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Post-Newtonian expansion of gravitational waves from a particle in circular orbit
around a rotating black hole: Up to O„v8… beyond the quadrupole formula
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Extending a method developed by Sasaki in the Schwarzschild case and by Shibata, Sasaki, Tagoshi,
Tanaka in the Kerr case, we calculate the post-Newtonian expansion of the gravitational wave luminosit
from a test particle in circular orbit around a rotating black hole up toO(v8) beyond the quadrupole formula.
The orbit of a test particle is restricted on the equatorial plane. We find that spin-dependent terms appea
each post-Newtonian order, and that atO(v6) they have a significant effect on the orbital phase evolution of
coalescing compact binaries. By comparing the post-Newtonian formula of the luminosity with numerica
results we find that, for 30M&r&100M , the spin-dependent terms atO(v6) andO(v7) improve the accuracy
of the post-Newtonian formula significantly, but those atO(v8) do not improve.@S0556-2821~96!02714-2#

PACS number~s!: 04.25.Nx, 04.30.Db, 97.60.Lf
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I. INTRODUCTION

Among the possible sources of gravitational waves, c
lescing compact binaries are considered to be the most p
ising candidates for detection by near-future, ground-ba
laser interferometric detectors such as the Laser Interf
metric Gravitational Wave Observatory~LIGO! @1#, VIRGO
@2#, GEO600, TAMA, and AIGO. There are two reasons f
this: First, we can expect a sufficiently large amplitude
gravitational waves from these systems. Second, the
mated event rate, for neutron star binaries, is severa
within 200 Mpc @3#. Furthermore, the observations of co
lescing compact binaries are potentially important beca
they bring us new physical and astronomical informatio
They can be used to test general relativity@4#, and to mea-
sure cosmological parameters@5# and neutron star radii. I
may even be possible to obtain information about the eq
tion of state of neutron stars@6#. If a neutron star or a smal
black hole spirals into a massive black hole with ma
,300M( , the inspiral waveform will be detected by th
above detectors. Such waveforms carry detailed informa
about the spacetime geometry around the black hole,
therefore, may be used to test the black hole no-hair theo
@7#.

When a gravitational wave signal is detected, match
filtering will be used to extract the binary’s parameters~i.e.,
masses, spins, etc.! @6#. In this method, the parameters a
determined by cross correlating the noisy signal from
detectors with theoretical templates. If the signal and
templates lose phase with each other by one cycle o
;103–104 cycles as the waves sweep through the LIG
VIRGO band, their cross correlation will be significantly r
duced. This means that we need to construct theoretical
plates which are accurate to better than one cycle du
entire sweep through the LIGO-VIRGO band@6#. If we have
accurate templates, we can, in principle, determine the m
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of the systems within 1% error@8#. Thus, much effort has
been expended to construct accurate theoretical templa
@9#.

The standard method to calculate inspiraling waveform
from coalescing binaries is the post-Newtonian expansion
the Einstein equations, in which the orbital velocityv of the
binaries is assumed to be small compared to the speed
light. Since, for coalescing binaries, the orbital velocity
not so small when the frequency of gravitational waves is
LIGO-VIRGO band, it is necessary to carry the pos
Newtonian expansion up to extremely high order inv. A
post-Newtonian wave generation formalism which ca
handle the high order calculation has been developed
Blanchet and Damour@10# and Damour and Iyer@11#. Based
on this formalism, calculations have been carried out up
post5/2-Newtonian order orO(v5) beyond the leading order
quadrupole formula@12–20#. Another formalism is also de-
veloped up toO(v4) by Will and Wiseman@16,20# which is
based on the Epstein-Wagoner formalism@21,22#.

Although the post-Newtonian calculation technique wi
be developed and applied to the higher order calculation
will become more difficult and complicated. Thus, it woul
be very helpful if we could have another reliable method
calculate the higher order post-Newtonian corrections. R
cently the post-Newtonian expansion based on black h
perturbation formalism is developed. In this analysis, o
considers gravitational waves from a particle of massm or-
biting a black hole of massM whenm!M . Although this
method is restricted to the case whenm!M , one can calcu-
late very high order post-Newtonian corrections to gravit
tional waves using a relatively simple algorithm in contra
with the standard post-Newtonian analysis. This direction
research was first done analytically by Poisson@23# who
worked toO(v3) and numerically by Cutleret al. @24# to
O(v5). Subsequently, a highly accurate numerical calcu
tion was carried out by Tagoshi and Nakamura@25# to
1439 © 1996 The American Physical Society
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O(v8) in which they found the appearance of lnv terms in
the energy flux atO(v6) and atO(v8). They also clarified
that the accuracy of the energy flux to at leastO(v6) is
needed to construct template waveforms for coalescing bin
ries. Tagoshi and Sasaki@26#, using the formulation built up
by Sasaki@27#, performed analytic calculations which con
firmed the result of Tagoshi and Nakamura. These calcu
tions were extended to a rotating black hole case by Shiba
Sasaki, Tagoshi, and Tanaka~SSTT! @28# to O(v5). They
calculated gravitational waves from a particle in circular o
bit with small inclination from the equatorial plane to see th
effect of spin at high post-Newtonian orders. They found th
the effect of spin on the orbital phase is important a
O(v5) order when one of the stars is a rapidly rotating ne
tron star with its pulse period less than 2 ms or a rapid
rotating black hole withq5JBH /M

2>0.2. This analysis was
extended to the case of slightly eccentric orbits by Tagos
@29#. The absorption of gravitational waves into the blac
hole horizon, appearing atO(v8), was also calculated by
Poisson and Sasaki in the case when a test particle is i
circular orbit around a Schwarzschild black hole@30#.

In this paper, we extend these analyses in the rotati
black hole case toO(v8) order. Once again, the calculation
is based on the formalism developed by Sasaki@27# to treat a
Schwarzschild black hole. Based on the post-Newtonian e
pansion of the luminosity in the test particle limit when th
central body is a Schwarzschild black hole@25,26#, Cutler
and Flanagan@31# estimated that we will have to calculate
post-Newtonian expansion of gravitational wave luminosi
at least up toO(v6) in order to obtain the theoretical tem-
plates which cause less systematic errors than statistical
rors for the LIGO detector. Further, in a previous paper@28#,
we suggested that the effect of spin atO(v6) to the orbital
phase of coalescing binaries would not be negligible if sp
of the black hole was large~i.e., uqu;1). Also, the perturba-
tion study can provide accurate templates for binaries w
M@m ~for example, binaries of 100M( black hole, 1.4M(

neutron star!. Since LIGO and VIRGO will be able to detect
gravitational wave signals from binaries with masses le
than ;300M( , it is important to construct templates for
such binaries. The frequency of gravitational waves fro
such a massive binary, however, comes into the frequen
band for LIGO and VIRGO atr /M;16(100M( /M )2/3, i.e.,
highly relativistic region. We do not know whether the con
vergence property of the post-Newtonian approximation
good or not in such a highly relativistic motion. Hence, it i
an urgent problem to clarify at what point the convergenc
property of the post-Newtonian expansion is good. For the
purposes, we study the effect of spin beyondO(v6) order in
this paper.

The paper is organized as follows. In Sec. II, we prese
the basic formalism to perform the post-Newtonian expa
sion in our perturbative approach. First, we perform the po
Newtonian expansion of the Teukolsky radial function usin
the Sasaki-Nakamura equation. We also show the po
Newtonian expansion of the angular equation, which is give
in Appendix F. In Sec. III, we first describe the post
Newtonian expansion of the source terms. We consider c
cular orbits in the equatorial plane around a Kerr black hol
Then the gravitational wave luminosities toO(v8) beyond
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the quadrupole formula are derived. In Sec. IV, we compa
post-Newtonian formulas with numerical data which give
the exact value of gravitational wave luminosity and inves
tigate the convergence property of the post-Newtonian e
pansion. Section V is devoted to a summary and discussio

Throughout this paper we use the units ofc5G51.

II. GENERAL FORMULATION

A. Teukolsky equation

We consider the case when a test particle of massm trav-
els in a circular orbit around a Kerr black hole of mas
M@m. We follow the notation used by SSTT@28#, but for
definiteness, we recapitulate necessary formulas and defi
tions.

To calculate gravitational radiation from a particle orbit
ing a Kerr black hole, we start with the Teukolsky equatio
@32,33#. We focus on the radiation going out to infinity de-
scribed by the fourth Newman-Penrose quantityc4 @34#,
which may be expressed as

c45~r2 iacosu!24E dve2 ivt(
l ,m

eimw

A2p
22Sl m

av ~u!Rl mv~r !,

~2.1!

where 22Sl m
av is the spheroidal harmonic function of spin

weight s522, which is normalized as

E
0

p

u22Sl m
av u2sinudu51. ~2.2!

The radial functionRl mv(r ) obeys the Teukolsky equation
with spin weights522:

D2
d

dr S 1D dRl mv

dr D2V~r !Rl mv5Tl mv~r !, ~2.3!

whereTl mv(r ) is the source term whose explicit form will
be shown later, andD5r 222Mr1a2. The potentialV(r ) is
given by

V~r !52
K214i ~r2M !K

D
18ivr1l, ~2.4!

where K5(r 21a2)v2ma and l is the eigenvalue of

22Sl m
av .
The solution of the Teukolsky equation at infinity

(r→`) is expressed as

Rl mv~r !→
r 3eivr*

2ivBl mv
in E

r1

`

dr8
Tl mv~r 8!Rl mv

in ~r 8!

D2~r 8!

[Z̃l mvr
3eivr* , ~2.5!

where r15M1AM22a2 denotes the radius of the event
horizon andRl mv

in is the homogeneous solution which satis
fies the ingoing-wave boundary condition at the horizon,
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Rl mv
in →H D l mvD2e2 ikr* for r *→2`,

r 3Bl mv
out eivr*1r21Bl mv

in e2 ivr* for r *→1`,
~2.6!

where k5v2ma/2Mr1 and r * is the tortoise coordinate
defined by

dr*

dr
5
r 21a2

D
. ~2.7!

For definiteness, we fix the integration constant such t
r * is given explicitly by

r *5E dr*

dr
dr5r1

2Mr1

r12r2
ln
r2r1

2M
2

2Mr2

r12r2
ln
r2r2

2M
,

~2.8!

wherer65M6AM22a2.

B. Post-Newtonian expansion of the homogeneous solution

In the previous papers@27,28#, the post-Newtonian expan-
sion of the homogeneous solution was performed toO(e2) in
the Schwarzschild case andO(e) in the Kerr case, where
e[2Mv. In this section, we extend those methods, perfor
ing the expansion of homogeneous solutions up toO(e2).

In order to calculate gravitational waves emitted to infin
ity from a particle in a circular orbit, we need to know th
explicit form of the source termTl mv(r ), which has support
only at r5r 0 where r 0 is orbital radius in the Boyer-
Lindquist coordinate, the ingoing-wave Teukolsky functio
Rl mv
in (r ) at r5r 0 , and its incident amplitudeBl mv

in at infin-
ity. We consider the expansion of these quantities in terms
a small parameterv2[M /r 0 . In addition, we need to expand
those quantity in terms ofe[2Mv sincev5O(V) where
V is the orbital angular velocity of the particle an
Mv5O(v3). In the case of a Kerr black hole, other comb
nation of parametersav appears in the Teukolsky equation
We defineq[a/M and we haveav 5qe/25O(v3).

First we perform the expansion of the spheroidal harmo
ics 22Sl m

av and their eigenvaluesl in terms ofav. Since
av5O(v3), we have to calculate22Sl m

av and l up to
O„(av)2…. The eigenvaluel has already been evaluated u
to O„(av)2… in a previous paper@28#. We calculate the ex-
pansion of 22Sl m

av at O„(av)2… in the Appendix F. As a
result, the spheroidal harmonics22Sl m

av are given by

22Sl m
av 522Pl m1avSl m

~1! 1~av!2Sl m
~2! 1O„~av!3…, ~2.9!

where 22Pl m are the spherical harmonics of spin weigh
s522 @35# and

Sl m
~1! 5(

l 8
cl m
l 8

22Pl 8m . ~2.10!

Herecl m
l 8 are nonzero only forl 85l 61, explicitly,
hat

m-

-
e

n

of

d
i-
.

n-

p

t

cl m
l 115

2

~ l 11!2

3F ~ l 13!~ l 21!~ l 1m11!~ l 2m11!

~2l 11!~2l 13! G1/2,
cl m
l 2152

2

l 2 F ~ l 12!~ l 22!~ l 1m!~ l 2m!

~2l 11!~2l 21! G1/2.
Sl m
(2) is given by

Sl m
~2! 5(

l 8
dl m
l 8

22Pl 8m , ~2.11!

where the nonzero components ofdl m
l 8 are given by

dl m
l 52

1

2
@~cl m

l 11!21~cl m
l 21!2#, ~2.12!

for any l , by

dl m
l 115

m

324A7
~32m!1/2~31m!1/2,

dl m
l 125

11

1764A3
~32m!1/2~31m!1/2~42m!1/2~41m!1/2,

for l 52, and by

dl m
l 115

m

120A21
~42m!1/2~41m!1/2,

dl m
l 125

1

180A11
~42m!1/2~41m!1/2~52m!1/2~51m!1/2,

dl m
l 2152

m

324A7
~32m!1/2~31m!1/2,

for l 53. We do not needSl m
(2) for l 54 in this paper.

The eigenvaluel is given by

l5l01avl11a2v2l21O„~av!3…, ~2.13!

wherel05~l 21!~l 12!, l1522m~l 21l 14!/~l 21l !, and

l2522~ l 11!~cl m
l 11!212l ~cl m

l 21!21
2

3

2
2

3

~ l 14!~ l 23!~ l 21l 23m2!

l ~ l 11!~2l 13!~2l 21!
. ~2.14!

Next we calculate the homogeneous solutionRl mv
in . Here

we only consider the case whenv.0. We must treat the
case v<0 separately. The Teukolsky equation is trans
formed into the Sasaki-Nakamura equation@36#, which is
given by

F d2

dr* 2
2F~r !

d

dr*
2U~r !GXl mv50. ~2.15!
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The explicit forms ofF(r ) andU(r ) are given in Appendix
A. The relation betweenRl mv andXl mv is

Rl mv5
1

h H S a1
b ,r

D Dx l mv2
b

D
x l mv,r J , ~2.16!

wherex l mv5Xl mvD/(r 21a2)1/2, and the functionsa, b,
andh are shown in Appendix A. Conversely, we can expres
Xl mv in terms ofRl mv as

Xl mv5~r 21a2!1/2r 2J2J2F 1r 2Rl mvG , ~2.17!

whereJ25(d/dr)2 i (K/D). Then the asymptotic behavior
of the ingoing-wave solutionXl mv

in which corresponds to Eq.
~2.6! is

Xl mv
in →H Al mv

out eivr*1Al mv
in e2 ivr* for r *→`,

Cl mve
2 ikr* for r *→2`.

~2.18!

The coefficientAl mv
in , Al mv

out , andCl mv are, respectively,
related toBl mv

in , Bl mv
out , andD l mv , defined in Eq.~2.6!, by

Bl mv
in 52

1

4v2Al mv
in ,

Bl mv
out 52

4v2

c0
Al mv
out ,

D l mv5
1

dl mv
Cl mv , ~2.19!

wherec0 is given in Eq.~A3! of Appendix A and

dl mv5A2Mr1@~8224iMv216M2v2!r1
2

1~12iam216M116amMv124iM 2v!r1

24a2m2212iamM18M2#.

Now we introduce the variablez5vr and

z*5z1eF z1

z12z2
ln~z2z1!2

z2

z12z2
ln~z2z2!G

5vr *1e lne, ~2.20!

wherez65vr6 . To solveXl mv
in by expanding it in terms of

e, we set

Xl mv
in 5Az21a2v2j l m~z!exp@2 if~z!#, ~2.21!

where

f~z!5E drSKD 2v D5z*2z2
e

2
mq

1

z12z2
ln
z2z1

z2z2
,

~2.22!

which generalizes the phase functionv(r *2r ) of the
Schwarzschild case. This prescription makes it easy
implement the ingoing-wave boundary condition onXl mv

in .
s

to

Inserting Eq.~2.21! into Eq. ~2.15! and expanding it in
powers ofe52Mv, we obtain

L ~0!@j l m#5eL ~1!@j l m#1eQ~1!@j l m#1e2Q~2!@j l m#

1e3Q~3!@j l m#1e4Q~4!@j l m#1O~e5!,

~2.23!

whereL (0), L (1), Q(1), andQ(2) are differential operators
given by

L ~0!5
d2

dz2
1
2

z

d

dz
1S 12

l ~ l 11!

z2 D , ~2.24!

L ~1!5
1

z

d2

dz2
1S 1z2 1

2i

z D d

dz
2S 4z3 2

i

z2
1
1

zD , ~2.25!

Q~1!5
iql1

2z2
d

dz
2

4imq

l ~ l11!z3
, ~2.26!

andQ(2), Q(3), andQ(4) are given in Appendix C. Note that
the real part ofQ(1) vanishes when we insert the expression
for l1 . There arel3 or l4 in the formulas forQ(3) and
Q(4). However, it is straghtforward to show that bothl3 and
l4 do not influence the results in this paper.

By expandingj l m in terms ofe as

j l m5 (
n50

`

enj l m
~n! ~z!, ~2.27!

we obtain from Eq.~2.23! the iterative equations

L ~0!@j l m
~0! #50, ~2.28!

L ~0!@j l m
~1! #5L ~1!@j l m

~0! #1Q~1!@j l m
~0! #[Wl m

~1! , ~2.29!

L ~0!@j l m
~2! #5L ~1!@j l m

~1! #1Q~1!@j l m
~1! #1Q~2!@j l m

~0! #[Wl m
~2! ,
~2.30!

L ~0!@j l m
~3! #5L ~1!@j l m

~2! #1Q~1!@j l m
~2! #1Q~2!@j l m

~1! #1Q~3!@j l m
~0! #

[Wl m
~3! , ~2.31!

L ~0!@j l m
~4! #5L ~1!@j l m

~3! #1Q~1!@j l m
~3! #1Q~2!@j l m

~2! #1Q~3!@j l m
~1! #

1Q~4!@j l m
~0! #[Wl m

~4! . ~2.32!

The general solution to Eq.~2.28! is immediately obtained as

j l m
~0! 5a l

~0! j l 1b l
~0!nl , ~2.33!

wherej l andnl are the usual spherical Bessel functions. As
we discuss later, the boundary condition forn<2 is that
j l m
(n) is regular atz50. Henceb l

(0)50 and we seta l
(0)51 for

convenience.
To calculatej l m

(n) for n>1, we rewrite Eqs.~2.29!–~2.32!
in the indefinite integral form by using the spherical Bessel
functions as

j l m
~n! 5nl Ez

dzz2 j l Wl m
~n! 2 j l Ez

dzz2nl Wl m
~n! ~n51,2!.

~2.34!
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The calculation forn51 was done in a previous paper@28# and we have

jl m
~1! 5a l

~1! j l 1
~ l 21!~ l 13!

2~ l 11!~2l 11!
j l 112

l 224

2l ~2l 11!
j l 211z2~nl j 02 j l n0! j 01 (

k51

l 21 S 1k1
1

k11D z2~nl j k2 j l nk! j k

1nl @Ci~2z!2g2 ln2z#2j l Si~2z!1 i j l lnz1
imq

2 S l 214

l 2~2l 11! D j l 211
imq

2 S ~ l 11!214

~ l 11!2~2l 11! D j l 11 , ~2.35!

where Ci(x)52*x
`dtcost/t and Si(x)5*0

xdtsint/t are cosine and sine integral functions,g is the Euler constant, anda l
(1) is an

integration constant which represents the arbitrariness of the normalization ofXl mv
in . We seta l

(1)50 for simplicity.
Next we considerj l m

(2) . From Eqs.~2.34! and ~2.35!, and by using formulas in the paper@27#, we obtainj l m
(2) as

j l m
~2! 5 f l

~2!1 ig l
~2!1kl m

~2! ~q!1a l m
~2! j l 1b l m

~2!nl , ~2.36!

wheref l
(2) andgl

(2) are the real and imaginary part ofj l m
(2) in the Schwarzschild case, respectively,kl m

(2) (q) exists only in Kerr
case, anda l m

(2) andb l m
(2) are arbitrary constants. The explicit forms off l

(2) andgl
(2) are given in a previous paper@27#. The term

kl m
(2) (q) is given for l 52 by

k2m
~2!5

191i

180
mq j02

m2q2 j 0
30

2
mq j1
10

2
68i

63
mq j22

q2

392
j 22

73m2q2

1764
j 21

7mqj3
180

2
i

72
q2 j 31

i

324
m2q2 j 31

11i

420
mq j42

q2 j 4
392

2
71m2q2j4
8820

1
13i

6
mqn11S2mqj1

5
2
13mqj3
90 D lnz1S 2 i

5
mq j12

13i

90
mq j3DS~z!1S i5mqn11

13i

90
mqn3DC~z! ~2.37!

and, forl 53,

k3m
~2!5

3527i

840
mq j12

2m2q2j1
315

2
mq j2
36

2
5i

504
q2 j 21

5i

2268
m2q2 j 22

379i

360
mq j32

q2 j 3
360

2
7m2q2j3
720

1
3mqj4
160

2
i

140
q2 j 4

1
i

1120
m2q2 j 41

97i

5040
mq j52

q2 j 5
360

2
17m2q2j5
5040

2
103i

48
mqn01

25i

8
mqn22S13mqj2126

1
5mqj4
56 D lnz

1S 213i

126
mq j22

5i

56
mq j4DS~z!1S 13i126

mqn21
5i

56
mqn4DC~z!, ~2.38!

where C(z)5Ci2z2g2 ln2z and S(z)5Si2z. Note that to obtain the above two formulas, we have added terms proportiona
to j l to simplify the formulas ofAl mv

in below. As noted previously, the source termTl mv has support only atr5r 0 and
vr 05O(v). Hence we only needXl mv

in at z5O(v)!1 to evaluate the source integral, apart from the value of the inciden
amplitude Al mv

in . Hence the post-Newtonian expansion ofXl mv
in corresponds to the expansion not only in terms of

e5O(v3), but alsoz by assuminge!z!1. In order to evaluate the gravitational wave luminosity toO(v8) beyond the
leading order, we must calculate the series expansion ofj l m

(n) in powers ofz for n50 to l 56, for n51 to l 55, for n52 to
l 54, for n53 to l 53, and forn54 to l 52 ~see Appendix C of SSTT!.

When we evaluateAl mv
in , we examine the asymptotic behavior ofj l m

(n) at infinity. Since the accuracy ofAl mv
in we need is

O(e2), we do not have to calculatej l m
(3) and j l m

(4) in closed analytic form. We need only the series expansion formulas for
j l m
(3) and j l m

(4) aroundz50, which is easily obtained by Eq.~2.34!. Insertingj l m
(n) into Eq. ~2.21! and expanding it byz and

e assuminge!z!1, we obtain

j2m
~3!5

2q2

30z
2

i

30z
mq31

2 i

30
1
7mq

180
2

i

60
m2q21

mq3

36
2
m3q3

90
2
mqlnz

30
2

i

30
m2q2lnz

1zS 3196300
1
100637i

441000
mq2

q2

180
1
17m2q2

1134
1

83i

5880
mq32

61i

13230
m3q31

lnz

15
2

106i

1575
mqlnz2

i

30
mq~ lnz!2D

1O~z2!1a2m
~3! j 21b2m

~3!n2 , ~2.39!

j2m
~4!5

q4

80z2
1O~z21!1a2m

~4! j 21b2m
~4!n2 , ~2.40!
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j3m
~3!5

2 i

1260
mq1

m2q2

1890
2

i

1260
mq32

i

3780
m3q31O~z!1a3m

~3! j 31b3m
~3!n3 . ~2.41!

The boundary condition ofj l m
(n) that correctly represent the boundary condition ofXl mv

in @Eq. ~2.18!# is thatzj l m
(n) must be no

more singular thanz(l 112n) at z→0. Since we needj l m
(n) only up ton54, we setb l m

(n)50 for all of l andn in this paper. As
for a l m

(n) , they still remain arbitrary and we seta l m
(n)50 for all of l , m, andn53,4.

Insertingj l m
(n) into Eq. ~2.22! and expanding it in terms ofe52Mv, we obtainXl mv

in which are shown in Appendix C.
Using the transformation of Eq.~2.16!, we obtainRl mv

in which are also shown in Appendix D.
Next, we considerAl mv

in at O(e2). Using the relationj l 11; 2 j l 21; (21)l 1nn2n2l at z;`, etc., we obtain the
asymptotic behavior ofj l m

(1) andj l m
(2) at z;` as

j l m
~1! ;pl m

~1! j l 1~ql m
~1! 2 lnz!nl 1 i j l lnz, ~2.42!

j l m
~2! ;@pl m

~2! 1ql m
~1! lnz2~ lnz!2# j l 1~ql m

~2! 2pl m
~1! lnz!nl 1 ip l m

~1! j l lnz1 i ~ql m
~1! 2 lnz!nl lnz, ~2.43!

where

pl m
~1! 52

p

2
, ~2.44!

ql m
~1! 5

1

2 Fc~ l !1c~ l 11!1
~ l 21!~ l 13!

l ~ l 11! G2 ln22
2imq

l 2~ l 11!2
, ~2.45!

c~ l !5 (
k51

l 21
1

k
2g ~2.46!

for any l and

p2m
~2!5

457g

210
2

g2

2
15

p2

24
2

i

18
gmq1

457 ln2

210
2g ln22

i

18
mqln22

~ ln2!2

2
, ~2.47!

q2m
~2!5

2457p

420
1

gp

2
1
5mq

36
1

i

36
mpq2

i

72
q21

i

324
m2q21

p ln2

2
, ~2.48!

p3m
~2!5

52g

21
2

g2

2
15

p2

24
2

i

72
gmq1

52 ln2

21
2g ln22

i

72
mqln22

~ ln2!2

2
, ~2.49!

q3m
~2!5

226p

21
1

gp

2
1
67mq

1440
1

i

144
mpq1

i

360
q22

17i

12960
m2q21

p ln2

2
. ~2.50!

Then noting that exp(2if);exp@2i(z*2z)# at z;`, the asymptotic form ofXl mv
in is expressed as

Xl mv
in 5Az21a2v2exp~2 if!$ f l m

~0! 1ej l m
~1! 1e2j l m

~2! 1•••%;e2 iz* ~zhl
~2!eiz!@11e~pl m

~1! 1 iq l m
~1! !1e2~pl m

~2! 1 iq l m
~2! !#

1eiz* ~zhl
~1!e2 iz!@11e~pl m

~1! 2 iq l m
~1! !1e2~pl m

~2! 2 iq l m
~2! !#, ~2.51!
wherehl
(1) andhl

(2) are the spherical Hankel functions of the
first and second kinds, respectively, which are given by

hl
~1!5 j l 1 in l →~21! l 11

eiz

z
,

hl
~2!5 j l 2 in l →~21! l 11

e2 iz

z
. ~2.52!
From these equations, notingvr *5z*2e lne, we obtain

Al mv
in 5

1

2
i l 11e2 i e lne@11e~pl m

~1! 1 iq l m
~1! !1e2~pl m

~2! 1 iq l m
~2! !

1•••#. ~2.53!

The corresponding incident amplitudeBl mv
in for the Teukol-

sky function are obtained from Eq.~2.19!.
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III. GRAVITATIONAL WAVE LUMINOSITY TO O„V8
…

A. Geodesic equations

In this section, we solve the geodesic equation for circul
motion in the equatorial plane. The geodesic equations in t
Kerr geometry are given by

S
du

dt
56FC2cos2uH a2~12E2!1

l z
2

sin2u J G1/2[Q~u!,

S
dw

dt
52S aE2

l z
sin2u D1

a

D
@E~r 21a2!2alz#[F,

S
dt

dt
52S aE2

l z
sin2u Dasin2u1

r 21a2

D
@E~r 21a2!2alz#

[T,

S
dr

dt
56AR, ~3.1!

whereE, l z , andC are the energy, thez component of the
angular momentum, and the Carter constant of a test partic
respectively.S5r 21a2cos2u and

R5@E~r 21a2!2alz#
22D@~Ea2 l z!

21r 21C#. ~3.2!

Since we consider a motion of a particle in the equatori
planeu5p/2, we can setC50. We define the orbital radius
as r5r 0 . ThenE and l z are determined byR(r 0)50 and
]R/]r ur5r0

50 as

E5
122v21qv3

~123v212qv3!1/2
,

l z5
r 0v~122qv31q2v4!
~123v212qv3!1/2

,

wherev5(M /r 0)
1/2. After these preparations, we can easil

obtainw(t) as

w~ t !5Vt,

V5
M1/2

r 0
3/2 @12qv31q2v61O~v9!#. ~3.3!

B. Integration of the source term

Using results of the previous section, we can now deriv
the source term of the Teukolsky equation and integrate it
give the amplitude of the Teukolsky function at infinity.

The energy-momentum tensor of a test particle of ma
m is given by
ar
he

le,

al

y

e
to

ss

Tmn5
m

Ssinudt/dt

dzm

dt

dzn

dt
d~r2r 0!d~u2p/2!d„w2w~ t !….

~3.4!

The source term of the Teukolsky equation is given by

Tl mv54E dVdtr25r̄21~B281B28* !e2 imw1 ivt 22Sl m
av

A2p
,

~3.5!

where

B2852
1

2
r8r̄L21@r24L0~r22r̄21Tnn!#

2
1

2A2
r8r̄D2L21@r24r̄2J1~r22r̄22D21Tm̄n!#,

B28*52
1

4
r8r̄D2J1@r24J1~r22r̄Tm̄m̄!#

2
1

2A2
r8r̄D2J1@r24r̄2D21L21~r22r̄22Tm̄n!#,

~3.6!

with

r5~r2 iacosu!21,

Ls5]u1
m

sinu
2avsinu1scotu,

J15] r1 iK /D, ~3.7!

and r̄ denotes the complex conjugate ofr.
In the present case, the tetrad components of the energy-

momentum tensor,Tnn , Tm̄n , andTm̄m̄ , take the form

Tnn5
Cnn

sinu
d~r2r 0!d~u2p/2!d„w2w~ t !…,

Tm̄n5
Cm̄n

sinu
d~r2r 0!d~u2p/2!d„w2w~ t !…,

Tm̄m̄5
Cm̄m̄

sinu
d~r2r 0!d~u2p/2!d„w2w~ t !…, ~3.8!

where

Cnn5
m

4S3ṫ
@E~r 21a2!2alz#

2,

Cm̄n52
mr

2A2S2ṫ
@E~r 21a2!2alz#F isinuS aE2

l z
sin2u D G ,

Cm̄m̄5
mr2

2S ṫ F isinuS aE2
l z

sin2u D G2, ~3.9!

and ṫ5dt/dt.
Substituting Eq.~3.6! into Eq. ~3.5! and integrating by

parts, we obtain
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Tl mv5
4

A2p
E

2`

`

dtE dueivt2 imw~ t !F2
1

2
L1
†$r24L2

†~r3S!%Cnnr
22r̄21d~r2r 0!d~u2p/2!1

D2r̄2

A2r
@L2

†S1 ia~ r̄2r!sinuS#

3J1$Cm̄nr
22r̄22D21d~r2r 0!d~u2p/2!%1

1

2A2
L2
†$r3S~ r̄2r24! ,r%Cm̄nDr22r̄22d~r2r 0!d~u2p/2!

2
1

4
r3D2SJ1$r24J1@ r̄r22Cm̄m̄d~r2r 0!d~u2p/2!#%G , ~3.10!
where

Ls
†5]u2

m

sinu
1avsinu1scotu, ~3.11!

andS denotes22Sl m
av (u) for simplicity.

We further rewrite Eq.~3.10! as

Tl mv5E
2`

`

dteivt2 imw~ t !D2@~Ann 01Am̄n 01Am̄m̄ 0!d~r2r 0!

1$~Am̄n 11Am̄m̄ 1!d~r2r 0!% ,r

1$Am̄m̄ 2d~r2r 0!% ,rr ] u5p/2 , ~3.12!

whereAnn 0 , etc., are given in Appendix B. Inserting Eq
~3.12! into Eq. ~2.5!, we obtainZ̃l mv as

Z̃l mv5
2pd~v2mV!

2ivBl mv
in FRl mv

in $Ann 01Am̄n 01Am̄m̄ 0%

2
dRl mv

in

dr
$Am̄n 11Am̄m̄ 1%

1
d2Rl mv

in

dr2
Am̄m̄ 2G

r5r0 ,u5p/2

[d~v2mV!Zl mv . ~3.13!

Using characters of22Sl m
av (u) at u5p/2, it is straightfor-

ward to show thatT̄l ,2m,2v 5(21)l Tl ,m,v whereT̄l ,m,v is
the complex conjugate ofTl ,m,v . Since the homogeneous
Teukolsky equation is invariant under the complex conjuga
followed by m→2m and v→2v, we have Z̄l ,2m,2v

5(21)l Zl ,m,v .
.

te

C. Results

In this section, we calculate the gravitational wave lumi-
nosity up toO(v8) beyond the quadrupole formula. From
Eq. ~2.1!, c4 at r→` takes a form

c45
1

r (l 52

6

(
m52l

l

Zl mv0

22Sl m
av0

A2p
eiv0~r*2t !1 imw,

~3.14!

wherev05mV. At infinity, c4 is related to the two inde-
pendent modes of gravitational wavesh1 andh3 as

c45
1

2
~ ḧ12 i ḧ3!. ~3.15!

From Eqs.~3.13!, ~3.14!, and ~3.15!, the gravitational wave
luminosity is given by

K dEdt L 5(
l ,m

uZl mv0
u2

4pv0
2 [(

l ,m
S dEdt D

l m

. ~3.16!

In order to express the post-Newtonian corrections to the
luminosity, we defineh l m as

S dEdt D
l m

[
1

2 S dEdt D
N

h l ,m , ~3.17!

where (dE/dt)N is the Newtonian quadrupole luminosity:

S dEdt D
N

5
32m2M3

5r 0
5 5

32

5 S m

M D 2v10.
We only show h l m for the m.0 mode since
h l ,m5h l ,2m :
h2,2512
107v2

21
1~4p26q!v31S47841323

12q2Dv41S2428p

21
1
4216q

189 D v51S 992100711091475
2
1712g

105
1
16p2

3
228pq1

8830q2

567

2
3424 ln2

105
2
1712 lnv
105 D v61S 19136p1323

1
163928q

11907
18pq2212q3Dv71S227956920577

81265275
1
183184g

2205
2
1712p2

63

1
20716pq

189
2
456028q2

9261
1q41

366368 ln2

2205
1
183184 lnv

2205 D v8, ~3.18!
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h2,15
v2

36
2
qv3

12
1S 2

17

504
1
q2

16D v41S p

18
2
793q

9072D v51S 2
2215

254016
2

pq

6
1
859q2

1512D v6
1S 217p

252
1
11861q

190512
1

pq2

8
2
7q3

12 D v7
1S 1570722126195400

2
107g

945
1

p2

27
2
1045pq

4536
1
118943q2

190512
1
q4

16
2
107 ln2

945
2
107 lnv
945 D v8. ~3.19!

Putting together the above results, we obtain (dE/dt) l [(m(dE/dt) l m for l 52 as

S dEdt D
2

5S dEdt D
N
H 12

1277v2

252
1S 4p2

73q

12 D v31S 3791510584
1
33q2

16 D v41S 22561p

126
1
201575q

9072 D v5
1S 211627847323284800

2
1712g

105
1
16p2

3
2
169pq

6
1
73217q2

4536
2
3424 ln2

105
2
1712 lnv
105 D v6

1S 76187p5292
1
376387q

27216
1
65pq2

8
2
151q3

12 D v71S 2
2455920939443

7151344200
1
548803g

6615
2
5129p2

189
1
70877pq

648

2
64835431q2

1333584
1
17q4

16
1
219671 ln2

1323
1
548803 lnv

6615 D v8J . ~3.20!

For l 53, we obtain

h3,35
1215v2

896
2
1215v4

112
1S 3645p448

2
1215q

112 D v51S 2437299856
1
3645q2

896 D v61S 23645p

56
1
131949q

1792 D v7
1S 25037019729125565440

2
47385g

1568
1
3645p2

224
2
32805pq

448
1
346275q2

14336
2
47385 ln2

1568
2
47385 ln3

1568
2
47385 lnv
1568 D v8,

~3.21!

h3,25
5v4

63
2
40qv5

189
1S 2

193

567
1
80q2

567D v61S 20p63 1
352q

1701D v71S 86111280665
2
160pq

189
1
40q2

27 D v8, ~3.22!

h3,15
v2

8064
2

v4

1512
1S p

4032
2

17q

9072D v51S 437

266112
1

17q2

24192D v61S 2p

756
1

3601q

435456D v7
1S 2

1137077

50854003200
2

13g

42336
1

p2

6048
2
145pq

36288
1
41183q2

3483648
2
13 ln2

42336
2
13 lnv
42336D v8. ~3.23!

Then we obtain

S dEdt D
3

5S dEdt D
N
H 1367v21008

2
32567v4

3024
1S 16403p2016

2
896q

81 D v51S 1521226237
1
341q2

81 D v61S 213991p

216
1
4019665q

54432 D v7
1S 571252185052728605376800

2
79963g

2646
1
6151p2

378
2
192005pq

2592
1
11168371q2

435456
2
79963 ln2

2646

2
47385 ln3

1568
2
79963 lnv
2646 D v8J . ~3.24!
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For l 54, we have

h4,45
1280v4

567
2
151808v6

6237
1S 10240p567

2
12800q

567 D v71S 5600696326243237
1
5120q2

567 D v8, ~3.25!

h4,35
729v6

4480
2
729qv7

1792
1S 2

28431

24640
1
3645q2

14336D v8, ~3.26!

h4,25
5v4

3969
2
437v6

43659
1S 20p3969

2
80q

3969D v71S 7199152

218513295
1
200q2

27783D v8, ~3.27!

h4,15
v6

282240
2

qv7

112896
1S 2

101

4656960
1

5q2

903168D v8. ~3.28!

Then we obtain

S dEdt D
4

5S dEdt D
N
H 8965v43969

2
84479081v6

3492720
1S 23900p1323

2
59621q

2592 D v71S 51619996697582702120
1
66084895q2

7112448 D v8J . ~3.29!
For l 55 we have

h5,55
9765625v6

2433024
2
2568359375v8

47443968
, ~3.30!

h5,45
4096v8

13365
, ~3.31!

h5,35
2187v6

450560
2
150903v8

2928640
, ~3.32!

h5,25
4v8

40095
, ~3.33!

h5,15
v6

127733760
2

179v8

2490808320
. ~3.34!

Then we have

S dEdt D
5

5S dEdt D
N
H 1002569v6249480

2
3145396841v8

58378320 J .
~3.35!
For l 56 we have

h6,65
26244v8

3575
, ~3.36!

h6,45
131072v8

9555975
, ~3.37!

h6,25
4v8

5733585
, ~3.38!

andh6,5, h6,3, h6,1 becomeO(v
9). Then we have

S dEdt D
6

5S dEdt D
N

210843872v8

28667925
. ~3.39!

Finally, gathering all the above results, the total luminos-
ity up toO(v8) is expressed as
K dEdt L 5S dEdt D
N
H 12

1247v2

336
1S 4p2

73q

12 D v31S 2
44711

9072
1
33q2

16 D v41S 28191p

672
1
3749q

336 D v5
1S 664373951969854400

2
1712g

105
1
16p2

3
2
169pq

6
1
3419q2

168
2
3424 ln2

105
2
1712 lnv
105 D v6

1S 216285p

504
1
83819q

1296
1
65pq2

8
2
151q3

12 D v71S 2
323105549467

3178375200
1
232597g

4410
2
1369p2

126
1
3389pq

96

2
124091q2

9072
1
17q4

16
1
39931 ln2

294
2
47385 ln3

1568
1
232597 lnv

4410 D v8J . ~3.40!
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In Appendix G, we present formulas forh l ,m anddE/dt in
terms ofv8[(MV)1/3 for the sake of convenience to calc
late the phase function for an inspiraling waveform@8#.

Setting q50, above reproduces the previous resu
@25, 26# in a Schwarzschild case. Up toO(v5), the results
agree with those obtained by SSTT@28# in the case when the
test particle moves a circular orbit in the equatorial pla
For l 55 and 6, there are no contributions due to the bla
hole spin and the results are identical to the Schwarzsc
case.

In Eq. ~3.40!, the numerical value of terms at orde
O(v6) is given by v6(115.7288.48q
120.35q2216.30lnv). We find that the spin-dependen
terms are not so small compared to the other two term
uqu is of order unity. Thus, we see that spin-dependent te
atO(v6) will give a significant effect to template waveform
of coalescing binaries when spin of a black hole is large

Finally we note that the angular momentum flux can
easily calculated from

K dJdt L 5
1

V K dEdt L . ~3.41!

IV. COMPARISON WITH NUMERICAL RESULTS

As discussed in Sec. I, it is important to investigate
detailed convergence property of the post-Newtonian
proximation. Therefore we compare the formula fordE/dt,
derived above, with numerical results and investigate the
curacy of the post-Newtonian expansion ofdE/dt.

In this section, we consider the total mass of the bin
systems including black holes;(2–300)M( because
gravitational waves from such binaries can be detected
LIGO and VIRGO. In particular, we pay attention to th
accuracy of post-Newtonian formula fordE/dt when
r<100M ~or v>0.1), because gravitational waves fro
these binary systems will be detected when the orbital se
ration becomes less thanr.100M . Here, we ignore the ef
fect of absorption of gravitational waves by the black ho
We will briefly discuss its effect in the next section.

A numerical study ofdE/dt from a particle in a circular
orbit in the equatorial plane around a Kerr black hole h
been performed by Shibata@39#. Since nothing was assume
about the velocity of a test particle, those results are cor
relativistically in the limitm!M . In that work,dE/dt was
calculated with accuracy&1024. However, we found tha
this accuracy is not sufficient to compare it with the po
Newtonian formula for dE/dt including terms up to
O(v8). Thus, in this paper, we calculatedE/dt again requir-
ing the accuracy to be;1025. In the numerical calculations
we have taken into account the contribution from t
l 52–6 modes indE/dt which is consistent with the post
Newtonian formula.

In Figs. 1~a!–1~e!, we show the error in the post
Newtonian formulas as a function of the Boyer-Lindqu
coordinate radius whenq520.9, 20.5, 0, 0.5, and 0.9. In
these figures, we show the error for 6<r /M<100. Since the
radius of the inner stable circular orbit forq50.9 is
r lso.2.32M and a stable circular orbit is possible fo
r.r lso, we also show the errors in the case whenq50.9 for
u-

lts

ne.
ck
hild

r

t
s if
rms
s
.
be

the
ap-

ac-

ary

by
e

m
pa-
-
le.

as
d
rect

t
st-

,
he
-

-
ist

r

2.5<r /M<12 in Fig. 2. The error in the post-Newtonian
formula is defined as

error5U12S dEdt D
PN
YS dEdt D

NR
U, ~4.1!

where (dE/dt)PN and (dE/dt)NR denote the post-Newtonian
~PN! formula and the numerical results, respectively. As fo
(dE/dt)PN, we have used 2-PN, 2.5-PN, 3-PN, 3.5-PN, an
4-PN formulas. Here, we definen-PN formula as the expres-
sion for dE/dt which includes post-Newtonian terms up to
O(v2n) beyond the quadrupole formula. In each figure, th
open square, solid triangle, open triangle, solid circle, an
open circle denote the error of 2-PN, 2.5-PN, 3-PN, 3.5-PN
and 4-PN formulas, respectively. We note that in Fig. 2, th
errors in the 2.5-, 3-, and 4-PN formulas become greater th
unity for very small radius, because in such a region
dE/dt for those PN formulas becomes negative.

From these figures, we find the following.
~1! If we use the 2-PN or 2.5-PN formula, the error is

always greater than 1024 when r&100M irrespective ofq.
If we use the 3-PN formula, however, the error decreas
significantly, and it becomes less than 1024 for r.60M , and
less than 1023 for r.30M irrespective ofq.

~2! If we adopt the 3.5-PN formula, the accuracy become
better than that of 3-PN formula. The error is always les
than 1024 when r is greater than;30M and less than
1025 when r is greater than;60M . This feature does not
depend onq. However, if we use the 4-PN formula, the
accuracy is not improved compared with the 3.5-PN formul
In particular, this tendency is remarkable for smaller radiu

~3! The accuracy of the 3.5-PN or 4-PN formula is no
always better than that of the lower-PN one insider c , where
r c&5M for q50.5 and 0.9,r c;10M for q50 and20.5,
and r c;15M for q520.9. Thus, the convergence of the
post-Newtonian expansion seems rather poor aroundr c .

Using the above results, we investigate the accuracy
the post-Newtonian formulas as templates for various bina
systems. As explained in Sec. I, to investigate the accura
of the post-Newtonian formulas as templates, it is useful
check if they can predict the number of cycles of the grav
tational waves,N, with accuracy less than 1. compact binary
systems, the cycles are mainly accumulated around;10 Hz
which is the lowest-frequency region in the LIGO band, an
N is approximately given by

N;1.93103S 10M(

M D 5/3S M4m D , ~4.2!

whereM andm are the total mass and reduced mass, respe
tively. This means that the template must have an accura
less than

;531024S M

10M(
D 5/3S 4m

M D , ~4.3!

when the frequency of gravitational wave becomes 10 Hz
First we consider equal mass binary systems, that

M54m. At 10 Hz, the orbital separation of a binary of tota
massM is approximately given byr /M.347(M( /M )2/3.
We find that the 2-PN and 2.5-PN formulas are insufficient
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FIG. 1. ~a!–~e! Error of the post-Newtonian
formulas as a function of the Boyer-Lindquist co
ordinate radiusr for 6<r /M<100 in the case
q520.9, 20.5, 0, 0.5, and 0.9. In each figure
open square, solid triangle, open triangle, so
circle, and open circle denote the error of 2-P
2.5-PN, 3-PN, 3.5-PN, and 4-PN formulas, r
spectively.
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for binaries of mass greater than;70M( , we need higher
post-Newtonian corrections beyond 4-PN order.

Binary systems of total mass greater than;100M( can
be detected whenr is smaller than;15M . However, as
mentioned in Eq.~3! above, the convergence property of t
post-Newtonian expansion becomes bad for small orb
separations. In particular, forq;21, the accuracy of the
post-Newtonian expansion seems bad atr;15M . Thus, it
may not be appropriate to use the post-Newtonian appr
M*5M( , and the 3-PN formula is needed. The 3-PN fo
mula seems adequate irrespective ofq.

On the other hand, the situation is slightly different in th
case when a neutron star of mass;1.4M( spirals into a
larger black hole. In such a case, the number of the cycle
the gravitational waves is large compared with the eq
mass case when the total mass is the same. Thus, it se
that we need at least the 3.5-PN formula for binaries of m
greater than;30M( to obtain the required accuracy. Also
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mation for binaries of total mass;100M( with large mass
ratio m!M . A more detailed investigations of the conve
gence of the post-Newtonian expansion will require the c
culation to be carried beyond 4-PN order.

V. SUMMARY AND DISCUSSION

In this paper, we have performed a post-Newtonian
pansion of gravitational waves from a particle in a circu
orbit around a Kerr black hole. The orbit lies in the equa
rial plane and the calculations are accurate toO(v8) beyond
the quadrupole level. We have performed the po
Newtonian expansion of the Sasaki-Nakamura equation
obtained the Green function of the radial Teukolsky equat
up toO(e2) using methods developed previously. Then w
obtained all the necessary radial functions to the requi
accuracy. We have also calculated the spin-weighted sp
roidal harmonics up toO„(av)2…. The outgoing wave am-
plitude of the Teukolsky function and the gravitational wa
luminosities were derived up toO(v8) beyond the quadru-
pole formula.

It is worth noting that in the formula forh2,2 in Ap-
pendix G, there are terms such as (28/3)qv83, 2q2v84,
(28/3)q3v87, and q4v88. In a previous paper@28#, we
pointed out that the term 2q2v84 can be explained in terms
of the quadrupole formula as the contribution of the quad
pole moment of the Kerr black hole to the orbit of the te
particle. A similar explanation is possible for (28/3)q3v87

andq4v88. We can derive those terms by using the quad
pole formuladE/dt532/5m2r̂ 4V6, where r̂ is the orbital
radius of a test particle in de Donder coordinates. If mu
pole moments of the black hole exist, the orbital radius
changed due to the influence of those multipole moments~or
if we fix the orbital radius,V is changed due to the multipol
moments of black hole!. We can calculate the leading orde
effect of the multipole moments to the orbital radius by usi

FIG. 2. Error of the post-Newtonian formula ofq50.9 for
2.5<r /M<12. The open square, solid triangle, open triangle, so
circle, and open circle denote the error of 2-PN, 2.5-PN, 3-P
3.5-PN, and 4-PN formulas, respectively.
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multipole expansion of the Kerr metric@Eq. ~10.6! of Ref.
@40##. In this way, we find that the dominant effect of the
multipole moments of a Kerr black hole todE/dt can be
expressed as@41#

dE

dt
5
32

5 S m

M D 2v810H 12
8

3
S1v8322M2v8414S3v87

1S 2
3

2
M2

21
5

2
M4D v88J , ~5.1!

whereM l andSl are mass and current multipole moment
of a Kerr black hole given byM l 1 iSl 5M ( ia) l . Now we
can interpret the term212q3v7 as the effect of the current
octopole moment of a black hole and the termq4v8 as the
effect of both the mass quadrupole moment andl 54 mass
multipole moment of a black hole.

As for l 52 andm51 mode, there are terms2qv83/
12, q2v84/16, 27q3v87/24, and q4v88/16. The terms
2qv83/12 andq2v84/16 can be explained as the correction
to the radiative current quadrupole moment@12,42#. We ex-
pect that the terms27q3v87/24 andq4v88/16 can also be
derived simply in a similar way.

In Sec. IV, by comparing post-Newtonian formulas fo
dE/dt with numerical data, we indicated that the conver
gence of the post-Newtonian expansion seems bad when
bital radii of binaries become less than;15M . This suggests
that the post-Newtonian expansion may not be appropriate
construct theoretical templates for large mass ratio binari
where the total mass is greater than;100M( because gravi-
tational waves from such binaries enter the LIGO-VIRGO
frequency band whenr&15M . Nevertheless, the higher or-
der post-Newtonian terms gradually improve the accuracy
the templates. Hence, it is very natural to ask whether th
post-Newtonian expansion is always appropriate or not, a
if appropriate, up to what order do we need the pos
Newtonian terms to construct accurate templates. Fort
nately, it is possible to obtain the formulas fordE/dt which
include post-Newtonian order terms beyondO(v8) by ex-
tending techniques developed in this paper. Extension of t
present work up to the higher post-Newtonian order, beyon
O(v8), is very important and that is our future work.

The analysis, in this paper, has been restricted to the ca
when a test particle moves in a circular orbit on the equat
rial plane. However, as shown in a previous paper@28#, in-
clination of the orbital plane from the equatorial plane wil
significantly affect the orbital phase evolution. Hence, th
present work should be considered as a first step toward
complete calculation of the energy and angular momentu
luminosities including the orbital inclination.

Finally, we comment on the effect of absorption of gravi
tational waves by the black hole event horizon which shou
be taken into account when we consider the orbital evolutio
of black hole binaries. According to Gal’tsov@43#, the lowest
order contribution of the gravitational wave absorption t
dE/dt is given by

lid
N,
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dE

dt
5S dEdt D

N

v5

2 H v3~11A12q2!2
q

2 J ~113q2!.

~5.2!

Thus, the effect of absorption appears fromO(v5) if qÞ0.
Although the coefficient is small compared with that o
dE/dt for the outgoing wave even in the caseuqu;1, we
need the expression fordE/dt due to the black hole absorp
tion to obtain an accurate template up toO(v8). Therefore,
to obtain the higher order post-Newtonian corrections to t
black hole absorption is a problem for the future.
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APPENDIX A: THE FORMULAS OF F AND U

In this appendix we show the potential functionsF and
U of the SN equation~2.15!. Details of the derivation are
given in Ref.@36#.

The functionF(r ) is given by

F~r !5
h ,r

h

D

r 21a2
, ~A1!

where

h5c01c1 /r1c2 /r
21c3 /r

31c4 /r
4, ~A2!

with

c05212ivM1l~l12!212av~av2m!,

c158ia@3av2l~av2m!#,

c25224iaM ~av2m!112a2@122~av2m!2#,

c3524ia3~av2m!224Ma2,

c4512a4. ~A3!

The functionU(r ) is given by
f

he

e
or
he
F

se
-
o.

U~r !5
DU1

~r 21a2!2
1G21

DG,r

r 21a2
2FG, ~A4!

where

G52
2~r2M !

r 21a2
1

rD

~r 21a2!2
,

U15V1
D2

b F S 2a1
b ,r

D D
,r

2
h ,r

h S a1
b ,r

D D G ,

a52 i
Kb

D2 13iK ,r1l1
6D

r 2
,

b52DS 2 iK1r2M2
2D

r D . ~A5!

APPENDIX B: FUNCTIONS IN THE SOURCE TERM

In this appendix, we show theA’s in Eq. ~3.5!:

Ann 05
22

A2pD2
Cnnr

22r̄21L1
1$r24L2

1~r3S!%,

Am̄n 05
2

ApD
Cm̄nr

23F ~L21S!S iKD 1r1 r̄ D
2asinuS

K

D
~r̄2r!G ,

Am̄m̄ 052
1

A2p
r23r̄Cm̄m̄SF2 i S KD D

,r

2
K2

D2 12ir
K

DG ,

Am̄n 15
2

ApD
r23Cm̄n@L2

1S1 iasinu~r̄2r!S#,

Am̄m̄ 152
2

A2p
r23r̄Cm̄m̄SS i KD 1r D ,

Am̄m̄ 252
1

A2p
r23r̄Cm̄m̄S,

whereS denotes22Sl m
av .
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APPENDIX C: Q„2…,Q„3…,Q„4…

Q~2!5F S 228imq2
32imq

l
18il mq14il 2mq213q22

6q2

l
212l q22l 2q216l 3q212l 4q2

18m2q21
32m2q2

l 2 1
8m2q2

l
D 1z4 1S 16mq124mq

l 2 1
20mq
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28l mq24l 2mq214iq22

16iq2

l
14il q2

12i l 2q212il1mq
22
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l 2 1
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24im2q21

56im2q2

l 2 2
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2

4
1
3l 3l2q

2

4

1
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22l1mq
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APPENDIX D: X l Mv

in
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APPENDIX E: Rl Mv
in

~a! l 52:

vR2mv
in 5

z4

30
1

i

45
z52

11z6

1260
2

i

420
z71

23z8

45360
1

i

11340
z92

13z10

997920
2

i

598752
z111

59z12

311351040

1eS 2z3

15
2

i

60
mqz32

i

60
z41

mqz4

45
2
41z5

3780
1

277i

22680
mqz52

31i

3780
z62

7mqz6

1620
1
17z7

5670
2

61i

54432
mqz71

41i

54432
z8

1
47mqz8

204120
2

1579z9

10692000
1

703i

17962560
mqz9D1e2S z2301

i

40
mqz21

q2z2

60
2
m2q2z2

240
2

i

60
z32

mqz3

30
1

i

90
q2z3

2
i

120
m2q2z31

7937z4

55125
2

53i

9072
mqz42

101q2z4

35280
1
4213m2q2z4

635040
1
4673i

55125
z52

13mqz5

2835
2

5i

63504
q2z5

1
3503i

1143072
m2q2z52

1665983z6

55566000
2

1777i

544320
mqz62

q2z6

5040
2
643m2q2z6

653184
2
107z4lnz

6300
2
107i

9450
z5lnz1

1177z6lnz

264600 D
1e3F S 2 i

180
mq2

q2

60
1
m2q2

240
2

i

144
mq31

i

1440
m3q3D z1S i

120
1
2mq

135
2

i

360
q21

19i

1440
m2q21

11mq3

1080
2
m3q3

540 D z2
1z3S 2

10933

49000
2
578569i

7938000
mq2

677q2

52920
2
529m2q2

63504
1

317i

63504
mq32

167i

84672
m3q31

107 lnz

3150
1

107i

12600
mqlnzD G

1e4S 2 i

720
mq1

m2q2

2880
1

i

288
mq32

i

2880
m3q31

q4

480
2
m2q4

720
1

m4q4

11520D .
~b! l 53:

vR3mv
in 5

z5

630
1

i

1260
z62

z7

3780
2

i

16200
z81

29z9

2494800
1

i

554400
z102

47z11

194594400

1eS 2z4

252
2

i

1890
mqz42

i

756
z51

11mqz5

22680
1

19i

90720
mqz62

i

9450
z72

mqz7

16200
1

647z8

14968800
2

247i

17962560
mqz8D

1e2S z3

315
1

i

945
mqz31

q2z3

1260
2
m2q2z3

15120
1

i

2520
z42

17mqz4

15120
1

i

2160
q2z42

31i

272160
m2q2z41

81409z5

11113200

2
313i

907200
mqz52

41q2z5

226800
1
617m2q2z5

8164800
2
13z5lnz

26460D1e3S 2z2

1260
2

i

1680
mqz22

q2z2

840
1
m2q2z2

10080
2

i

5040
mq3z2D .

~c! l 54:

vR4mv
in 5

z6

11340
1

i

28350
z72

13z8

1247400
2

i

467775
z91

71z10

194594400

1eS 2z5

3780
2

i

45360
mqz52

11i

136080
z61

mqz6

64800
1

131z7

18711000
1

697i

124740000
mqz7D

1e2S z4

3528
1

i

18144
mqz41

q2z4

21168
2
m2q2z4

635040D .
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~d! l 55:

vR5mv
in 5

z7

207900
1

i

623700
z82

z9

2316600
1eS 2z6

59400
2

i

1039500
mqz6D .

~e! l 56:

vR6mv
in 5

z8

4054050
.

APPENDIX F: SPHEROIDAL HARMONICS

In this appendix, we describe the expansion of the spheroidal harmonics22Sl m
av at orderO„(av)2….

The spheroidal harmonics of spin weights522 obey the equation

F 1

sinu

d

du H sinu d

du J 2a2v2sin2u2
~m22cosu!2

sin2u
14avcosu2212mav1l G 22Sl m

av 50. ~F1!

We expand22Sl m
av andl as

22Sl m
av 522Pl m1avSl m

~1! 1~av!2Sl m
~2! 1O„~av!3…,

l5l0~ l !1avl1~ l !1a2v2l2~ l !1O„~av!3…, ~F2!

where22Pl m are the spherical harmonics of spin weights522 andln are given in Sec. II B. Here we explicitly represent
the l dependence ofln for later convenience. We set the normalization of22Pl m as

E
0

p

u22Pl mu2sinudu51. ~F3!

Inserting Eq.~6.2! into Eq. ~6.1! and collecting the terms of order (av)2, we obtain

L0Sl m~2! 1l0~ l !Sl m
~2! 52@4cosu12m1l1~ l !#Sl m

~1! 2@l2~ l !2sin2u#22Pl m , ~F4!

whereL0 is the operator for the spin-weighted spherical harmonics,

L0@22Pl m#[F 1

sinu

d

du H sinu d

du J 2
~m22cosu!2

sin2u
22G 22Pl m ~F5!

52l022Pl m . ~F6!

By setting

Sl m
~1! 5(

l 8
cl m
l 8

22Pl 8m ,

Sl m
~2! 5(

l 8
dl m
l 8

22Pl 8m , ~F7!

we insert it into Eq.~6.4!, multiply it by 22Pl 8m , and integrate it overu. Then we have

dl m
l 8 5

1

l0~ l !2l0~ l 8!
F2@2m1l1~ l !#~cl m

l 11d l 8,l 111cl m
l 21d l 8,l 21!2d l 8,l l2~ l !

24cl m
l 11E d~cosu!22Pl 8m22Pl 11mcosu24cl m

l 21E d~cosu!22Pl 8m22Pl 21mcosu

1E d~cosu!22Pl 8m22Pl msin
2u G . ~F8!

The integrals in this equation are given by@37,38#
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E d~cosu!22Pl 8m22Pl mcosu5A 2l 11

2l 811
^l ,1,m,0ul 8,m&^l ,1,2,0ul 8,2&,

E d~cosu!22Pl 8m22Pl msin
2u5

2

3
d l 8,l 2

2

3
A 2l 11

2l 811
^l ,2,m,0ul 8,m&^l ,2,2,0ul 8,2&,

where^ j 1 , j 2 ,m1 ,m2uJ,M & is a Clebsch-Gordan coefficient. Then, forl 52 and 3, we obtaindl m
l 8 (l 8Þl ) which are given

in Sec. II B. As fordl m
l , we consider the normalization of22Pl m @Eq. ~2.2!#. Inserting Eq.~6.2! into Eq.~2.2!, and using the

orthogonality of22Pl m , we obtain

15E
0

p

dusinuu22Sl mu25E
0

p

dusinuH ~22Pl m!212av(
l 8

cl m
l 8

22Pl 8m22Pl m1~av!2 (
l 8l 9

cl m
l 8 cl m

l 9
22Pl 8m22Pl 9m

12~av!2(
l 8

dl m
l 8

22Pl 8m22Pl m1O„~av!3…J
511~av!2(

l 8
~cl m
l 8 !212~av!2dl m

l 1O„~av!3….

Then we have

dl
l 52

1

2
$~cl m

l 11!21~cl m
l 21!2%. ~F9!

APPENDIX G: THE EXPRESSION OF THE LUMINOSITY BY MEANS OF THE ORBITAL ANGULAR FREQUENCY

For the sake of convenience to calculate the orbital phase error, we describe the formula of gravitational wave lumin
by means ofv8[(MV)1/3. In this appendix, we defineh l ,m as

S dEdt D
l m

[
16

5 S m

M D 2v810h l ,m , ~G1!

h2,2512
107v82

21
1S 4p2

8q

3 D v831S 47841323
12q2D v841S 2428p

21
1
52q

27 D v851S 992100711091475
2
1712g

105
1
16p2

3
2
32pq

3

2
1817q2

567
2
3424 ln2

105
2
1712 lnv8

105 D v861S 19136p1323
1
364856q

11907
18pq22

8q3

3 D v87

1S 2
27956920577

81265275
1
183184g

2205
2
1712p2

63
1
208pq

27
1
105022q2

9261
1q41

366368 ln2

2205
1
183184 lnv8

2205 D v88, ~G2!

h2,15
v82

36
2
qv83

12
1S 2

17

504
1
q2

16D v841S p

18
1
215q

9072D v851S 2
2215

254016
2

pq

6
1
313q2

1512D v86

1S 217p

252
2
18127q

190512
1

pq2

8
2
7q3

24 D v871S 1570722126195400
2
107g

945
1

p2

27
1
215pq

4536

1
44299q2

95256
1
q4

16
2
107 ln2

945
2
107 lnv8

945 D v88, ~G3!

h3,35
1215v82

896
2
1215v84

112
1S 3645p448

2
1215q

224 D v851S 2437299856
1
3645q2

896 D v861S 23645p

56
1
41229q

1792 D v87

1S 25037019729125565440
2
47385g

1568
1
3645p2

224
2
3645pq

112
2
236925q2

14336
2
47385 ln2

1568
2
47385 ln3

1568
2
47385 lnv8

1568 D v88,

~G4!

h3,25
5v84

63
2
40qv85

189
1S 2

193

567
1
80q2

567 D v861S 20p63 1
982q

1701D v871S 86111280665
2
160pq

189
1
80q2

189 D v88, ~G5!
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h3,15
v82

8064
2

v84

1512
1S p

4032
2

25q

18144D v851S 437

266112
1

17q2

24192D v861S 2p

756
1

2257q

435456D v87

1S 2
1137077

50854003200
2

13g

42336
1

p2

6048
2
25pq

9072
1
12863q2

3483648
2
13 ln2

42336
2
13 lnv8

42336D v88, ~G6!

h4,45
1280v84

567
2
151808v86

6237
1S 10240p567

2
20480q

1701 D v871S 5600696326243237
1
5120q2

567 D v88, ~G7!

h4,35
729v86

4480
2
729qv87

1792
1S 2

28431

24640
1
3645q2

14336D v88, ~G8!

h4,25
5v84

3969
2
437v86

43659
1S 20p3969

2
170q

11907D v871S 7199152

218513295
1
200q2

27783D v88, ~G9!

h4,15
v86

282240
2

qv87

112896
1S 2

101

4656960
1

5q2

903168D v88, ~G10!

h5,55
9765625v86

2433024
2
2568359375v88

47443968
, ~G11!

h5,45
4096v88

13365
, ~G12!

h5,35
2187v86

450560
2
150903v88

2928640
, ~G13!

h5,25
4v88

40095
, ~G14!

h5,15
v86

127733760
2

179v88

2490808320
, ~G15!

h6,65
26244v88

3575
, ~G16!

h6,45
131072v88

9555975
, ~G17!

h6,25
4v88

5733585
. ~G18!

In total,

K dEdt L 5
32

5 S m

M D v810F12
1247v82

336
1S 4p2

11q

4 D v831S 2
44711

9072
1
33q2

16 D v841S 28191p

672
2
59q

16 D v85

1S 664373951969854400
2
1712g

105
1
16p2

3
2
65pq

6
1
611q2

504
2
3424 ln2

105
2
1712 lnv8

105 D v86

1S 216285p

504
1
162035q

3888
1
65pq2

8
2
71q3

24 D v871S 2
323105549467

3178375200
1
232597g

4410
2
1369p2

126
2
359pq

14

1
22667q2

4536
1
17q4

16
1
39931 ln2

294
2
47385 ln3

1568
1
232597 lnv8

4410 D v88G . ~G19!



k
e

o

.

i
-

to

ys.

ev.
l
an-
ties

-

h,

hod

54 1459POST-NEWTONIAN EXPANSION OF GRAVITATIONAL . . .
@1# A. Abramovici et al., Science256, 325 ~1992!.
@2# C. Bradaschiaet al., Nucl. Instrum. Methods Phys. Res. A

289, 518 ~1990!.
@3# E. S. Phinney, Astrophys. J.380, L17 ~1991!.
@4# C. M. Will, Phys. Rev. D50, 6058~1994!.
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