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Gravitational waves from a spinning particle in circular orbits around a rotating black hole

Takahiro Tanaka, Yasushi Mino, Misao Sasaki, and Masaru Shibata
Department of Earth and Space Science, Osaka University, Toyonaka 560, Japan

~Received 20 February 1996!

Using the Teukolsky and Sasaki-Nakamura formalisms for the perturbations around a Kerr black hole, we
calculate the energy flux of gravitational waves induced by aspinningparticle of massm and spinSmoving
in circular orbits near the equatorial plain of a rotating black hole of massM (@m) and spinMa. The
calculations are performed by using the recently developed post-Newtonian expansion technique of the Teu-
kolsky equation. To evaluate the source terms of perturbations caused by aspinningparticle, we use the
equations of motion of a spinning particle derived by Papapetrou and the energy-momentum tensor of a
spinning particle derived by Dixon. We present the post-Newtonian formula of the gravitational wave lumi-
nosity up to the order (v/c)5 beyond the quadrupole formula including the linear order of particle spin. The
results obtained in this paper will be an important guideline to the post-Newtonian calculation of the inspiral
of two spinning compact objects.@S0556-2821~96!02016-4#

PACS number~s!: 04.30.Db, 04.25.Nx
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I. INTRODUCTION

One of the most promising sources of gravitational wav
for kilometer size laser-interferometric detectors such as
Laser Interferometric Gravitational Wave Observato
~LIGO! @1#, VIRGO @2#, and future laser-interferometric de
tectors in space such as the Laser Interferometer Space
tenna~LISA! @3# is the coalescing compact binary of neutro
stars and/or black holes. Since it is a highly general relat
istic event, detection of gravitational waves from those bin
ries will bring us very fruitful information about relativistic
astrophysical objects if we know the physics of the fin
phase of the coalescence. Thus, there have been contin
efforts made by many authors to understand this phase@4,5#.

Recently, it has been recognized that detection of the s
nal from a binary in the inspiraling phase is particularly ve
important because it can tell us a variety of parameters of
binary, i.e., mass, spin, etc@6,7#. Furthermore, it may pro-
vide some knowledge about the cosmological paramet
@6,8#. In order to extract these important parameters from t
data, we need an accurate theoretical template of the wa
form. Especially, the accumulated phase of the emitt
gravitational waves is very sensitive to the binary param
eters. Thus, the rate of change in the frequency of the orb
rotation due to the radiation reaction of gravitational wav
must be evaluated accurately.

The post-Newtonian expansion is the standard method
calculate the waveform of gravitational waves. Recently, t
energy loss rate to second post-Newtonian~2PN! order be-
yond the quadrupole formula has been derived by Blanc
et al. @9# and to 2.5PN order by Blanchet@10# for a binary
composed of nonspinning compact bodies. The leading or
effect of spin, which appears at 1.5PN and 2PN orders,
been evaluated by Kidder, Will, and Wiseman@11# and Kid-
der @12#.

However, difficulties and complications increase exp
nentially as one goes to higher orders with the standard po
Newtonian calculation technique. Hence it will be very us
ful if we have different approaches to the higher ord
approximation and if we are able to provide some guidin
5456-2821/96/54~6!/3762~16!/$10.00
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principle prior to the standard post-Newtonian calculatio
The black hole perturbation approach is the only meth
known that is independent of the standard post-Newton
approach and that can handle~not all but some importan
portion of! higher order post-Newtonian effects in a re
tively straightforward way. In this approach, we conside
particle orbiting a black hole and assume that the mass o
black holeM is much larger than that of the particlem.

The black hole perturbation approach is based on the
turbation equation derived by Teukolsky@13#, which applies
to a general rotating~Kerr! black hole. One of great advan
tages of this approach is that it takes full account of rela
istic effects by construction and numerical methods can
easily implimented to treat very general orbits. Moreover
has been shown that one can formulate an analytical p
Newtonian expansion scheme in this approach as well. P
son first noticed this fact and calculated the energy flux in
case of a particle in circular orbits around a nonrotating bl
hole to 1.5PN order@15#. A technically important point was
to deal with the Regge-Wheeler equation, which is equi
lent to the Teukolsky equation but has a much nicer prop
than it. Along this line, Sasaki developed a systema
method to proceed to the higher orders in the case of a
rotating black hole@17#, and Tagoshi and Sasaki@18# gave
the analytical expression for the energy flux up to 4PN ord
Meanwhile Poisson calculated the case of a rotating b
hole to 1.5PN order@16#, but directly dealing with the Teu
kolsky equation. Hence it seemed formidable to go bey
this order. Then, extending the method of Ref.@17#, a better
method was developed by Shibataet al. @19# to treat the case
of a rotating black hole and the energy flux up to 2.5P
order was calculated. This was made possible by using
Sasaki-Nakamura equation@14#, which is a generalization o
the Regge-Wheeler equation for a nonrotating black h
Recently the calculation was extended to 4PN order by
goshiet al. @20#.

In all of these previous papers, the small mass part
was assumed to be spinless. However, apart from the int
in its own right, for the purpose of providing a better the
retical template or at least a better guideline for higher or
3762 © 1996 The American Physical Society
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54 3763GRAVITATIONAL WAVES FROM A SPINNING . . .
post-Newtonian calculations, it is desirable to take into a
count the spin of the particle. To incorporate this effect, w
must know the energy-momentum tensor of a spinning p
ticle as well as the equations of motion. Fortunately, we c
find them in the literature. The equations of motion of
spinning particle were first derived by Papapetrou@21#, and
they were put into more elaborate form by Dixon@22# and
Wald @23#. In particular, Wald@23# clarified all the con-
served quantities along the general particle trajectory. On
other hand, Dixon@22# succeeded in giving the general form
of the energy-momentum tensor of a particle with multipo
moments, which of course includes that of a spinning pa
ticle as a limit. Hence, by using them, we can calculate t
waveform and the energy flux of gravitational waves by
spinning particle orbiting a rotating black hole.

Here, a word of caution is appropriate. Usually, we rega
the small mass particle to be a model of a neutron star o
black hole. However, if we regard the spinning small ma
particle as a Kerr black hole with massm and spin angular
momentummS, it should have definite multipole moments
(}mSl ). Since we neglect the contribution of these high
multipole moments in this paper, the particle in our treatme
is not an adequate model for a~rapidly rotating! Kerr black
hole. To incorporate the contribution of all higher multipol
moments to represent a Kerr black hole is a future issu
Here, we concentrate on the leading order effect due to
spin of the small mass particle.

This paper is organized as follows. In Sec. II we briefl
review the Teukolsky formalism. In Sec. III we discuss th
equations of motion and the energy-momentum tensor o
spinning particle. In Sec. IV we solve the equations of m
tion to the linear order of the amplitude of spin. There w
obtain a family of ‘‘circular’’ orbits which have vanishing
radial velocity and stay close to the equatorial plane. In S
V we evaluate gravitational waves from the spinning partic
in circular orbits and give the formula for the energy loss ra
to 2.5PN order. In Sec. VI we consider the problem of th
radiation reaction. There we show that the assumption t
the orbit remains circular under a radiation reaction is co
sistent with the energy and angular momentum loss rates
the linear order of spin. Then we evaluate the rate of chan
in the orbital frequency under this assumption. In Sec. VII,
brief summary and discussion are given.

We use the unitsG5c51 and the metric signature
(2,1,1,1). The round~square! brackets on the indices
denote~anti! symmetrization, e.g.,

F~mn!5
1
2 ~Fmn1Fnm!, F@mn#5

1
2 ~Fmn2Fnm!.

II. TEUKOLSKY FORMALISM

In this section we briefly review the Teukolsky formal
ism. For details, see, e.g., Ref.@24# and references cited
therein. In the Teukolsky formalism, the waveform and th
energy flux of gravitational waves are calculated from th
fourth Newman-Penrose quantity@25#, which is expanded as

c45~r2 iacosu!24E dve2 ivt(
l ,m

eimw 22Sl m
av ~u!

A2p

3Rl mv~r !. ~2.1!
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Here, 22Sl m
av (u) is the spin-weighted spheroidal harmonic

normalized by

E
0

p

u22Sl m
av ~u!u2sinu du51, ~2.2!

and its eigen value isl. ThenRl mv obeys the Teukolsky
equation

D2
d

dr S 1D dRl mv

dr D2V~r !Rl mv5Tl mv~r ! ~2.3!

and

V~r !52
K214i ~r2M !K

D
18ivr1l, ~2.4!

where D5r 222Mr1a2 and K5(r 21a2)v2ma. The
source termTl mv(r ) is constructed from the energy-
momentum tensor of the particle, and its explicit form
given later.

The solution of the Teukolsky equation at infinity
(r→`) is expressed as

Rl mv~r !→
r 3eivr*

2ivBl mv
in E

r1

`

dr8
Tl mv~r 8!Rl mv

in ~r 8!

D2~r 8!

[Z̃l mvr
3eivr* , ~2.5!

where r15M1AM22a2 denotes the radius of the even
horizon andRl mv

in is the homogeneous solution which satis
fies the ingoing-wave boundary condition at the horizon:

Rl mv
in →H D l mvD2e2 ikr* , r *→2`,

r 3Bl mv
out eivr*1r21Bl mv

in e2 ivr* , r *→1`,

~2.6!

where k5v2ma/2Mr1 and r * is the tortoise coordinate
defined by

dr*

dr
5
r 21a2

D
. ~2.7!

For definiteness, we fix the integration constant such th
r * is given explicitly by

r *5E dr*

dr
dr5r1

2Mr1

r12r2
ln
r2r1

2M
2

2Mr2

r12r2
ln
r2r2

2M
,

~2.8!

wherer65M6AM22a2.
Thus, in order to calculate gravitational waves emitted

infinity from a particle in circular orbits, we need to know
the explicit form of the source termTl mv(r ), which has
support only atr5r 0 where r 0 is the orbital radius in the
Boyer-Lindquist coordinate, the ingoing-wave Teukolsk
function Rl mv

in (r ) at r5r 0, and its incident amplitude
Bl mv
in at infinity. We consider the expansion of these qua

tities in terms of a small parameterv2[M /r 0. Note thatv is
approximately equal to the orbital velocity, but not strictl
equal to it in the case ofaÞ0 orSÞ0. A systematic expan-
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sion method to calculate these necessary quantities has
developed in Refs.@19,20#, by considering the Sasaki
Nakamura equation first and then transforming the resul
Teukolsky equation.

In addition to these, we need to expand the sphero
harmonics and their eigenvalues in powers ofav. Since
v5O(V), whereV is the orbital angular velocity of the
particle, we haveav5O(Mv)5O(v3). Thus the expansion
w
o

b

een

to

dal

in powers ofav is also a part of the post-Newtonian expan
sion. Note also that the spin parameter of the black holea
does not have to be small but can be of orderM .

The expressions of these quantities required to calcula
the energy loss rate up to 2.5PN order are already obtained
Ref. @19#. We summarize the results, omitting all the deriva
tions. The homogeneous solutions of the Teukolsky equati
with the ingoing boundary condition forl 52,3,4 are
vR2mv
in 5

z4

30
1

i

45
z52

11z6

1260
2

i

420
z71

23z8

45 360
1

i

11 340
z9

1eS 2z3

15
2

i

60
mqz32

i

60
z41

mqz4

45
2
41z5

3780
1

277 i

22 680
mqz52

31 i

3780
z62

7mqz6

1620 D
1e2S z2301

i

40
mqz21

q2z2

60
2
m2q2z2

240
2

i

60
z32

mqz3

30
1

i

90
q2z32

i

120
m2q2z3D , ~2.9!

vR3mv
in 5

z5

630
1

i

1260
z62

z7

3780
2

i

16 200
z81eS 2z4

252
2

i

1890
mqz42

i

756
z51

11mqz5

22 680 D , ~2.10!

vR4mv
in 5

z6

11 340
1

iz7

28 350
, ~2.11!
e

le,

-
he
wheree:52Mv, z:5vr , andq:5a/M . The incident am-
plitudes are

B2mv
in 5

i

8v2 H 12e
p

2
1 i eS 532g2 ln2D1

mq

18
e1O~e2!J ,

~2.12!

B3mv
in 52

1

8v2 H 12e
p

2
1 i eS 136 2g2 ln2D

1
mq

72
e1O~e2!J , ~2.13!

B4mv
in 52

i

8v2 $11O~e!%. ~2.14!

III. SPINNING PARTICLE

To give the source term of the Teukolsky equation,
need to solve the motion of the spinning particle and als
give the expression of the energy-momentum tensor. In
section we give the necessary expressions, following R
@22,23,26#.

Neglecting the effect of the higher multipole momen
the equations of motion of a spinning particle are given

D

dt
pm~t!52 1

2 R
m

nrs„z~t!…vn~t!Srs~t!,

D

dt
Smn~t!52p@m~t!vn#~t!, ~3.1!
e
to

this
efs.

ts,
y

wherevm(t)5dzm(t)/dt, t is a parameter which is not nec-
essarily the proper time of the particle, and, as we will se
later, the vectorpm(t) and the antisymmetric tensorSmn(t)
represent the linear and spin angular momenta of the partic
respectively. HereD/dt denotes the covariant derivative
along the particle trajectory.

We do not have the evolution equation forvm(t) yet. In
order to determinevm(t), we need to impose a supplemen
tary condition which determines the center of mass of t
particle @22#:

Smn~t!pn~t!50. ~3.2!

Then one can show thatpmp
m5const andSmnS

mn5const
along the particle trajectory@23#. Therefore, we may set

pm5mum, umu
m521,

Smn5emn
rsp

rSs, pmS
m50,

S25SmS
m5

1

2m2SmnS
mn, ~3.3!

wherem is the mass of the particle,um is the specific linear
momentum, andSm is the specific spin vector withS its
magnitude. Note that if we useSm instead ofSmn in the
equations of motion, the center-of-mass condition~3.2! will
be replaced by the conditionpmS

m50 ~see Sec. IV!.
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Since the above equations of motion are invariant un
reparametrization of the orbital parametert, we can fixt to
satisfy

um~t!vm~t!521. ~3.4!

Then, from Eqs.~3.1!, ~3.2!, and~3.4!, vm(t) is given as@22#

vm~t!2um~t!5
1

2 S m21
1

4
Rxjzh„z~t!…Sxj~t!Szh~t! D 21

3Smn~t!Rnrskz
~t!ur~t!Ssk~t!. ~3.5!

With this equation, the equations of motion~3.1! completely
determine the evolution of the orbit and the spin.

As for the energy-momentum tensor, Dixon@22# gives it
in terms of the Diracd function on the tangent space a
xm5zm(t). For later convenience, in this paper we use
equivalent but alternative form of the energy-momentum t
sor, given in terms of the Diracd function on coordinate
space@26#:

Tab~x!5E dtH p~a~x,t!vb!~x,t!
d~4!

„x2z~t!…

A2g

2¹gS Sg~a~x,t!vb!~x,t!
d~4!

„x2z~t!…

A2g
D J ,

~3.6!

whereva(x,t), pa(x,t), andSab(x,t) are bitensors which
are spacetime extensions ofvm(t), pm(t), and Smn(t),
which are defined only along the world line,1 xm5zm(t). To
define va

„x,z(t)…, pa
„x,z(t)…, and Sab

„x,z(t)… we intro-
duce a bitensorḡm

a(x,z) which satisfies

lim
x→z

ḡm
a
„x,z~t!…5dm

a ,

lim
x→z

¹bḡm
a
„x,z~t!…50. ~3.7!

For the present purpose, further specification ofḡm
a(x,z) is

not necessary. Using this bi-tensorḡm
a(x,z), we define

pa(x,t), va(x,t), andSab(x,t) as

pa~x,t!5ḡm
a
„x,z~t!…pm~t!,

va~x,t!5ḡm
a
„x,z~t!…vm~t!,

Sab~x,t!5ḡm
a
„x,z~t!…ḡn

b
„~x,z~t!…Smn~t!. ~3.8!

It is easy to see that the divergence-free condition of t
energy-momentum tensor gives the equations of mot
~3.1!. Noting the relations

@¹bḡm
a
„x,z~t!…#d~4!

„x2z~t!…50,

1In the rest of this section, we usem,n,s, . . . as the tensor indi-
ces associated with the world linez(t) and a,b,g, . . . as those
with a field pointx, and suppress the coordinate indices ofz(t) and
x for notational simplicity.
der

t
an
en-

his
ion

va~x!¹aS d~4!
„x2z~t!…

A2g
D 52

d

dt S d~4!
„x2z~t!…

A2g
D ,

~3.9!

the divergence of Eq.~3.6! becomes

¹bT
ab~x!5E dtḡm

a
„x,z~t!…

d~4!
„x2z~t!…

A2g

3S Ddt
pm~t!1

1

2
Rm

nsk„z~t!…vn~t!Ssk~t! D
1
1

2E dt¹bS ḡm
a
„x,z~t!…ḡn

b
„x,z~t!…

3
d~4!

„x2z~t!…

A2g
D S Ddt

Smn~t!

22p@m~t!vn#~t!D . ~3.10!

Since the first and second terms on the right-hand side m
vanish separately, we obtain the equations of motion~3.1!.

In order to clarify the meaning ofpm andSmn, we con-
sider the volume integral of this energy-momentum tens
such as *S(t0)

ḡa
mTabdSb , where we take the surface

S(t0) to be perpendicular toua(t0). It is convenient to in-
troduce a scalar functiont(x), which determines the surface
S(t0) by the equationt(x)5t0, and ]t/]xb52ub at
x5z(t0). Then we have

E
S~t0!

ḡa
mTabdSb5E d4xA2g

]t

]xb d„t~x!2t0…ḡa
mTab~x!

5E dt8H d~t82t0!Fpm1p@mvn]un

2
1

2

Dun

dt
SnmG J 5pm~t0!, ~3.11!

where we used the center-of-mass condition and the equat
of motion forSmn. We clearly see thatpm indeed represents
the linear momentum of the particle.

In order to clarify the meaning ofSmn, following Dixon
@22#, we introduce the relative position vector

Xm:52gmn]ns~x,z!, ~3.12!

wheres(x,z) is the geodetic interval betweenz and x de-
fined by using the parametric form of a geodesicy(u) join-
ing z5y(0) andx5y(1) as

s~x,z!:5
1

2E0
1

gab

dya

du

dyb

du
du. ~3.13!

Then noting the relations

lim
x→z

Xm50, lim
x→z

Xm
b5db

m , ~3.14!

it is easy to see that
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Smn52E
St0

X@mḡa
n#TabdSb . ~3.15!

Now that the meaning ofSmn is manifest. From the above
equation, it is also easy to see that the center-of-mass co
tion ~3.2! is the generalization of the Newtonian counterpa

E d3xr~x!xi50, ~3.16!

wherer is the matter density.
Before closing this section, we mention several conser

quantities of the present system. We have already noted
pmp

m52m2 andSmS
m5S2 are constant along the particl

trajectory on an arbitrary spacetime. There will be an ad
tional conserved quantity if the spacetime admits a Killi
vector fieldjm :

j~m;n!50. ~3.17!

Namely, the quantity

Qj :5pmjm2 1
2 S

mnjm;n ~3.18!

is conserved along the particle trajectory@22#. It is easy to
verify thatQj is conserved by directly using the equations
motion.

IV. CIRCULAR ORBITS

Let us consider ‘‘circular’’ orbits in Kerr spacetime with
fixed Boyer-Lindquist radial coordinate,r5r 0. We consider
ndi-
rt,

ved
that
e
di-
ng

of

a

a class of orbits that would stay on the equatorial plane if
particle were spinless. Hence we assume t
ũ :5u2p/25O(S/M )!1. Under this assumption, we writ
down the equations of motion and solve them up to lin
order inS. In the Appendix we give a further analysis in th
case in which the spin vector~see below! is parallel or anti-
parallel to the rotation axis of the black hole.

In order to find a solution representing a circular orbit,
is convenient to introduce the tetrad frame defined by

em
05SAD

S
,0,0,2asin2uAD

S D ,
em
15S 0,AS

D
,0,0D ,

em
25~0,0,AS,0!,

em
35S 2

a

AS
sinu,0,0,

r 21a2

AS
sinu D , ~4.1!

where S5r 21a2cos2u and em
a5(et

a ,er
a ,eu

a ,ew
a) for

a50–3. Hereafter, we use Latin letters to denote the tet
indices.

For convenience, we introducev1–v6 to represent the
tetrad components of the spin coefficients near the equat
plane:
v01
05v00

15v11O~ ũ2!, v15
a22Mr

r 2D1/2 ,

v31
05v30

15v13
05v10

35v03
152v01

35v21O~ ũ2!, v2 :5
a

r 2
,

v22
152v21

25v33
152v31

35v31O~ ũ2!, v3 :5
D1/2

r 2
,

v02
05v00

25v12
152v11

25 ũv41O~ ũ2!, v4 :52
a2

r 3
,

v32
05v30

252v23
052v20

35v03
252v02

35 ũv51O~ ũ2!, v5 :52
aD1/2

r 3
,

v33
252v32

35 ũv61O~ ũ2!, v6 :52
~r 21a2!

r 3
, ~4.2!
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wherevab
c5ea

meb
nen;m

c . Since the following relation holds

em
a D

dt
f m5

d

dt
f a2vbc

avbf c,

the tetrad components ofDf m/dt along a circular orbit are
given explicitly as

em
0 D

dt
f m5 ḟ 02~Af11 ũCf2!1O~ ũ2!,

em
1 D

dt
f m5 ḟ 12~Af01Bf31Ef2!1O~ ũ2!,

em
2 D

dt
f m5 ḟ 22~ ũCf01 ũDf 32Ef1!1O~ ũ2!,

em
3 D

dt
f m5 ḟ 32~2Bf12 ũDf 2!1O~ ũ2!, ~4.3!

whereA, B, C, D, andE are defined by2

A:5v1v
01v2v

3,

B:5v2v
01v3v

3,

C:5v4v
01v5v

3,

D:5v5v
01v6v

3,

E:5v3v
2, ~4.4!

and we have assumed thatv150 andv25O( ũ).
Now we rewrite the equations of motion, changing th

spin variable. We replace the spin tensor with the unit sp
vectorza, which is defined by

za:5
Sa

S
52

1

2mS
eabcdu

bScd ~4.5!

or, equivalently, by

Sab5mSeabcdu
czd, ~4.6!

whereeabcd is the completely antisymmetric symbol with the
convention ofe012351. As noted in the previous section, i
we use the spin vector as an independent variable, the cen
of-mass condition is automatically satisfied, while it be
comes necessary to impose another supplementary cond

zaua50. ~4.7!

Then the equations of motion reduce to

dua

dt
5vbc

avbuc2SRa,

2The symbolsA–E used here to define the auxiliary variable ar
applicable only in this section, and not to be confused with quan
ties defined with the same symbols, such asE for energy, in the
later sections.
e
in

ter-
-
tion

dza

dt
5vbc

avbzc2SuazbRb , ~4.8!

where

Ra:5R* abcdv
buczd5

1

2mS
Ra

bcdv
bScd ~4.9!

andRabcd* 5 1
2Rabe fe

e f
cd is the right dual of the Riemann ten-

sor. It will be convenient to write explicitly the tetrad com-
ponents ofRabcd* Since we only needRabcd* at O( ũ0), the
nonvanishing components ofRabcd* are given by

2
1

2
R0123* 52R0213* 5R0312* 5R1203* 52R1302* 52

1

2
R2301*

52
M

r 3
1O~ ũ2!. ~4.10!

Although we do not need them, we note that the followin
components are not identically zero but are ofO( ũ):

R1212* , R1313* , R1010* , R2323* , R2020* , and R3030* .

A. Lowest order in S

We first solve the equations of motion for a circular orbi
at r5r 0 at the lowest order inS. For notational simplicity,
we omit the suffix 0 ofr 0 in the following. For the class of
orbits we have assumed, we havev150 and
v25O( ũ).Then the nontrivial equations are

d

dt
v15Av01Bv350, ~4.11!

d

dt
z250,

d

dt S z0

z1

z3
D 5S 0 A 0

A 0 B

0 2B 0
D S z0

z1

z3
D .

~4.12!

Equation~4.11! determines the rotation velocity of the or-
bital motion. By settingx:5v3/v0, we obtain the equation

v112v2x1v3x
250, ~4.13!

which is solved to give

x5
6AMr2a

AD
. ~4.14!

The upper~lower! sign corresponds to the case thatv3 is
positive ~negative!. Then, with the aid of the normalization
condition of the four-momentum,vmvm5211O(S2), we
find

v05
1

A12x2
, v35

x

A12x2
. ~4.15!
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Note that, in this case, the orbital angular frequencyV is
given by a well-known formula

V5
6AM

r 3/26AMa
. ~4.16!

On the other hand, the equations of spin~4.12! are solved to
give

z252z' ,S z0

z1

z3
D 5z i S asin~f1c1!1bc2

cos~f1c1!

2bsin~f1c1!2ac2
D ,

~4.17!

wherez' , z i , c1, andc2 are constants and

a5
A

AB22A2
57v3, b5

B

AB22A2
56v0,

f5Vpt, Vp5AB22A25AM

r 3
. ~4.18!

The supplementary conditionvaza50 requires thatc250.
The conditionzaz

a51 impliesz'
21z i

251. Further, since the
origin of the time t can be chosen arbitrarily, we se
c150. Thus, we obtain

z252z' , S z0

z1

z3
D 5z iS asinf

cosf

2bsinf
D . ~4.19!

Here, we should note thatVpÞV in general ifaÞ0 or S
Þ0 ~see below!.

B. Next order

Having obtained the leading order solution with respect
S, we now turn to the equations of motion up to the line
order inS. We assume that the spin vector components
expressed in the same form as were in the leading order
consider corrections to the coefficientsa, b, andVp of or-
derS. As long as we are working only up to linear order
S, Eq.~3.5! tells us thatva can be identified withua. In order
to write down the equations of motion up to linear order
S, we need the explicit form ofRa, which can be evaluated
by using the knowledge of the lowest order solution as

R05R35O~ ũ !,

R153
M

r 3
v0v3z21O~ ũ !,

R253
M

r 3
v0v3z11O~ ũ !. ~4.20!

First we consider the orbital equations of motion. Wi
the assumption thatv150 and v25O( ũ), the nontrivial
equations of the orbital motion are

v̇15Av01Bv32SR150, ~4.21!
t

to
ar
are
but

n

in

h

v̇25~Cv01Dv3!ũ2SR2. ~4.22!

The first equation gives the rotation velocity as before, wh
the second equation determines the motion in theu direction.

Again, using the variablex5v3/v0, Eq.~4.21! is rewritten
as

v112v2x1v3x
213

S'M

r 3
x50, ~4.23!

whereS' :5Sz' . The solution of this equation is

x5S 6AMr2a

AD
D S 17

3S'AM
2r 3/2 D 1O~S2!. ~4.24!

Using the relations~4.15!, it immediately givesv0 and v3.
From the definition of the tetrad, we have the relations

v05AD

S F dtdt
2asin2u

dw

dt G ,
v35

sinu

AS
F2a

dt

dt
1~r 21a2!

dw

dt G . ~4.25!

Thus, the orbital angular velocity observed at infinity is ca
culated to be

V:5
dw

dt
5

a1xAD

r 21a21axAD
1O~ ũ2!

56
AM

r 3/26aAM F12
3S'

2

6AMr2a

r 26aAMr
G1O~ ũ2!.

~4.26!

In order to solve the second equation~4.22!, we note that
v25ASu̇.ru8 and

Cv01Dv352
M

r 2
112x2

12x2
1O~S!. ~4.27!

Then we find that Eq.~4.22! reduces to

r ũ
¨

52
M

r 2
112x2

12x2
ũ23

SiM

r 3
x

12x2
cosf, ~4.28!

whereSi5Sz i . This equation can be solved easily by settin
ũ 5u0cosf. Recalling thatVp

25M /r 31O(S), we obtain

u052
Si

rx
. ~4.29!

Thus we see that the orbit will remain in the equatorial pla
if Si50, but deviates from it ifSiÞ0. We note that there
exists a degree of freedom to add a homogeneous solutio
Eq. ~4.28!, whose frequency

Vu5AM

r 3
112x2

12x2
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is different fromVp and which corresponds to giving a smal
inclination angle to the orbit, indifferent to the spin. Here, fo
simplicity, we only consider the case when this homoge
neous solution toũ is zero. Schematically speaking, the or
bits under consideration are those with the total angular m
mentumJ being parallel to thez direction, which is the sum
of the orbital and spin angular momenta,J5L1S ~see Fig.
1!.

Next we consider the evolution of the spin vector. To
linear order inS, the equations to be solved are

ż05Az11Cz2ũ2Sv0zaRa ,

ż15Az01Bz31Ez2,

ż25~Cz01Dz3!ũ2Ez1,

ż352Bz12Dz2ũ2Sv3zaRa . ~4.30!

The third equation is written down explicitly as

ż252 ūz iksinfcosf, ~4.31!

with

k:5aD2bC2Vpv3r . ~4.32!

Thus we find that

z252z'1
u0z ik

4Vp
cos2f. ~4.33!

Since the spin vectorSa is itself ofO(S) already, the effect
of the second term is always unimportant as long as we n
glect corrections ofO(S2) to the orbit.

The remaining three equations determinea, b, andVp .
Corrections toa andb of O(S) are less interesting because
they remain to be small, however long the time passes. O

FIG. 1. A schematic picture of the precession of orbit and sp
vector, to leading order inS. The vectorJ represents the total an-
gular momentum of the particle. The vectorL is orthogonal to the
orbital plane and reduces to the orbital angular momentum in t
Newtonian limit. In the relativistic case, however, these vecto
should not be regarded as well defined.
l
r
-
-
o-

e-

n

the other hand, the correction toVp will cause a large effect
after a sufficiently long lapse of time because it appears i
the combination ofVpt. The small phase correction will
accumulate and become large. Hence, we solveVp alone to
next leading order. Eliminatingz0 and z3 from these three
equations, we obtain

@~B22A2!2Vp
2#5

S'

x SAC2BD

r
2Vp

2v3D . ~4.34!

Then, after a straightforward calculation, we find

Vp
25

M

r 3 H 12
3S'

r 3/2
6AM ~2r 223Mr1a2!1ar1/2~M2r !

r 223Mr62aAMr
J .

~4.35!

As noted above,Vp is different fromV for S'Þ0. The
differenceVp2V gives the angular velocity of the preces-
sion of the spin vector~see Fig. 1!.

V. GRAVITAIONAL WAVES AND ENERGY LOSS RATE

We now proceed to the calculation of the source term i
the Teukolsky equation and evaluate the gravitational wav
flux. For this purpose, we must write down the expression o
the energy-momentum tensor of the spinning particle explic
itly. We rewrite the tetrad components of the energy
momentum tensor in the following way:

Tab5E dtH p(avb) d~4!
„x2z~t!…

A2g

2en
~aer

b)¹mS
mnvr

d~4!
„x2z~t!…

A2g
J

5E dtH @p~avb)1vdc
~avb)Sdc

2vdc
~aSb)dvc#

d~4!
„x2z~t!…

A2g

2
1

A2g
]m@Sm~avb)d~4!

„x2z~t!…#J
5:mE dtH Aab

d~4!
„x2z~t!…

A2g

1
1

A2g
]m@Bmabd~4!

„x2z~t!…#J . ~5.1!

The last line is the definition ofAab andBmab.
The source term of the Teukolsky equation is expressed

terms of the components of the energy-momentum tens
projected with respect to the complex null tetrad defined a

in
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lm5AS

D
~e0

m1e1
m!,

nm5
1

2
AD

S
~e0

m2e1
m!,

mm5~r1 iacosu!21AS

2
~e2

m1 ie3
m!. ~5.2!

We adopt notation such asTnn :5nmnnTmn to denote the
tetrad components. Then the source term is given by@19#

Tl mv54E dVdtr25r̄21~B281B28* !e2 imw1 ivt 22Sl m
av

A2p
,

~5.3!

where

B2852
1

2
r8r̄L21@r24L0~r22r̄21Tnn!#

2
1

2A2
r8r̄D2L21@r24r̄2J1~r22r̄22D21Tm̄n!#,

B28*52
1

4
r8r̄D2J1@r24J1~r22r̄Tm̄m̄!#

2
1

2A2
r8r̄D2J1@r24r̄2D21L21~r22r̄22Tm̄n!#,

~5.4!
with

r5~r2 iacosu!21,

L j5]u1
m

sinu
2av sinu1 j cotu,

J15] r1
iK

D
, ~5.5!

andQ̄ denotes the complex conjugate ofQ.
As we will see shortly, the terms proportional toSi in the

energy-momentum tensor do not contribute to the energy a
angular momentum fluxes at linear order inS. In other
words, the energy and angular momentum fluxes are t
same for all orbits having the sameS' , irrespective of the
value ofSi . Thus, we ignore these terms in the following
discussion. Further we recall that the particle can stay in th
equatorial plane ifSi50. Hence we fixu5p/2 in the fol-
lowing calculations.

Using the formula~2.5!, we obtain the amplitude of gravi-
taional waves at infinity as

Z̃l mv5Z̃l mv
nn 1Z̃l mv

m̄n 1Z̃l mv
m̄m̄ , ~5.6!

where
Z̃l mv
nn 5

iA2p

vBl mv
in d~v2mV!S dtdt D 21FAnn2 ivBnn

t 1 imBnn
w 2Bnn

r ]

]r G@L1†r24~L2
†r322Sl m

av !#u5p/2

1

rD
Rl mv
in U

r5r0

,

Z̃l mv
m̄n 5

iAp

vBl mv
in d~v2mV!S dtdt D 21FAm̄n2 ivBm̄n

t 1 imBm̄n
w 2Bm̄n

r ]

]r G~L2†22Sl m
av !u5p/2

1

AD
F2 ]

]r
2
2iK

D
2
4

r GRl mv
in U

r5r0

,

~5.7!

Z̃l mv
m̄m̄ 5

iAp

vBl mv
in d~v2mV!S dtdt D 21FAm̄m̄2 ivBm̄m̄

t 1 imBm̄m̄
w 2Bm̄m̄

r ]

]r G
3~22Sl m

av !u5p/2F ]2

]r 2
22S 1r 1

iK

D D ]

]r
2S iKD D

,r

1
2iK

Dr
2
K2

D2GRl mv
in U

r5r0

,

and

Ann5
1

4

1

12x2
$12S'@~2v11v3!x1v2#%,

Bnn
m 5

1

4r
S'

1

12x2 S r 21a2

AD
x1a,2ADx,0,

a

AD
x11D , ~5.8!
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Am̄n5
i

4A2
1

12x2
$2x2S'~v1x

224v2x2v3!%,

Bm̄n
m 5

i

4A2r
S'

1

12x2

3S r 21a2

AD
x21ax,2AD~11x2!,0,

a

AD
x21xD ,

Am̄m̄52
1

2

1

12x2
$x21S'~v2~112x2!1v3x!%,

Bm̄m̄
m 5

1

2r
S'

1

12x2
~0,ADx,0,0!,

and

L j
†5]u2

m

sinu
1av sinu1 j cotu. ~5.9!

The Lorentz factordt/dt which appears in Eqs.~5.7! can be
calculated from Eqs.~4.25! as

dt

dt
5

1

rA12x2
S ax1

r 21a2

AD
D . ~5.10!

When the orbit is quasiperiodic, the Fourier component
gravitational waves does not have a continuous spectrum
takes the form

Z̃l mv5(
n

d~v2vn!Zl mvn
. ~5.11!

Then the time-averaged energy flux is given by the form
@19#

K dEdt L
GW

5 (
l ,m,n

uZl mvn
u2

4pvn
2 5: (

l ,m,n
S dEdt D

l mn

. ~5.12!

The z component of the angular momentum flux is al
given by a similar formula

K dJzdt L
GW

5 (
l ,m,n

muZl mvn
u2

4pvn
3 5: (

l ,m,n
S dJzdt D

l mn

.

~5.13!

In the present case of circular orbits in the equatorial pla
the indexn degenerates to the angular indexm andvn is
simply given bymV (n5m). Hence we eliminate the index
n in the following discussion.

Here we mention the effect of nonzeroSi . If we recall
that all the terms which are proportional toSi have the time
dependence ofe6 iVpt, we see that they give a contribution t
the sidebands. That is to say, their contributions inZ̃l mv are
all proportional tod(v2mV6Vp). Then, since the energy
and angular momentum fluxes are quadratic inZl mvn

, they

are not affected by the presence ofSi as long as we are
working only up to linear order inS.
of
but

la

o

ne,

o

In order to express the post-Newtonian corrections to t
energy flux, we defineh l mv as

S dEdt D
l m

5:
1

2 S dEdt D
N

h l m , ~5.14!

where (dE/dt)N is the Newtonian quadrupole formula:

S dEdt D
N

5
32m2M3

5r 5
5:

32

5 S m

M D 2v10. ~5.15!

We calculateh l m up to 2.5PN order, i.e., toO(v5). The
result is

h262512
107

21
v21S 4p26q2

19

3
ŝD v3

1S 47841323
12q219qŝD v4

1S 2
428

21
p1

4216

189
q1

2134

63
ŝD v5,

h2615
1

36
v21S 2

1

12
q1

1

12
ŝD v3

1S 2
17

504
1

1

16
q22

1

8
qŝD v4

1S 118p2
793

9072
q2

535

1008
ŝD v5,

h3635
1215

896
v22

1215

112
v41S 3645448

p2
1215

112
q

2
10 935

896
ŝD v5,

h3625
5

63
v41S 2

40

189
q1

20

63
ŝD v5,

h3615
1

8064
v22

1

1512
v41S 1

4032
p2

17

9072
q2

1

8064
ŝD v5,

h4645
1280

567
v4,

h4625
5

3969
v4, ~5.16!

whereq:5a/M and ŝ:5S' /M . The rest ofh l m are all of
higher order. We should mention that if we regard the spi
ning particle as a model of a black hole or neutron star,S is
of orderm. Therefore the corrections due toS are generally
small compared with theS-independent terms in the test par
ticle limit m/M!1.

Putting all together, we obtain, to 2.5PN order,
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K dEdt L
GW

5S dEdt D
N
F12

1247

336
v21S 4p2

73

12
q2

25

4
ŝD v3

1S 2
44 711

9072
1
33

16
q21

71

8
qŝD v4

1S 2
8191

672
p1

3749

336
q1

2403

112
ŝD v5G . ~5.17!

Sincev is defined in terms of the coordinate radius of t
orbit, the expansion with respect tov does not have a clea
gauge-invariant meaning. In particular, for the purpose of
comparison with the standard post-Newtonian calculation
is better to write the result by means of the angular veloc
observed at infinity. Using the post-Newtonian expansion
Eq. ~4.26!,

MV5v3F12S 32 ŝ1qD v31 3

2
qŝv41O~v6!G , ~5.18!

the above result can be rewritten as

K dEdt L
GW

5S dẼ
dt

D
N

F12
1247

336
~MV!2/31S 4p2

11

4
q2

5

4
ŝD

3~MV!1S 2
44 711

9072
1
33

16
q21

31

8
qŝD ~MV!4/3

1S 2
8191

672
p1

59

16
q2

13

16
ŝD ~MV!5/3G , ~5.19!

where

S dẼ
dt

D
N

:5
32

5
S m

M
D 2~MV!10/3. ~5.20!

Since there is no sideband contribution in the present c
the angular momentum flux is simply given b
^dJz /dt&GW5V21^dE/dt&GW. The result~5.19! is consis-
tent with the one obtained by the standard post-Newton
approach@11,12# to 2PN order in the limitm/M→0. The
ŝ-dependent term of order (MV)5/3 is the one which is
newly obtained here.
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VI. RADIATION REACTION

In this section, we consider the effect of radiation reacti
on the orbit by equating the gravitational energy and angu
momentum fluxes with their loss rates of the system.

A. Conserved quantities

Here we consider the conserved quantities which are
first integrals of the equations of motion. First we give tw
conserved quantities which follow from the Killing vector
of the Kerr spacetime. The timelike Killing vector is give
by

jm5AD

S
em
01

asinu

AS
em
3 , ~6.1!

and its derivative is

jm;n52
2M ~r 22a2cos2u!

S2 e@m
1 en]

0 1
4Marcosu

S2 e@m
3 en]

2 .

~6.2!

The rotational Killing vector is given by

xm5asin2uAD

S
em
01

~r 21a2!sinu

AS
em
3 , ~6.3!

and its derivative is

xm;n52
2asin2u

S2 @~r2M !S12Mr 2#e@m
1 en]

0

2
2aADsinucosu

S
e@m
2 en]

0 2
2rsinuAD

S
e@m
1 en]

3

1
2cosu

S2 @a2sin2uD2~r 21a2!2#e@m
2 en]

3 . ~6.4!

Then following the discussion around Eq.~3.18!, we can
construct the conserved quantities describing the energy
the z component of the angular momentum from these K
ing vectors. They are given by
E

m
:5umjm2

1

2m
Smnjm;n

5AD

S
u01

asinu

AS
u31

M ~r 22a2cos2u!

S2

S10

m
1
2Marcosu

S2

S23

m
,

Jz
m
:5umxm2

1

2m
Smnxm;n

5asin2uAD

S
u01

~r 21a2!sinu

AS
u31

asin2u

S2 @~r2M !S12Mr 2#
S10

m
1
aADsinucosu

S

S20

m
1
rADsinu

S

S13

m

2
cosu

S2 @a2sin2uD2~r 21a2!2#
S23

m
, ~6.5!
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Since terms such as cosu S23 and cosu S20 are higher order inũ, we neglect them in the following discussion.
For a spinless particle, there exists one more conserved quantity on the Kerr spacetime, known as the Carter const@28#.

It is associated with the Killing tensorKmn which satisfiesK (mn;s)50. However, for a spinning particle, no such conserve
quantity has been known. Nevertheless, one can show that there exists an approximately conserved quantity which cor
to the Carter constant for a spinless particle. It is constructed as follows.

In addition to the Killing vectors, the Kerr spacetime has an antisymmetric Killing Yano tensor

f mn52acosu e@m
1 en]

0 12re@m
2 en]

3 , ~6.6!

which satisfies

f m~n;s!50. ~6.7!

Note that fromf mn , we can construct the Killing tensorKmn as

Kmn5 f ms f n
s5r 2gmn12S l ~mnv) . ~6.8!

When there is a Killing Yano tensor, the system possesses a quantity whoset derivative is ofO(S2) and hence conserved to
linear order inS. Introducing the totally antisymmetric tensor

f mns :5 f mn;s56S asinuAS
e@m
0 en

1es]
2 1AD

S
e@m
1 en

2es]
3 D , ~6.9!

the approximate conserved quantity is expressed by@27#

Q

m2 :5
1

2
f ms f n

sumun2um
Srs

m
~ f n

s f mrn2 f m
n f rsn!

5
1

2
$S@~u0!22~u1!2#2r 2%2

asinu

mAS
$r ~u0S131u1S3022u3S10!1acosuu3S23%

2
1

m
AD

S
$acosu~u2S302u3S2012u0S23!2ru0S10%. ~6.10!
f
de

e-
e

ia-
e
ar

n-

n
ly,
-

m-
n-
by
re-
The quantity corresponding to the Carter constant is

C:52Q2~Jz2aE!2. ~6.11!

For the case of circular orbits under consideration, we find

C

m2 522aS' . ~6.12!

B. Frequency shift due to a radiation reaction

The orbit of a nonspinning particle is completely deter
mined by the three constants of motion,E, Jz , andC. As
mentioned above the counterpart ofC for a spinning particle
also exists in the linear order ofS. This means that we need
to calculate the radiation reaction to these quantities to obta
the orbital evolution of a spinning particle. In both nonspin
ning and spinning cases, the radiation reaction toE and Jz
can be evaluated by equating their loss rates with the cor
sponding fluxes emitted by gravitational waves. Howeve
we do not know how to determine the reaction toC from the
asymptotic behavior of emitted gravitational waves at infin
ity. Furthermore, there are also spin degrees of freedom
the present case. It is not clear at all how to evaluate the ba
reaction to the spin. In order to fully understand the radiatio
reaction, it will be necessary to derive some regularized r
diation reaction force which acts on the particle. Howeve
this is beyond the scope of the present paper.
-

in
-

re-
r,

-
in
ck
n
a-
r,

Although the rigorous evaluation of the change rate o
spin seems formidable, there exists an order-of-magnitu
estimate by Apostolatoset al. @29#, in which they calculate a
torque acting inside a spinning star due to the radiation r
action force. According to their estimate, the rate of chang
of the spin isO(v10) smaller than that of the orbital angular
momentum. This means we can safely ignore the time var
tion of the spin ifv!1. Since we are interested in the cas
v!1 in this paper, we may then assume that the circul
orbit obtained in Sec. IV remains circular with smallerr but
with the same values ofS' andSi under the radiation reac-
tion. Note that this implies that the approximate Carter co
stant, Eq.~6.12!, is conserved under the radiation reaction.

If this assumption is correct, we can obtain an evolutio
sequence of the orbits under the radiation reaction. Name
the orbit is quasicircular and slowly spiraling in with con
stantS' andSi . Although not sufficient, we can consider the
necessary condition for this assumption to be true by exa
ining the consistency with the energy and angular mome
tum loss rates evaluated in terms of their fluxes emitted
gravitational waves. Here the consistency means that the
lation

K dEdt L
GW

5
dE

dJz
K dJzdt L

GW

, ~6.13!
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holds, where the variationsdE anddJz are taken keeping the
orbit circular with fixedS' andSi . As noted before, since
there are no sideband contributions to the energy and ang
momentum fluxes in the present case, we ha
^dE/dt&GW5V^dJz /dt&GW. Therefore the condition~6.13!
is equivalent to

dE

dJz
5V. ~6.14!

In the following, we prove that Eq.~6.14! indeed holds.
Since theSi does not appear in the expressions forE, Jz ,
^dE/dt&GW and ^dJz /dt&GW to linear order inS, we only
have to examine the situation withSi50.

We introduce the function

V~E,Jz ,r ,S'!:52gttutut22gtwutuw2gwwuwuw21,
~6.15!

which is guaranteed to be non-negative and it becomes
when the orbit has no radial or vertical motion, i.e
v15v250. If we setE and Jz to the values for a circular
orbit with r5r 0, we haveV50 at r5r 0 andV.0 at any
other points nearr5r 0. Hence]V/]r ur5r0

50.

The momentum components2mut andmuw are different
from the conserved energy and angular momenta due to
presence of spin. From Eqs.~6.5!, we see

2mut5E2mS'«„u0~E,Jz!,u
3~E,Jz!,r …,

muw5Jz2mS' j „u
0~E,Jz!,u

3~E,Jz!,r …, ~6.16!

where

«~u0,u3,r !5
M

r 2
u3,

j ~u0,u3,r !5
a

r 2
~M1r !u31

AD

r
u0. ~6.17!

Inserting these expressions into Eq.~6.15!, taking the varia-
tion ofV while keeping the orbit circular with fixed spin, an
recalling ]V/]r ur5r0

50, we obtain the relation betwee

dE anddJz as

mdV52utFdE2mS'S ]«

]E
dE1

]«

]Jz
dJzD G

22uwFdJz2mS'S ] j

]E
dE1

] j

]Jz
dJzD G

50. ~6.18!

This gives

dE

dJz
5
uw

ut H 11mS'F 1uw S 2
]«

]Jz
ut1

] j

]Jz
uwD

1
1

ut S 2
]«

]E
ut1

] j

]E
uwD G1O~S2!J . ~6.19!

By using the relations
ular
ve

ero
.,

the

u05
1

rAD
@~r 21a2!E2aJz#,

u35
1

r
~Jz2aE!,

ut5
1

AD

r 21a2

r
u01

a

r
u3,

uw5
1

AD

a

r
u01

1

r
u3, ~6.20!

which hold in the lowest order inS, it is easy to verify that
the terms in the square parentheses on the right-hand sid
Eq. ~6.19! become ofO(S2) or higher atr5r 0. Thus Eq.
~6.14! is shown to hold to linear order inS and our assump-
tion of the stability of the quasicircular orbit is found to be
consistent.

Under the assumption that the orbit remains quasicircu
with fixed spin, we can evaluate the frequency shift due
the radiation reaction by

dV

dt
52S dEdV D 21K dEdt L

GW

. ~6.21!

The post-Newtonian expansion of this quantity is calculat
to become

dV

V2dt
5
96

5

m

M
~MV!5/3F12

743

336
~MV!2/3

1S 4p2
113

12
q2

25

4
ŝD ~MV!

1S 34 10318 144
1
81

16
q21

79

8
qŝD ~MV!4/3

1S 2
4159

672
p2

31 319

1008
q2

809

84
ŝD ~MV!5/3G .

~6.22!

VII. SUMMARY AND DISCUSSION

In this paper we have investigated the gravitational wav
emitted by a spinning particle in circular orbits around
rotating black hole. First we have solved the equations
motion of a spinning particle in Kerr spacetime, assumin
the spin of the particle is small and the orbit is close to th
equatorial plain. Applying the Teukolsky formalism of the
black hole perturbation, we have then calculated the fi
order corrections due to spin to the energy flux up to 2.5P
order. The effect of spin is always small@5O(m/M )# com-
pared with the spin-independent contributions if we take t
limit m/M→0. However, the result will be a useful guideline
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to the standard post-Newtonian calculations because our
proach is totally different from the standard post-Newtonia
approach and gives the leading spin-dependent terms in
m/M expansion. Up to 2PN order, our results are in com
plete agreement with the previous ones obtained by the s
dard post-Newtonian method. The spin-dependent term
2.5PN order, which we have newly obtained, will be verifie
by the standard post-Newtonian approach in the future.

In this paper we have restricted our analysis to a class
orbits which are circular and stays in the equatorial plane
the spin vector is orthogonal to it. In this case, the assum
tion that the orbit remains in this class under a radiati
reaction has been found to be consistent with the energy
the angular momentum loss rates evaluated from the gra
tational wave flux at infinity. Although we have not consid
ered it here, it seems possible to incorporate the orbital
clination. However, if the present restriction is relaxed, th
orbit may become too complicated and the same techniq
used here may not work well. As long as one considers
spinless particle, the orbit is parametrized by the three c
served quantities, i.e., the energy, thez component of the
angular momentum, and the Carter constant. In that case,
particle will sweep through a certain region of phase spa
restricted by these conserved quantities sufficiently fast co
pared with the time scale of the radiation reaction. Hence
quasiperiodicity will be a good approximation. On the oth
hand, for a spinning particle, there is not a sufficient numb
of conserved quantities to confine the orbit to a restrict
region of phase space. This means that the orbit is not gu
anteed to be quasiperiodic. When we try to make a be
template to be used for interferometric gravitational wa
detectors in the future by taking account of the effect of sp
this point may cause a difficult problem.
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APPENDIX

In this appendix, we present an exact solution of the eq
tions of motion in the case when the spin vectorSa is parallel
or antiparallel to the rotation axis of the Kerr black hole. W
assume that the orbit is circular and lies on the equatr
plane. Thus the only nonvanishing component of the sp
vector isSz252S' and we setv15v250 exactly. Further
we assumeu15u250, which will be found to be consistent

With these assumptions, the only nonvanishing comp
nent ofRa is

SR152S'

M

r 3
@2v0u31v3u0!]. ~A1!

Then all but one of the equations of motion are triviall
satisfied and the remaining nontrivial equation is
ap-
n
the
-
an-
at
d

of
if
p-
n
and
vi-
-
in-
e
ue
a
n-

the
ce
m-
he
r
er
ed
ar-
ter
e
in,

or
-

6,

a-

e
ial
in

o-

y

u̇15v1v
0u01v2~v

0u31v3u0!1v3v
3u3

1S'

M

r 3
~2v0u31v3u0!50. ~A2!

In addition to the equations of motion there are constra
equations to be satisfied. We list them below.

~1! From the time derivative of the center-of-mass con
tion Sabub50, we have the relation betweenua andva as

ua5va2
Sab

m
SRb , ~A3!

which is equivalent to Eq.~3.5!. This gives

u05v02
MS'

2

r 3
~2v0u31v3u0!u3, ~A4!

u35v32
MS'

2

r 3
~2v0u31v3u0!u0. ~A5!

~2! The mass conservationuau
a521 gives

~u0!22~u3!251. ~A6!

~3! The normalization conditionuav
a521 of va is

u0v02u3v351. ~A7!

We may considerS' and r as freely specifiable variables
Then the variables to be determined arev0, v3, u0, andu3.

FIG. 2. The contours of radii of the innermost stable circu
orbits on the (a,S') plane. The conserved angular momentumJz is
assumed to be positive so that the orbits witha.0 are corotating
with the black hole and those witha,0 are counterrotating.
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However, there are five equations to be satisfied, i.e., E
~A2! and ~A4!–~A7!. Hence one might think the system
overdetermined and inconsistent. Fortunately this is not
case because Eq.~A7! is guaranteed to hold by Eqs.~A4!,
~A5!, and~A6!, as can be seen by contracting Eq.~A3! with
ua . Thus our assumptions, in particularu

15u250, turn out
to be consistent.

In order to solve the above set of equations, we introd
the new variables

xv5
v3

v0
and xu5

u3

u0
. ~A8!

In terms ofxv andxu , Eq. ~A2! is rewritten as

a22Mr1aAD~xv1xu!1Dxvxu1sMAD~2xu1xv!50,
~A9!

where
qs.
is
the

uce

s:5
S'

r
5
M

r
ŝ. ~A10!

Multiplying Eq. ~A4! by u3 and Eq.~A5! by u0, equating the
right-hand sides of them, and dividing it byu0v0, we obtain

xv2
M

r
s2~2xu1xv!~u

0!25xu2
M

r
s2~2xu1xv!~u

3!2.

~A11!

Using Eq.~A6!, one readily sees this reduces to

xv2xu2
M

r
s2~2xu1xv!50. ~A12!

Thus we have obtained the coupled equations~A9! and
~A12! for xv andxu . They are solved to give
xv5
2~2ra13Mrs1aMs2!6A4Mr 3112aMr2s113M2r 2s216aM2rs328M3rs419a2M2s4

2AD~r2Ms2!
,

xu5
r2Ms2

r12Ms2 xv . ~A13!
i-

ce

e

l

t

-
-

Then from Eqs.~A6! and~A7!, u0, u3, v0, andv3 are found
as

u05
1

A12xu
2
, u35

xu

A12xu
2
,

v05
A12xu

2

12xvxu
, v35

xvA12xu
2

12xvxu
. ~A14!

We note that the terms inside the square root of the exp
sion for xv in Eq. ~A13! are not positive definite. Thus cir
cular orbits do not exist for very large values ofs
(5S' /r ). However, they always exist for physically reaso
able values ofs, i.e., fors,M /r,1. We also note that the
1 (2) sign in front of the square root corresponds to
corotating~counterrotating! orbit if we restrict the range of
a to be non-negative, i.e., 0<a,M . On the other hand, if
we extend the range ofa to 2M,a,M , the6 signs be-
come redundant. Here we take the latter option and take
1 sign.

Then a matter of interest is the stability of these circu
orbits. In Fig. 2, we show the contours of radii of the inne
res-
-

n-

a

the

lar
r-

most stable circular orbits on the (a,S') plane. The contour
of r56M passes through the (a,S')5(0,0), which is the
well-known minimum radius for a spinless particle in
Schwarzchild spacetime. One readily notices that the min
mum radius decreases asa increases for a fixedS' and it is
smaller for largerS' . Another interesting feature is that the
minimum radius approachesr5a in the limit a→M irre-
spective of the values ofS' . Although this latter feature can
be explained only in a fully relativistic context, the main
feature of the contours can be understood as a consequen
of the spin-orbit coupling, which is the dominant effect in a
mildly relativistic situation. It is repulsive when the spin and
orbital angular momentum vectors are parallel and attractiv
when they are antiparallel. Now, if the contribution of the
particle’s spin to the spin-orbit interaction could be ne-
glected, the contours of the minimum radii would be paralle
to theS' axis, with decreasing minimum radii for largera.
On the other hand, if the particle were another Kerr black
hole with the same massM , spins of the black hole and the
particle would contribute to the spin-orbit interaction in an
exactly symmetric way, and the contours would be straigh
lines at 45° downward in the right direction. In reality, nei-
ther can the spin of the particle be neglected nor is its con
tribution as large as that of the black hole. This approxi
mately explains the feature of the contours.
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