations of
motion of a particle with multipole moments in a curved
spacetime have been discussed by many authors [16-18].

The equations of motion of a spinning particle were
first derived by Papapetrou [16], and then reformulated
by Dixon [17], in which he discussed a general situation
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where the particle has arbitrary higher multipole mo-
ments. Here, we follow the Dixon’s approach neglecting
the higher multipole moments other than mass monopole
and spin dipole moments. In this case, the equations of
motion become

D () = 2R nala(r))o (1)S7(r),
(2.1)
D

ZsH(r) = 2ul?l(r

2 sm(r) ")

where the vector puu*(7) and the antisymmetric tensor
§#5#(7) represent the total momentum and the angu-
lar momentum, respectively, and v#(7) := dz*(7)/dr.

2

o)~ () = =3 (1= R GENSTESH) ) S Rnor (1))

Thus, Egs. (2.1) determine the orbital evolution of 2 spin-
ning particle.

This system has several conserved quantities. Regard-
less of the symmetry of the background spacetime, we
can show that u*u, and §#*5,, conserve along the orbit
[18]. Hence we can normalize them as

wtu, = —1,
(2.5)
5+ 8, = 25%.

In the case when there is a Killing vector field £,, which
satisfies the Killing equation

Here we use the notation D/dr to represent v#V,, and
V. denotes the covariant derivative with respect to the
background metric. Since we do not have the evolution
equation of v#(7), in order to close this set of equations,
we need to impose a supplementary condition which de-
termines the center of mass of the spinning particle [17]:

S (t)u, (1) = 0. (2.2)
Noting that the above equations of motion are
reparametrization invariant, we can fix the orbital pa-
rameter 7 to satisfy

w(T)ou(r) = -1 (2.3)
Then using Eq. (2.3) with Eq. (2.2), the relation between
u# and v* becomes

(2.4)
r
1
V(,ufu) = '2' (Vp:‘fu + Vugu) =0, (2.6)
the quantity
v gt 1 iy
Q =u 6# “+ ES V}.&Ev& (27)

becomes a conserved quantity. From Egs. (2.1}, it can be
easily verified that @ conserves along the orbit.

Although it is originally given in a slightly different
form, the energy-momentum tensor of the spinning par-
ticle is described by Dixon as {17]

8 (& — #(r)) § (e — »(7))
THY () = qu-{—w—m——u(“ z, T v?) z, TV =V, (S"(“ @, T ¥} T, T —)}, 2.8
() =n e (2, 7)o" (2, 7) (@, 7)o" (e, 7} Wer (2.8)

where
§W(x — 2(7)) = §(z° — 2°(n))o(a — 21(7))5(a® — 22 (7))8(z® — 2°(7)). (2.9)
[

Here, we introduced bitensors w*(z,7),u*{x,7), =z(7). To define v#(x, 7),w*(z, 1), S* (z,7), we introduce

S#¥(z,7) which are the extensions of variables a bitensor §#.(z,z) [21] which satisfies

v (1), u%{7), S*(7) defined only along the world line'

1From now on, we use i, as the tensor indices associated
with # and «, 8 as that with z.

i rlad = oM
i el ) = e

(2.10)

i1_}mz Vg ez, 2) = 0.



For the present purpose, further specification of g#,(z, 2)
is not needed. Using §¥.(z,z), we define u#(z,7),
v#(z,T), and S*¥(x, 7} as
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energy-momentum tensor in Eq. (2.8} gives Egs. (2.1).
Noting the relations

Voi'a(z, 2)5(4) (x,2) =0,

u#(w:f) = g”a(m’z(’r))ua('r)s : (2.12)
v#(z,7) = §*a(z, 2(7))0=(7), (2.11) v (2)V (5(4)(3,2(1))) __d (6(4)!3;,47!!)
54 (2, 7) = §* a(w, 2(7))F" (2, 2(7)) 5% (1) g V-9 T V=g ’
It is easy to see that the divergence free condition of the  the divergence of Eq. (2.8} becomes
|
W (z — z(r &z - 2(r
V. TH () =p/d'r [—u (z, T)d'r d S —=r)) _ (\/H__g( ) A\ (u[“(m,r)v”](:c,f)———a (\/—_g( )))
Wz -2z W (z — z(r
+9, (-3 (er) 2 2N 4 2R s (o) (0,7} o) EHEZEC) ”]
Nz — 2(r
= b [ drato, ) 2 EEOD (L) 1 Lraser) ()57
+g/d‘r V. (g‘j"a(m,z(r))g”g(m,z(f))ﬁi\/;_gf—(—-m) (%S‘*ﬁ(f) - 2u[°‘(7')'uﬁ]('r)) . (2.13)

Since the third and fourth lines must vanish separately,
we obtain Eqgs. (2.1).

All above results are obtamed under the assumption
that the particle is not a strongly self-gravitating body.
Since we dare to use the Dixon’s formalism to the case
of a rotating black hole, we need to give a certain justifi-
cation of this extensive use. One crude argument is that
if we believe that the strong equivalence principle holds,
we will not be able to distinguish the biack hole from an
ordinary extended body of the same mass and spin. This
might be also stated in the following way.

We consider to put the spinning particle on a flat space-
time. We denote the metric perturbation from the flat
spacetime by h*" = \/—gg* —»"¥, where g is the deter-
minant of g,,,,. Setting the harmonic coordinate condition

R#Y , =0, (2.14)
the Einstein equation becomes
O = 16m(—g)T*" + A*[h], (2.15)

where we denote the flat d’Alembertian operator by O
and the energy-momentum tensor of the spinning par-
ticle by T, The second term of the right-hand side
represents the nonlinear terms with respect to A#¥, For
simplicity, we choose t axis along the direction of the mo-
tion and 2z axis along the direction of spin. In the linear
approximation, we obtain the solution of Eq. (2.15) as

4uS zdy —ydx

iy o
hpudmpdicy:——;dt - 1"2 ”

dt, (2.16)

where the indices of h*¥ are lowered by the flat metric

Npw. On the other hand, the Kerr metric in the harmonic
coordinate is written as

4 7 w2
by detds” = — (—“ + £ ) at? — g2
r o or? 72
g -
Sy myde s dstdnr, (217)
r? r
where &hy, is of order (u/r)® or pS?/r®. As long as

M >» pand M > S hold, these residual terms can be ne-
glected becanse the background curvature scale is > M.
Thus we can say that the metric perturbation caused by
the energy-momentum tensor Eq. (2.8) denotes a correct
leading asymptotic behavior of Kerr black holes with re-
spect to the spin term.

However, there may be several objections to this ar-
gument. First, as already mentioned before, it might be
impossible to justify to neglect these residual terms when
we extrapolate p and & to the order of M. We only ex-
pect that the extrapolation is meaningful as was so in the
nonrotating particle case.

Secondly, even in the case M > pu, there is a sub-
tle issue. The first two terms of Eq. (2.17) indicate the
monopole contribution of the particle which also appears
in the asymptotic metric of the Schwarzschild black hole.
The third term of Eq. (2.17) comes from the spin effect
of the particle. Comparing Eq. (2.16) with Eq. (2.17),
we find that the same order or larger terms (i.e., p?
terms) than the spin terms are neglected when we use
the energy-momentum tensor Eq. {2.8). These terms are
derived from Eq. (2.15) as a consequence of the next it-
eration including the nonlinear source term A*”. Thus
our following analysis using the energy-momentum ten-
sor Eq. (2.8) might be only a qualitative estimate of the
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spin effect. However, we would like to remind again that
the neglected terms did not bring any serious quantita-
tive error in the nonspinning particle case. Therefore,
we expect that the present analysis also gives a fairly
good quantitative estimate of gravitational waves from
the head-on collision of two spinning black holes.

III. GRAVITATIONAL WAVES INDUCED
BY A SPINNING PARTICLE FALLING
INTO A KERR BLACK HOLE
ALONG THE z AXIS

In this section, we first briefly review the perturbation
formalism of a Kerr black hole which was originated by
Teukolsky [19] and developed by Sasaki and Nakamura
[20]. Then, substituting the energy-momentum tensor
discussed in the preceding section into the source term
for the perturbation formalism, we evaluate gravitational
waves induced by the spinning particle.

A, Teukolsky formalism

In the Teukolsky formalism, the waveform and the en-
ergy flux of gravitational waves are calculated from the
fourth Newman-Penrose quantity [22], which is expanded
as

thy = (r - ia cos 9)‘4/dw et

xS eme=2mG g o, (3.1)
i,m

Van

Here, _257«(0) is the spheroidal harmonics normalized
by
f | 288 (0)|? sin@ df = 1, (3.2)
0

and its eigenvalue is A\. Ry, obeys the Teukolsky equa-
tion as

d 1 dR;
2 & (1 mw | — .
dr (A d?‘ ) V('J")R;mw szw(r), (3 3)
and
24 il —
V(r)= _E 40— M)K + 8iwr + A, (3.4)

A

where A = 72 — 2Mr + a? and K = (r? + ¢®)w — ma.
The source term Tinw (r) is constructed from the energy-
moment tensor of the matter, and its explicit form is
given later. By using the Green’s function method, the
solution of the Teukolsky equation-at infinity is written
as

Rime = RO, (c0) W / T ROA2dr,  (3.5)
T4

.

. . 0
where r, denotes the radius of the event horizon. Rf,u)t

and Rg:) are two homogeneous solutions, which satisfy
the following boundary conditions at infinity:

0 3 qwr
R()—ére"“’",

out
(3.6)
Ri(:) = P30, e + T_lCine_""""-,
where C,,, and Cj, are two complex constants and +* is
the tortoise coordinate defined by
M? r—ry

" A
T _T+Mln(2M)2+\/M2_a21nr-—'r_’

(3.7)

with ro = M £+ /M2 — a2, The Wronskian factor is
determined by

) 0
(0} de(n) + A—IR

out dr in

W, :=—-A"'R
(3.8)

In order to calculate gravitational waves at infinity, we
must know accurate values of R§§) and Cj, numerically,
but it is difficult to obtain Cj, accurately because of the
bad behavior of Ri(:) at infinity. Also, since Ty, for large
r divexrges as — r> in the present case (see below), the
convergence property of the integral in Eq. (3.5) is not
guaranteed [20]). Thus, as was done in the previous nu-
merical works [23,24], we use the Sasaki-Nakamura (SN)
equation [20], which is obtained by changing the vari-
ables from the Teukolsky equation. In their formalism,
the equation becomes

d? d

—— = F(r) 5= — U} | Ximuw(r) = Simw(T),

dr*2 dr (3.9)

and the potentials F(r) = A(lnv) /(r? + a2) and U(r)
behave,? respectively, as O(r~") and (iK/(r? + ¢))* +
O(r~"),n = 2, at v* = +oo. Hence the boundary condi-
tions of the homogeneous equation at r* — *oo are well
behaved as

Xég)t — eim.a

X 5 Age™™ + Ape ", r* o o0,
(3.10)
X(D) - Boutez’kr' +Bine-ikr°’

out
Xi(f) — e Py oo,
where k = w —ma/2M7,. Thus accurate values of Xi(: )
and Aj;, are easily obtained numerically in the SN equa-
tion contrary to the Teukolsky one.
Stmw () is related to the source term of the Teukolsky

equation by
K
exp (—i[zdr) , o (8.11)

®The detailed descriptions of F, U, and 4 are shown in
Refs. {23} and/or [25].

. A’YWImw

Stmw = 'r——2 (r2 n 0,2)3/2
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where

d? Wy Timwr® . K

dr;w = Zz exp zfzd'r . (3.12)
This equation is integrated under the boundary condition
Wime = M2 at + = oo, so that, Spme — 7 %/2 at
r —+ oo, The solution of gravitational waves at infinity is
obtained by the Green’s function method:

S! w m
X!mw - o?l)t( )ZZWAH-. f m,}, d * (3'13)

where ¢g i a constant, lin, o y(r) [20]. Thus the con-
vergence property of the integration is guaranteed.

Once X, is obtained, the waveform of gravitational
waves at infinity is calculated from

. _ 8 e Ximew —233;: iw(r® —t)+imep
h.*.—zhx—;z‘/;wdw—zo—ﬁ-e .

Im

(3.14)

From Eq. (3.14), the energy flux and the total energy
flux, respectively, become

2
dit T oo €o
and
oo X 2
AE=82] duw ? | =i (3.16)
ILim ¥ 700

B. Equations of motion and source term

In solving Eqs. {2.1) for »* and 5 on the Kerr space-
time, it is convenient to introduce the tetrad frame as

fA [A
0 _ .2
e“—( E,0,0,—0,5111_3 —-E),

en = (0, J200 o) , (3.17)
e2 = (0,0,VZ%,0),
24 2
3 a r2+a? | )
= | ——==siné, 0,0, sinf |,
eM ( \/Esln ,\/E in
where £ = 72 + a2 cos?f, and e® e?,e?,el,e2) for
I3 i a

a =0~ 3, Here we use the latin mdices to denote the
tetrad component.
In the tetrad component, Egs. (2.1) are rewritten as

d .
—ut = wbca'b‘b

b Scd,
dr

u® — %Rabcd”

(3.18)
d—d—S“b = —2%w, 1250 4 2u[“vb],
T

where wa;© 1= eke} Ve is the Ricci rotation coefficient.
For the convenience, we write the explicit expressions of
wap® and Rapeq in the Appendix.

Since we now consider the case where the spinning
particle falls along the z axis (i.e., # = 0) and its spin
is parallel to the z axis, it is very natural to set that
u? = 43 = 0, and the only nonvanishing component of
spin tensor is Ss3 =: §. Then, u® = v° follows from
Eq. (2.4). Under these conditions, we find

a2
do__ Mo, 2aM@EI-d)

=_ ulS
ar oA 3 ’

d , M . 2aM(3r%~a?) o0

= S, 3.
o = wu’ + B (3.19)
d 2 d 3 d

ab _
a7 Tt Ta =
where g = r? + ¢%. From these equations, we can see
that the spin-spin interaction acts as the repulsive (at-
tractive) force in the case of parallel (antiparallel) spin,
ie., a8 >0 (a8 <0).

To solve the above equations, we can utilize the con-
servation law which is obtained by setting £# in Eq. (2.7)
as the timelike Killing vector of the Kerr spacetime. The
tetrad components of the timelike Killing vector and its
covariant derivative are given by

A 9
H = - Eeg + aj.I_l. (3.20)
2M(r? —a®cos?0) , ,  4aMr cosf ,
uv =~ 72 L el €y

Thus in the present case, we obtain the conserved quan-
tity Fy as

Ey _[A o 2aMr

" Eou + =z

5. (3.21)

Thus we get

(3.22)

So (B0 2aMr \°
=2 (228} —1
b \/A (P’ =3 )
It can be easily verified that these u® and u® solve the
Eqs. (3.19) with the aid of the relations

1
Vzu .

Hereafter, by setting Fy = u, we concentrate on the case
where the particle is at rest at infinity.

For the later convenience, we define ¢(r) regarding the
coordinate time of a particle as a function of . For this
purpose, we numerically solve the equation,

20 dr

=V (3.23)
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dt _ %o (| 2MSr
dr~ A )32
2aM S Al
aM Sr

which is derived from the Egs. (3.22) and (3.23), under
the boundary condition #(r) = 0 at r = v -+ €, where ¢
is an appropriately small constant ~ 107 1*M.

Since the system is axially symmetric in the present
case, we have only to consider the axially symmetric
mode, i.e., m = 0. Then, by using the components of
the energy momentum tensor with respect to the null
tetrad which is defined by

1 5. _ g
By = ~ 0L slp™ Lo(p™% o)

* 1 5. _ _2_
B} = — o pA* [ s (p 7P| —

and
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D>
£ = K(€g+€i‘),
n“=l\/§( —ef),
m* = (r +ia cos@)” 1/ (ez+ze3

the source term of the Teukolsky equation is given by

(3.25)

Tio = 4 f gt sin0 df dyp 55~ (B, + BIj)et 20

p = (r=—ia cosd)~l,

L, = 83 — aw sinf + scotd,
szg

=8,
Jp= 0+ —

In the above equations, an overbar denotes the complex conjugate.

performing integral by part, we obtain

var '
(3.26)
where
_FP SpACL_ 1[o” PZJ+(P 25 2AT )],
(3.27)
1 4D A — —a_—
Z—ﬁPBﬁAZJHP EATL 1 (p7 5 2 Tinn)),
(3.28)

Substituting Eq. (3.27) into Eq. (3.26) and

4 : il - aw aw | = T n
Tiow = E/dt sinfdfdpe [_Z_rLT{P "LT( 28 PS)}Tnn+ \/_ Lz( a0V (pz;_;A)

+L
2v2p%p?

where Il = 85 + aw sind + scotf. Using the energy-
momentum tensor of the spinning particle Eq. (2.8), we
can calculate the source term of Teukolsky equation Tig.-
After a somewhat long calculation, we find that Tio, be-
comes Tipp = T, + T%, + Tk, which are defined by

2
T‘Eﬂ — _4'uso.wA2 =2 dr (d’U) eiwt(r)’

Odr \dr
1 2d Twt(r)
T}, = 8uS5f“a—pf—e™"), (3.30)
s B A 2 o 2ia dv\ dv  d%v) i

1, = 4inS53 A% [( +1 dr) + d_rz"] ),
where v(r) = t(r) + r*, po = (r +ia)~ !, and

N —2 5%y '

§p = lim —=0 \/"“sm 5 (3.31)

L;{piz 567 (0™*) 1 Y omm — "P PAZ,Sh I {p™ 4 (P~ ZTmm)}:I

(3.29)
[
In total,
5 dr dv d%v
— aw A 2 =2 @GV
me = 4#5[ A Po [(d +w S) (d?’) 3Sdr2]
xe™t(r), (3.32)

We note that in the case 8 = 0, T.5 does not contribute
to both the spin-dependent and -independent terms, and
also Ty, does not contribute to the spin-independent
term. TP, does not depend on S. (This term has al-
ready been obtained by Sasaki and Nakamura [20].) O

the other hand, T2, and T} are spin dependent. (Note
that 70 , T} , and T}, diverge as #5/2, r1/2, and r% at
r — 00.) T,}n is zero when a§ — 0, so that it repre-
sents the spin-spin coupling term. On the other hand,
T}, involves not only the spin-spin coupling terms, but
also the other contributions which do not vanish even if
the spin of black hole is zero. Hence we may consider
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that it involves a contribution from the energy momen-
tum of the spinning particle. Once the source term of
the Teukolsky equation is obtained, Wiy, in Eq. (3.12)
is integrated from a large radius, rmax, t0 74 under the
boundary condition Wigy — r/2 at ¥ = rmax [20]. Then,
from Eq. (3.11), we obtain a source term of the SN equa-
tion Sy, (r) which behaves well at » — o0. ‘

Finally, we briefly explain the numerical strategies. To
obtain the waveform and the energy flux of gravitational
waves, lLe., to obtain Xjo,, we need to calculate the fol-
lowing quantities, numerically: (1) the coordinate time
of the particle trajectory as a function of 7, t(r), (2)
the homogeneous radial wave function with the ingoing
boundary condition X l(l? ) and Ain, (3) the spheroidal har-
monics 255, and (4) the source term of the SN equa-
tion Sio. (or Wig.,). Once the above quantities are calcu-
lated, we can obtain X, by performing the numerical
integration in Eq. (3.13). The numerical methods are
the same as those adopted in Ref. [23]. For each model
of ¢ and S, Xjp, is solved from [ = 2 to { = 6. Er-
ror caused by the neglect of higher multipole modes is
found to be at most ~ 1074, For each I, Xj., is solved
for —1.4M~! < w < 1.4M ! following Sasaki and Naka-
mura [20]. In calculating the energy flux, we adopt the
step size of w to be Aw = 0.02M 1, and in calculating
the waveform, we adopt Aw = 0.005M ! because if we
use a step size as large as Aw = 0.02M ™1, the spurious
period 2 /Aw stands out in the waveform. To check the
dependence of Aw on the energy flux, we also perform
the calculation using the other Aw. We found that the
energy flux changes 0.2% for the case when the spin vec-
tors of the black hole and the particle are antiparallel and
|a,.5’0} is large ~ M2, but the error is typically less than
0.1%.

C. Numerical results

‘We have calculated the total energy flux and the wave-
form of gravitational waves induced by a spinning parti-
cle of mass p and spin S falling into a Kerr black hole
of mass M and spin a for a wide variety of spin param-
eters -1 < S/M < 1and 0 € a/M < 0.99. In Fig. 1,
we show the total energy flux AE, s for 0 < a/M < 0.9
and —0.9 < §/M < 0.9. We here note that when we re-
. gard the spinning particle as a compact object, the spin
of the particle 5 must be at most of order y. Thus,
if we consider the case p <€ M, the spin must be very
small (S « M) and its effect is negligible. However,
our purpose is to see the spin effect in the case p S M
and § < M extrapolating p — O(M), so that we re-
gard S as a quantity of order M. From Fig. 1, we will
soon recognize that in the case of the antiparallel spin,
a larger amount of the energy flux is emitted: For the
case & = § = 0, the total energy flux is 0.0104(p/M)2M
(13], and for ¢ = & = 0.9M, it is almost the same (see
Fig. 2}). On the other hand, for a = —§ = 0.9M, the to-
tal energy flux becomes 0.0249(x/M)?M and it becomes
0.0298(p/M)*M for a = 0.99M and § = —0.99M. This
- is consistent with the interpretation of Wald [18] about
the radiation efficiency expected from the Hawking’s area

a/M

FIG. 1. The total energy flux AE, s/M of gravitational
waves by a spinning particle falling into a Kerr black hole for
a variety of spin parameters e and S.

theorem [26], in which he mentioned that the energy of
the spinning particle [ie., (A/E0)*/?u’] is gained due
to the spin-spin interaction for the antiparallel spin case
and lost for the parallel spin case during the in-fall into a
black hole [see Eq. (3.21)], so that AE, s for an antipar-
allel collision may well be larger than that for a parallel
collision. However, the detailed mechanism for this prop-
erty seems due to a somewhat different reason from that
he considered.

To investigate the reason for this property of the total
energy flux in detail, let us pay close attention to the
total energy flux as a function of @ and S. In Fig. 3(a),
we show the total energy flux for a = 0 as a function of
S/M, AEy g, and that for § = 0 as a fonction of of/M,
AE, . InFig. 3(b), we also show log10(AFo s/AFEqe—1)
(open circle) and log1o{AE, o/ AE, o—1) (filled circle) as
a function of log1p(S/M) and logjo{a/M), respectively.
This figure shows that both AEg ¢ and AE, o are well
approximated by the formula AEgs = AEgg + €152
and AE, o = AE; o+ Cza?, respectively, except for large
a/M 2 0.7 (C, and C; are constants.) We should note
that in the case a = 0, there does not appear the spin-
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FIG. 2. The total energy fux of gravitational waves in units
of (p/M)*M as a function of S/M in the case @ = 0 (ope
circle} and a = 0.9M (filled circle}. '
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spin interaction term in the equations of motion, so that
the motion of the spinning particle is not affected by its
spin. Nevertheless, the total energy flux increases with
the increase of the spin of the particle. This means that
the contribution of the energy-momentum tensor of the
spinning particle to the total energy flux is significant.
Figures 3(a} and 3(b) also show that the two curves do
not coincide (i.e., €y < C3). This seems mainly due to
the difference of the frequencies of the quasizormal model
(QNM) between the Schwarzschild and Kerr black holes:
For ¢ = 0 and § # 0, the difference of the total en-
ergy flux among different 5 is only caused by the energy-
momentum tensor of the spinning particle. On the other
hand, for § = 0 and a # 0, both the energy-momentum
tensor of the Kerr black hole and the change of the
QNM frequency of the Kerr black hole [15] contribute
to the difference of the total energy flux among dif
ferent a@. Since the frequency of the fundamental
QNM (! = 2,m = 0} of a Kerr black hole is always
larger than that of the Schwarzschild black hole [27] and

016 I(IGI)I.IIIIIIIIIIIIIII-

014 —

Energy Flux

M2 =

R BN I S AR A A A
0 2 4 6 .8 1
a/M or S/M

|[IIIIIIIIIII||

1|l|||lll|l|i|

o

-6 -4 -2
logio(a/M) or logig(S/M)

FIG. 3. {a) The total energy flux of gravitational waves
in units of (u/M)*M for the case a = 0, S # 0 (open cir-
cle) and @ # 0, § = 0 (filled circle). {b) The behavior
of the total energy flux as a function of the spin parame-
ters a or S inthecase e =0, S #0and e # 0, § = 0.
The horizontal axis shows logio(a/M) or logio(S/M), and
the vertical axis shows logi10{AEs,s/AEo e — 1) {(open circle)
or log1o(AE.0/AEsp — 1) (filled circle). We can see that
both AFEy s and AFE, o are well approximated by formulas
AEys = AFop + C158% and AB, 0 = AFp o + Caa?, respec-
tively. Here, Cy and C: are constants, and C) < Ch.

the total energy flux is roughly proportional to square of
the frequency, €3 may well become larger than ;. In

" any case, the total energy flux of gravitational waves is

changed by the following two reasons in the case when
we include the spin of the particle. One is due to the
spin-spin interaction which appears in the equations of
motion, and the other is due to the contribution of the
energy-momentum tensor of the spinning particle to the
source term of the Teukolsky equation. In the following,
let us explain that the latter contribution is larger.

In Fig. 4, we show the waveforms of gravitational waves
observed on the equatorial plane for e = 0, and S/M = 0,
0.45, and 0.9 (the solid, dashed, and dotted lines, respec-
tively). It is very interesting to note that the + mode
of gravitational waves is not affected by the spin, while
the x mode is highly affected. This indicates that the
increase of the energy flux with the increase of |5 is due
to the excitation of the x mode. This feature can also
be seen even for a # 0. In Figs. 5 and 6, we show the
waveforms for a = 0.6 M and a = 0.9M with various val-
ues of §/M. In Fig. 5, the solid, dashed, dotted, long
dashed, and dotted-dashed lines show the waveforms for
S/M = 0,—-0.6,—0.9,0.6, and 0.9, respectively, and in
Fig. 6, solid, dotted, and dashed lines show the wave-
forms for §/M = 0, —0.9, and 0.9. Like in the case
a = 0, the + mode is not affected so much by the spin
in all cases, but the X mode is highly affected. Thus by
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FIG. 4. Waveforms of gravitational waves in units of y for .
a = 0 and 5/M = 0 (solid line}, 0.45 (dashed line), and 0.9
{dotted line). Note that for hy, three lines agree.
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the inclusion of the spin of the particle, the x mode is
excited so much, but the + mode is not almost altered by
the spin of the particle. This fact suggests that the effect
of the energy-momentum tensor of the spinning particle
dominates over that of the spin-spin interaction which
appears in the equations of motion. In fact, the effect of

the spin-spin interaction is small. In Fig. 7, we show the

in-fall velocity |dr/dt| as a function of r for a = 0.9M
and S/M = —0.9 (dotted line), 0 (solid line), and 0.9
(dotted-dashed line). We note that for a = 0.9M, the
event horizon locates at » ~ 1,436 M. Figure 7 indicates
that. the spin-spin interaction does not alter the in-fall
velocity so much even just before the collision. If the
spin-spin interaction were effective, the in-fall velocity of
the spinning particle should be largely altered by the ef-
fect, and the amplitude of the + mode of gravitational
waves would change. Hence we can conclude that the
spin-spin interaction is not effective compared with the
effect of the energy-momentum tensor of the spinning
particle.

It is worth noting that for the antiparallel spin case, the
amplitude of the x mode monctonically increases with
the increase of {§|. On the other hand, for the parallel

spin case, its amplitude becomes minimum around S ~ -

a. Also, the amplitude of the + mode is not altered so
much when the parameters of spin a and § are changed.
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FIG. 6. Waveforms of gravitational waves in units of p for
a/M = 0.9 and §/M =0 (sohd line), —0.9 (dotted kine), and
0.9 (dashed ].me)

This means that the total energy flux is almost the same
as that for @ = § = 0 in the case ¢ = §. In reality,
the total energy fluxes for /M = §/M = 0.1 to 0.99
coincide with that for @ = § = 0 within 2% error (see
Fig. 8). Therefore, we may conjecture that in the head-
on collision of two spinning black holes of masses M; and

[dr/dtl
o
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\v)
F-N
&>
x
o

FIG. 7. The absolute value of the in-fall velocity of the

" spinning particle, |dr/dt|, as a function of » for a = 0.9M

and S/M = —0.9 (dotted line), 0 {solid line), and 0.9 {dot-
ted-dashed line). The location of the event horizon for
a=09M is at r ~ 1.436 M.
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FIG. 8. The total energy flux in units of (u/M)%M in the
case of @ = §. '

Mo, the total energy fiux would be almost independent
of their spins if ¢; = a; holds.

Finally, we mention the point where the QNM begins
t0 be excited. In Fig. 9, we show the retarded time ¢t —r*
as a function of r for ¢/M = 0, 0.6, 0.9, and S = 0.
‘We note that the fizure hardly depends on 5 because the
irajectories do not depend on the spin-spin interaction
effect so much (see Fig. 7). Comparing Figs. 4, 5, and 6
with Fig. 9, we can find that the points where the QNM
begins to be excited are » ~ 3 — 4M irrespective of a.
These coincide with the points where the spin-spin in-
teraction is most effective (see Fig. 7). Nevertheless, the
spin-spin interaction effect is still small to affect gravita-
tional waves so much. Therefore, we can conclude again
that the effect of the spin-spin interaction is small. -

IV, SUMMARY AND DISCUSSION

In this paper, to investigate the features of gravita-
tional waves in the head-on collision of two spinning black
holes, we have calculated the energy flux and the wave-

IIIIIIJII

-150

FIG. 9. The retarded time ¢ — +* as a function of » for
af/M =0,06,09,and S=0.

form of gravitational waves induced by a spinning par-
ticle falling into a rotating black hole along the 2 axis.
Calculations are performed incorporating the equations
of motion of the spinning particle derived by Papapetrou
[16] and its energy-momentum tensor derived originally
by Dixon [17] into the formalisms of Teukolsky and of
Sasaki and Nakamura. We obtained the following results.

(A) In a head-on collision where a small mass particle
of mass y and spin S collides with a black hole of mass
M and spin a, the total energy flux for the antiparallel
spin collision is larger than that for the parallel one.

(B) There are two spin effects of the particle to gravita-
tional waves; one is due to the contribution of the energy-
momentum tensor of the spinning particle to the source
term of the Teukolsky equation, and the other is due to
the spin-spin interaction between the black hole and the
spinning particle which appears in the equations of mo-
tion.

(C) The above two spin effects mainly affect the hy
mode of gravitational waves, while the k. mode is hardly
affected. This suggests that the former effect in (B) dom-
inates over the latter effect.

An actual numerical simulation of the head-on colli-
sion of black holes could take into account other effects
which are not included in the present perturbation calcu-
lation: (1) the effects by the higher multipole moments
(I > 2} of the spinning particle oc ;28* which were not
taken into account in the equations of motion and the
energy-momentum tensor of the spinning particle, (2) the
tidal heating of the black hole event horizon [12], and (3)
the final spin parameter of a merged black hole, which
will become about (Ma + uS)/(M + p). Since gravita-
tional waves for the head-on collision of two black holes
will be mainly radiated by the excitation of the guasinor-
mal mode {(QNM) of the merged black hole, {3) must be
correctly considered. '

As for (1), we will not know details until we perform an
analysis including the effects of the higher multipole mo-
ments of the spinning particle. However, we can expect
the following effect of the quadrupole moment which is
the leading term (! = 2) of the higher multipole moments
from a simple analysis. In the Newtonian limit, the equa-
tion of motion for a test body falling straightly toward
another body of mass M and quadrupole moment Ma>
becomes ‘

(M s
dez r 3 )

Thus the quadrupole moment reduces the attractive
force. This means that if we include the contribution
of the quadrupole moment of the spinning particle, the
velocity will decrease and the total energy flux may re-
duce. However, this effect seems to be small except for
the case a < M because the excitation of the QNM oc-
curs around r ~ 3 — 4M and at this point, the repulsive
force of the quadrupole moment term is small compared
with the leading term. As for (2), the kinetic energy of
black holes i3 dissipated by the tidal heating of the event
horizons, so that the total energy flux may reduce about
a few x10% [28,12]. As for (3), let us consider the cases
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M = p and § = +a as examples. For S = a, the spin
parameter of the merged black hole becomes a, so that
results by the perturbation calculation can be applied
without change. For & = —g, the final spin becomes
zero, so that the frequency of the QNM (fgonm) reduces
0-12% depending on a [27]. This means that the wave-
length of gravitational waves becomes long. Also, since
the amplitude may be expected not to change so much,
the total energy flux (proportional to féNM) is expected
to reduce about 0-25%.

In this way, the total energy flux may reduce about
a few x10% in total compared with that obtained by
extrapolating the results of the perturbation calculation
{u/(M + p) = 1/2]. However, the effects (1)-(3) may be
regarded as small corrections, and we may expect that
the essential feature of the output on gravitational waves
would not change so much. Therefore, the present results
will be an important guideline to quantitative results of
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APPENDIX

In this Appendix, we write down the explicit tetrad
components of the Ricci rotation coefficient and the Rie-
mann tensor for the convenience.

The nonvanishing components of the Ricci rotation co-
efficient of the Kerr spacetime are

. . . . . . 1
gravitational waves in the numerical simulation of the war® = wanl = ra®sin? @ — Mr2
head-on collision of two spinning black holes, which has o 00 T TI2A1/ 7
not been performed yet. +Ma’cos® 9),

So far, we have focused on the head-on collision be- o . o s ) s arsind
tween the spinning black hole and the spinning parti- w31l =wget =Wyt = Wiet = West = —wWor = —ogm
cle. However, the method developed in the present paper 2 cos B sin f

ill b ful to calculate itational waves for general 0 o? = gl = oy = e T ST
will be useful to gravi g Wz~ = g~ = Wi w11 55 (A1)
three-dimensional coalescence case or for the case when o . o 5 22
the particle is orbiting around the black hole. These cal- w3y =wgp = —Wzz = —Wa = Wo3
culations are very important for checking results in 3D _ 3 _ @Cos gAL/2
numerical relativistic simulations or the post-Newtonian =TwWer = Tgi
calculations [4,8] of gravitational wave induced by two ~ALZ
spinning bodies. As for the post-Newtonian formula on  wyy! = —we;? = wag! = —wa® = T
the energy flux of gravitational waves by a spinning pax- . 2
ticle in circular orbit, we will show the results in another was? = —wg® = (r* + a®) cosd
paper [29]. T3/25in8

J
The nonvanishing components of the Riemann tensor are
1 1 Mr{3a%cos® @ —r?
Rigiz = Ranis = '2'R1o1o = —§R2323 = —FRa020 = —R3030 = ( SE ),
(A2)
1_ °  -aM cosf(3r* — a?cos?
Bi230 = —Razzo = ~5 R0z = aid % @ o8 9).
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