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Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star
in full general relativity

Masaru Shibata and Yu-ichirou Sekiguchi
Graduate School of Arts and Sciences, University of Tokyo, Tokyo, 153-8902, Japan

~Received 27 October 2003; published 28 April 2004!

Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the
framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are
solved in Cartesian coordinates and the axisymmetric condition is imposed around they50 plane, is adopted.
The hydrodynamic equations are solved in cylindrical coordinates~on they50 plane in Cartesian coordinates!
using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation
of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and
Müller. It is found that the evolution of the central density during the collapse, bounce, and formation of
protoneutron stars agrees well with that in the work of Dimmelmeier, Font, and Mu¨ller in which an approxi-
mate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for
following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational
waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good
agreement with those by Dimmelmeier, Font, and Mu¨ller. However, quantitatively, two waveforms do not
agree well. The possible reasons for the disagreement are discussed.

DOI: 10.1103/PhysRevD.69.084024 PACS number~s!: 04.25.Dm, 04.30.2w, 04.40.Dg
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I. INTRODUCTION

Rotating stellar core collapse is among the most prom
ing sources of gravitational waves. To date, there has bee
systematic work for the computation of the collapse to
neutron star and of the emitted gravitational waves in
general relativity~but see@1#!. Gravitational waves assoc
ated with the formation of rotating neutron stars have b
widely computed in Newtonian gravity@2–9# or in an ap-
proximate general relativistic gravity@10# using the so-called
conformal flatness approximation~or Isenberg-Wilson-
Mathews approximation@11#!. As indicated in@10#, the gen-
eral relativistic effects modify the dynamics of the collap
and corresponding gravitational waveforms significan
This implies that simulation in full general relativity is th
best approach for an accurate computation of gravitatio
waves.

During stellar core collapse to a neutron star, the cha
teristic radius changes from the initial stellar core rad
;2000 km to the neutron star radius;10 km. Adopting a
uniform and fixed grid with a grid spacing of;1 km, the
required grid number for the simulation is more than 20
for one direction. With current computational resources, i
very difficult to take such a huge number of grid points
three-dimensional simulations. If the progenitor of the ne
tron star is not very rapidly rotating, nonaxisymmetric ins
bilities will not set in and the collapse will proceed in a
axisymmetric manner. By restricting our attention to axisy
metric spacetimes, the grid resolution can be improved
nificantly for a given computational resource. Thus, as a fi
step, it is better to perform axisymmetric simulations than
do nonaxisymmetric ones for a well-resolved and converg
computation of the collapse, bounce, and correspond
gravitational waveforms, focusing only on the moderat
rapid rotation case.
0556-2821/2004/69~8!/084024~16!/$22.50 69 0840
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In this paper, we study gravitational waves from rotati
stellar core collapses to a neutron star assuming axial s
metry. The dynamics of the collapse is followed by a fu
general relativistic simulation. Gravitational waves are a
proximately computed using a quadrupole formula adop
and tested in@12#. The necessity of adopting quadrupole fo
mulas arises from the fact that the amplitude of gravitatio
waves is too small (,1025 in the local wave zone! to accu-
rately extract the waveforms from the raw data sets of
metric. Although exact gravitational waveforms cannot
computed, the quadrupole formula is a useful tool for a
proximate computation of gravitational waves associa
with matter motion such as oscillations of neutron stars,
indicated in@12#.

Recently, gravitational waves from axisymmetric rotati
stellar core collapses have been extensively computed
relativistic manner by Dimmelmeieret al. @10#. As men-
tioned above, they determine the gravitational fields
adopting an approximate formulation of the Einstein eq
tion. The approximation is likely to be applicable to a mo
erately relativistic and stationary spacetime such as that f
rapidly rotating neutron star@13#. However, no-one has clari
fied whether this is the case for dynamical spacetimes.
confirm that their treatment is indeed appropriate, it is n
essary to compare their solutions with fully general relat
istic ones for a calibration. One of the purposes in this pa
is to examine whether the numerical solution for the ste
core collapse computed in@10# is a well-approximated one
for a fully general relativistic solution.

In @10#, gravitational waveforms were computed in term
of a quadrupole formula. In general relativity, there is
unique definition of the quadrupole moment, nor is the qu
rupole formula, for axisymmetric dynamical spacetimes. T
accuracy of gravitational waveforms depends on the cho
of the quadrupole formula and the gauge conditions. Thus
know how accurately the approximate gravitational wav
©2004 The American Physical Society24-1
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forms can be computed by the chosen quadrupole formu
calibration is required by comparing the resulting wavefor
with those computed from the metric as we did in@12#. Un-
fortunately, this calibration was not possible in@10# since the
authors adopted an approximate general relativistic form
tion for the gravitational field in which the metric does n
carry any information about gravitational waves. Con
quently, it is not clear whether the quadrupole formula th
adopted can actually yield accurate approximate grav
tional waveforms and how large the magnitude of the er
is. On the other hand, in a previous paper@12#, we did such
a calibration for a quadrupole formula which is differe
from that in @10#, and showed that it is possible to compu
gravitational waves from oscillating and rapidly rotating ne
tron stars of high values of compactness fairly accurately
addition to possible systematic errors for the amplitude
to neglecting post-Newtonian corrections. By computi
gravitational waveforms by the calibrated quadrupole f
mula and comparing the results with the previous ones,
estimate the accuracy of the waveforms computed in@10#.

This paper is organized as follows. In Sec. II, our nume
cal implementations for a general relativistic simulation
axial symmetry are briefly reviewed. In Sec. III, the initi
condition and computational setting are described. Sec
IV presents the numerical results. Section V is devoted t
summary. Throughout this paper, we adopt geometrical u
in which G5c51, whereG andc are the gravitational con
stant and the speed of light, respectively.

II. NUMERICAL IMPLEMENTATION

A. Summary of formulation

We perform fully general relativistic simulations for rota
ing stellar core collapse in axial symmetry using the sa
formulation as in@14#, to which the reader may refer fo
details and basic equations. The fundamental variables
the hydrodynamics are

r, rest mass density,

«, specific internal energy,

P, pressure,

um, four-velocity,

v i5
dxi

dt
5

ui

ut , ~1!

where the subscripti denotes spatial componentsx, y, andz,
and m, the spacetime components. As the variables to
evolved in the numerical simulations, we define a weigh
density r* (5raute6f) and a weighted four-velocityûi@
5(11«1P/r)ui #. From these variables, the total baryo
rest mass and angular momentum of the system, which
conserved quantities in axisymmetric spacetimes, can be
fined as
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M* 5E d3xr* , ~2!

J5E d3xr* ûw . ~3!

The general relativistic hydrodynamic equations are sol
using a so-called high-resolution shock-capturing sche
@15,14# on the y50 plane with the cylindrical coordinate
(x,z) ~in Cartesian coordinates withy50).

The fundamental variables for the geometry are

a, lapse function,

bk, shift vector,

g i j , metric in the three-dimensional spatial hypersurface

g5e12f5det~g i j !,

g̃ i j 5e24fg i j ,

Ki j , extrinsic curvature. ~4!

We evolveg̃ i j , f, Ãi j [e24f(Ki j 2g i j Kk
k), and the trace of

the extrinsic curvatureKk
k together with three auxiliary func

tionsFi[d jk] j g̃ ik with an unconstrained free evolution cod
as in @16,18–20,17,14#.

The Einstein equations are solved in Cartesian coo
nates. To impose axisymmetric boundary conditions, the C
toon method is used@22#: Assuming reflection symmetry
with respect to the equatorial plane, simulations are p
formed using a fixed uniform grid with the grid sizeN33
3N in (x,y,z) which covers a computational domain such
0<x<L, 0<z<L, and2D<y<D. Here,N andL are con-
stants andD5L/N. In the Cartoon method, the axisymme
ric boundary conditions are imposed aty56D.

As the time slice, we impose an ‘‘approximate’’ maxim
slicing condition in whichKk

k'0 is required@16#. As the
spatial gauge, we adopt a dynamical gauge condition@21# in
which the equation for the shift vector is written as

] tb
k5g̃kl~Fl1Dt] tFl !, ~5!

whereDt denotes the time step in numerical computation
During the numerical simulations, violations of th

Hamiltonian constraint and conservation of mass and ang
momentum are monitored as code checks. Numerical res
for several test calculations, including the stability and c
lapse of nonrotating and rotating neutron stars, have b
described in@14#.

An outgoing wave boundary condition forFi , hi j (5g̃ i j

2d i j ), and Ãi j is imposed at the outer boundaries of t
computational domain. The condition adopted is the sam
that described in@20#. Kk

k is set to be zero at the oute
boundaries.
4-2
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B. Equations of state

A parametric equation of state is adopted followi
Müller and collaborators@6,10#. In this equation of state, on
assumes that the pressure consists of the sum of polytr
and thermal parts as

P5PP1Pth . ~6!

The polytropic part is given byPP5KP(r)rG(r) whereKP
andG are not constants but functions ofr. In this paper, we
follow @10# for the choice ofKP(r) andG(r): For a density
smaller than the nuclear density, which is defined asrnuc
[231014 g/cm3, G5G1 (5const) is set to be&4/3, and
for r>rnuc, G5G2 (5const)>2. Thus,

PP5H K1rG1, r<rnuc,

K2rG2, r>rnuc,
~7!

whereK1 andK2 are constants. SincePP should be continu-
ous, the relationK25K1rnuc

G12G2 is required. Following
@6,10#, the value ofK1 is fixed to 531014 cgs units. With
this choice, the polytropic part of the equation of state
r,rnuc, in which the degenerate pressure of electrons
dominant, is approximated well. Since the specific inter
energy should be continuous atr5rnuc, the polytropic spe-
cific internal energy«P is defined as

«P55
K1

G121
rG121, r<rnuc,

K2

G221
rG2211

~G22G1!K1rnuc
G121

~G121!~G221!
, r>rnuc.

~8!

With this setting, a realistic equation of state for hig
density, cold nuclear matter is mimicked.

The thermal part of the pressure,Pth , plays an important
role in the case that shocks are generated.Pth is related to the
thermal energy density« th[«2«P as

Pth5~G th21!r« th . ~9!

Following @10#, the value of G th , which determines the
strength of shocks, is chosen as 1.5 for most simulation
this paper. Extending the previous work@10#, for a few mod-
els, we setG th51.35 or 5/3 to investigate the effect of th
shock heating at the bounce phase and resulting gravitati
waveforms.

Simulations are initiated in the following manner. Firs
equilibrium rotating stars with aG54/3 polytrope are given
Then, to induce the collapse, we slightly decrease the v
of the adiabatic index fromG54/3 to G1,4/3. The equilib-
rium states are computed with the polytropic equation
state as

P5K0r4/3, ~10!

where, following@10#, K0 is set to be 531014 cm3/s2/g1/3,
with which a soft equation of state governed by the elect
08402
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degenerate pressure is approximated well@23#. Here, K0

and K1 are related byK15K0r0
4/32G1 where we setr0

51 g/cm3.

C. Quadrupole formula

In the present work, gravitational waveforms are co
puted using a quadrupole formula@12#. In quadrupole formu-
las, gravitational waves at null infinity are calculated from

~11!

h1
quad5

Ï xx~ t ret!2 Ï zz~ t ret!

r
sin2u, ~12!

whereI i j denotes a quadrupole moment,Ï i j its second time
derivative, andt ret a retarded time.

In fully general relativistic and dynamical spacetime
there is no unique definition for the quadrupole moment,
for Ï i j . Following a previous paper@12#, we choose the sim-
plest definition as

I i j 5E r* xixjd3x. ~13!

Then, using a continuity equation of the form

] tr* 1] i~r* v i !50, ~14!

the first time derivative can be written as

İ i j 5E r* ~v ixj1xiv j !d3x. ~15!

To computeÏ i j , finite differencing of the numerical result fo
İ i j is carried out.

As indicated in@12#, it is possible to compute gravita
tional waves from oscillating and rapidly rotating neutro
stars of high values of compactness fairly accurately with
present choice ofI i j , in addition to possible systematic e
rors for the amplitude of orderM /R or v2/c2, whereM, R,
and v denote the gravitational mass, the equatorial circu
ferential radius, and the radial velocity of the collapsing s
and/or formed neutron stars. In stellar core collapses,v2/c2

is at most;0.1, and the outcomes are protoneutron stars
M /R;0.1. Thus, it is likely that the wave amplitude is com
puted within;10% error. The wave phase will be compute
very accurately as indicated in@12#.
4-3
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TABLE I. Central density, baryon rest mass, Arnowitt-Deser-Misner mass, equatorial circumferential radius, ratio of the rotationa
energy to the potential energy, nondimensional angular momentum parameter, central value of the lapse function, angular velo

rotational axis, andÂ of rotating stars chosen as initial conditions for stellar core collapse simulations.

Model rc(g/cm3) M* (M () M (M () R ~km! T/W J/M2 ac Va ~1/s! Â

A 1.0031010 1.503 1.503 2267 8.9131023 1.235 0.994 4.11 `

B 1.0031010 1.485 1.485 1576 5.0031023 0.839 0.994 6.49 0.32
C 1.0031010 1.488 1.488 1568 5.4431023 0.841 0.994 8.45 1/4
D 1.0031010 1.500 1.500 1571 1.0131022 1.146 0.994 11.6 1/4
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III. INITIAL CONDITION AND COMPUTATIONAL
SETTING

A rotating stellar core in equilibrium with theG54/3
polytropic equation of state@see Eq.~10!# is given as the
initial condition for simulations. Following@10#, the central
density is chosen asrc51010 g/cm3 irrespective of the ve-
locity profile.

The velocity profiles of equilibrium rotating stellar core
are given according to the popular relation@24,25#

utuw5Ãd
2~Va2V!, ~16!

whereVa denotes the angular velocity along the rotation
axis, andÃd is a constant. In the Newtonian limit, the rot
tional profile is written as

V5Va

Ãd
2

Ã21Ãd
2 . ~17!

Thus,Ãd indicates the steepness of differential rotation.
this paper, we pick up the rigidly rotating case in whi
Ãd→` ~referred to as model A! and differentially rotating
cases withÂ[Ãd /Re50.32 ~referred to as model B! and
1/4 ~referred to as models C and D!, whereRe is the coordi-
nate radius at an equatorial surface. In the rigidly rotat
case, we chose the axial ratio of polar radius to equato
radius as 2/3. With this choice, the angular velocity at
equatorial stellar surface is nearly equal to the Keplerian
locity; namely, for the rigidly rotating case, a rapidly rotatin
initial condition with nearly maximum angular velocity i
chosen. In the differentially rotating case, we chose s
with ratio of the rotational kinetic energyT to the gravita-
tional potential energyW of ;0.005 and;0.01, where

T5
1

2E d3xr* ûwV, ~18!

W5E d3xr* ~11«!2M1T. ~19!

Here,W is defined to be positive. In Table I, several quan
ties for the models adopted in the present numerical com
tation are summarized.

For the differentially rotating case with a small value
Â(,1), it is possible to make equilibrium states withT/W
@0.01. With such an initial condition, the collapsing stell
core often forms a differentially rotating star of highly no
08402
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spherical shape and of a high value ofT/W @7#. It is also
known that rapidly rotating neutron stars of a high degree
differential rotation is dynamically unstable against nona
symmetric deformation~e.g.,@26# and references therein!. To
simulate the collapse with a high initial value ofT/W, a
nonaxisymmetric simulation will be necessary. Since our
tention here is restricted to the axisymmetric case, we do
choose such initial conditions.

Simulations are performed for four initial condition
listed in Table I. Models A and B are almost the same init
conditions as models A1B3 and A3B2 in@10#. ~Note that the
value of A for model B is'53102 km, which is approxi-
mately equal to that for model A3B2 in@10#.! Careful com-
parison of the present numerical results with those in@10# is
carried out using these two models. A variety of values
G1 , G2, andG th are adopted to investigate the dependence
numerical results on the equations of state:G1 is chosen as
1.28, 1.30, 1.31, and 1.32,G2 as 2 and 2.5, andG th as 1.35,
1.5, and 5/3. The selected sets are listed in Table II.

During the collapse, the central density increases fr
1010 g/cm3 to ;531014 g/cm3. This implies that the char-
acteristic length scale of the system varies by a factor
;100. One of the computational issues in a stellar core c
lapse simulation is to guarantee numerical accuracy again
significant change of the characteristic length scale. In
early phase of the collapse~infall phase; see Sec. IV A!, in
which it proceeds in a nearly homologous manner, we m
follow the collapse with a relatively small number of gr
points by moving the outer boundary inward while decre

TABLE II. Selected sets ofG1 , G2, andG th .

Model G1 G2 G th

A1 1.32 2.5 1.5
A2 1.31 2.5 1.5
A3 1.28 2.5 1.5
A4 1.32 2.5 1.35
A5 1.32 2.5 5/3
A6 1.32 2.0 1.5
B1 1.32 2.5 1.5
B2 1.30 2.5 1.5
C1 1.32 2.5 1.5
C2 1.30 2.5 1.5
C3 1.32 2.0 1.5
C4 1.32 2.5 1.35
D 1.32 2.5 1.5
4-4
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GRAVITATIONAL WAVES FROM AXISYMMETRIC . . . PHYSICAL REVIEW D 69, 084024 ~2004!
ing the grid spacing, without increasing the grid number b
large factor. As the collapse proceeds, the central reg
shrinks more rapidly than the outer region does and, henc
better grid resolution is necessary to accurately follow suc
rapid collapse in the central region. On the other hand,
location of the outer boundaries cannot be changed by a l
factor, to avoid discarding the matter in the outer envelop

To compute such a collapse accurately while saving C
time efficiently, a regridding technique as described in@27# is

TABLE III. The initial and final grid spacings and location o
the outer boundaries along thex andz axes for models A–D. The
units are kilometers.

Model
Dx

~initial!
L

~initial!
Dx

~final!
L

~final!

A 3.775 2265 0.4719 1180
A ~low resolution! 6.292 2643 0.7865 1337
B 2.601 1613 0.3251 813
B ~low resolution! 3.902 1639 0.4877 829
C 2.613 1568 0.3267 817
D 2.617 1570 0.3271 818
08402
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adopted. The regridding is carried out whenever the cha
teristic radius of the collapsing star decreases by a factor
few. At each regridding, the grid spacing is decreased b
factor of 2. All the quantities in the new grid are calculat
using cubic interpolation. To avoid discarding the matter
the outer region, we also increase the grid number at
regridding, keeping a rule that the discarded baryon r
mass has to be less than 3% of the total.

Specifically,N andL in the present work are chosen in th
following manner. First, we define a relativistic gravitation
potentialFc[12ac(Fc.0), which is'0.006 att50 for
all the models chosen in this work. SinceFc is approxi-
mately proportional toM /R, Fc

21 can be used as a measu
of the characteristic length scale for the regridding. Fromt
50 to the time at whichFc50.025, we setN5620. Note
that the equatorial radius is initially covered by 600 gr
points. At Fc50.025, the characteristic stellar radius b
comes approximately one-fourth of the initial value. Th
the first regridding is performed; the grid spacing is chang
to half the previous one and the grid number is increase
N51020. Subsequently, the value ofN is chosen in the fol-
lowing manner: for 0.025<Fc<0.05, we setN51020; for
0.05<Fc<0.1, we setN51700; and for 0.1<Fc , we set
FIG. 1. Evolution of the central density and the central value of the lapse function for model A.~a! Models A1~solid curve!, A2 ~dashed
curve!, and A3~dot-dashed curve!; ~b! models A1~solid curve!, A4 ~dotted curve!, and A5~dot-dashed curve!; ~c! models A1~solid curve!
and A6 ~dotted curve!; ~d! model A1 with high~solid curve! and low ~dotted curve! grid resolutions.
4-5
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FIG. 2. ~a! The same as Fig. 1 but for models C1~solid curves!, C2 ~dashed curves!, and C3~dot-dashed curves!. ~b! The same as Fig.
1 but for models C1~solid curves!, C3 ~dot-dashed curves!, and C4~dotted curves!.
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N52500, and keep this number until the termination of t
simulations since the maximum value ofFc is at most 0.25.
In this treatment, the total discarded fraction of the bary
rest mass that is located outside new regridded domain
&3%.

To check the convergence of the numerical results,
also perform a few simulations using a low grid resoluti
~see Table III!. In this case, the value ofN is changed as
follows: for Fc<0.025, N5420; for 0.025<Fc<0.05, N
5820; for 0.05<Fc<0.1, N51300; and for 0.1<Fc , N
51700.

Simulations for each model with the higher grid reso
tion are performed for 60000–80000 time steps. The C
time required for one model is about 40–70 h using ei
processors of FACOM VPP 5000 at the data processing
ter of the National Astronomical Observatory of Japan.

IV. NUMERICAL RESULTS

A. Dynamics of the collapse

1. General feature

Figures 1–4 show the evolution of the central dens
~hereafterrc) and the central value of the lapse functio
~hereafterac) for models A–D. Figures 5 and 6 are sna
shots of the density contour curves and the velocity vec
of (vx,vz) on they50 plane for models A1 and C1 at se
lected time slices around which shocks are formed.

As described in@10#, rotating stellar core collapses can b
divided into three phases. The first one is the infall phase
which the core collapse proceeds from the onset of the gr
tational instability triggered by the sudden softening of t
equation of state due to the reduction of the adiabatic ind
During this phase, the central density~the central value of
the lapse function! monotonically increases~decreases! until
it reaches the nuclear density or the centrifugal force
comes strong enough to halt the collapse. The inner pa
the core, which collapses nearly homologously, constitu
the inner core. The duration of the infall phase in the pres
work is between about 30 and 70 ms depending mainly
the value ofG1 ~for the smaller value ofG1, the duration is
08402
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shorter! as shown in@10#. We note that the dynamical time a
t50 defined byrc

21/2 is '38.7 ms. Thus, the duration ma
be written as~0.8–1.8!rc

21/2.
The second one is the bounce phase which sets in w

the densities around the central part exceed the nuclear
sity rnuc, or when centrifugal forces, which become strong
as the collapse proceeds due to angular momentum con
vation, begin to dominate over the gravitational attracti
force. At this phase, the inner core decelerates infall in ab
a few milliseconds (;10rnuc

21/2). Because of its large inertia
and large kinetic energy due to the infall, the inner core d
not settle down to a stationary state immediately but ov
shoots and bounces back, forming shocks at the outer edg
the inner core.

The third one is the ring-down phase or the reexpans
phase. If the centrifugal force is sufficiently small at the tim
that the density of the inner core exceeds the nuclear den
the bounce occurs when the central density reac
;(2 –3)rnuc due to a sudden stiffening of the equation
state. In this case, the inner core oscillates quasiradially
about 10 ms and then settles down to a quasistationary s
In the outer region, on the other hand, shock waves pro
gate outward, sweeping materials which infall from ou
envelopes.

If the angular momentum in the inner region is suf
ciently large, the collapse is halted by the centrifugal for
not by the sudden stiffening of the equation of state. In t
case, the stellar core does not settle down to a quasistatio
state. Instead, it rebounds due to the centrifugal force
expands to be of subnuclear density. After the maximum
pansion is reached, the core starts collapsing again. It rep
the bounce, the expansion, and the collapse many times.
ing each bounce, shocks are formed at the outer region o
core, and the oscillation amplitude is damped gradually d
to the shock dissipation.

For models A–C, the centrifugal force is not stron
enough to halt the collapse and hence a protoneutron sta
central density larger than the nuclear density is formed i
spective of the values ofG1 , G2, andG th ~see Figs. 1–3!. On
the other hand, for model D, the angular momentum is la
4-6
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FIG. 3. ~a! The same as Fig. 1 but for model B1 with high~solid curve! and low ~dotted curve! grid resolutions. For comparison, th
results for model C1~dashed curve! are also shown.~b! The same as~a! but for model B2 with high~solid curve! and low~dotted curve! grid
resolutions and for model C2~dashed curve!.
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enough to halt the collapse and to prevent the inner c
being compact. As a result, the outcome is an oscillating
of subnuclear density~see Fig. 4!. Since the amplitude of the
oscillation decreases gradually, it will settle to a rotating s
of subnuclear density eventually. The adiabatic constan
this star is'G1, which is smaller than 4/3, the well-know
critical value against gravitational collapse for spheri
stars, and 1.329 which is an approximate critical value
rigidly rotating stars@28#. This indicates that the centrifuga
force created by a rapid and differential rotation plays
essential role for stabilization against gravitational collap
According to@29#, the criterion of stability for slowly rotat-
ing stars is given by

Qc[3G12422
T

W
~3G125!2k

M

R
.0, ~20!

where k is a constant which is'6.75 for n53 and T/W
50 @30#. For the Newtonian polytropes withn'3, the stel-
lar radius is given by

R'2.35S M

rc
D 1/3

'73 kmS M

1.5M (
D 1/3S rc

1014 g/cm3D 21/3

.

~21!

Thus,M /R will be ;0.03 forrc;1014 g/cm3. The value of
T/W for dynamical stars is not exactly defined in gene
relativity, but assuming that it approximately increases
1/R}12ac for a fixed value ofM, we can infer that the
value of T/W would be ;0.15–0.2 for ac;0.9 and k
56.75. Therefore,Qc would be;0.1–0.2, and, hence, th
rotating star would satisfy the stability condition again
gravitational collapse. On the other hand, the expected v
of T/W is so large that the differentially rotating star forme
may be unstable against a nonaxisymmetric deforma
@26#. This suggests that to clarify the fate of this star it wou
be necessary to perform a nonaxisymmetric simulation@18#.
However, such a simulation is beyond the scope of this pa
and, hence, particular attention is paid only to models A
in this paper.
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As Figs. 1~a! and 2~a! indicate, the evolution of the cen
tral density and the central value of the lapse function
pends strongly on the value ofG1. For the smaller value of
G1, the depleted pressure att50 is larger. As a result, the
collapse is accelerated more and the elapsed time in the i
phase is shorter. Also, since the depleted fraction of the p
sure is larger in the central region than in the outer regi
the collapse in the central region proceeds more rapidly. T
results in a less coherent collapse for the smaller value ofG1.
This effect makes the mass of a protoneutron star at its
mation smaller and is reflected in the value ofac in the
ring-down phase, which depends on the compactness o
protoneutron star. On the other hand, the final value ofrc
depends only weakly on the value ofG1. This indicates that
for the smaller value ofG1, the protoneutron star formed ha
a more centrally concentrated structure.

In Figs. 1~b! and 2~b!, the evolution of the central densit
and the central value of the lapse function for different v
ues ofG th with fixed values ofG1 (51.32) andG2 (52.5) is
compared. Recall that the value ofG th determines the
strength of shocks at the bounce and at their subseq
propagation. Thus, the results here show that a mode
change of the value ofG th from 1.35 to 5/3 weakly modifies

FIG. 4. Evolution of the central density and the central value
the lapse function for model D.
4-7



are

M. SHIBATA AND Y. SEKIGUCHI PHYSICAL REVIEW D 69, 084024 ~2004!
FIG. 5. Snapshots of the density contour curves ofr and of the velocity field of (vx,vz) at selected time slices around which shocks
formed for model A1. The contour curves are drawn forr/rnuc5331020.4j , with j 50,1,2, . . . ,15.
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the evolution of the protoneutron stars formed. For a sma
value of G th , the final value of the central density~central
lapse! is larger~smaller!. This is simply because the amou
of matter that accretes to the protoneutron star increases
hence, the compactness increases with a decrease o
value of G th . For a larger value ofG th , the oscillation am-
plitude of rc is larger. This is due to the fact that strong
shocks result in a larger amplitude of the oscillation of t
core.

In Figs. 1~c! and 2~b!, the evolution of the central densit
and the central value of the lapse function is compared
different values ofG2 with fixed values ofG1 (51.32) and
G th (51.5). @Compare the solid and dot-dashed curves
Fig. 2~b!.# Since the equation of state for a protoneutron s
is stiffer for a larger value ofG2, the maximum density at the
bounce, the final relaxed value ofrc , and the compactnes
of the quasistationary neutron star are smaller. Since the
fall proceeds deep inside the core, the amplitude of the
cillation for the central density in the ring-down phase
larger for a smaller value ofG2.

Figure 3 shows the evolution of the central density a
the central value of the lapse function~a! for models B1 and
C1 and~b! for models B2 and C2. The values ofG1 , G2, and
G th are identical between models B1 and C1 and betw
models B2 and C2. Furthermore, the values ofT/W for the
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initial condition are approximately equal. Therefore, the d
ference of the numerical results comes from the angular
locity profile of the initial conditions. Figure 3 indicates th
the degree of differential rotation att50 is reflected signifi-
cantly in the oscillation and evolution of the protoneutr
stars formed. The quantitative differences are summarize
follows: ~i! the time at the bounce,tb , for models C1 and C2
is slightly larger than that for models B1 and B2, respe
tively; ~ii ! the maximum value of the central density fo
models C1 and C2 is slightly smaller than that for models
and B2, respectively;~iii ! the amplitude of the oscillation o
the central density and central value of the lapse function
the ring-down phase are larger for models C1 and C2. T
results~i! and~ii ! are simply due to the fact that the centrifu
gal force around the central region for models C1 and C2
slightly larger and plays a stronger role in halting the c
lapse. The result~iii ! indicates that a small increase of th
angular velocity around the central region in the initial co
dition can significantly modify the evolution of the centr
density. All the results~i!–~iii ! also show that the oscillation
of the central density of the protoneutron stars formed
pends strongly on the initial angular velocity profile.

The effects of differential rotation of the initial conditio
are also reflected significantly in the shape of the form
protoneutron stars. In the collapse of a rigidly rotating p
FIG. 6. The same as Fig. 5 but for model C1. The contour curves are drawn forr/rnuc5331020.4j , with j 50,1,2, . . . ,15.
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GRAVITATIONAL WAVES FROM AXISYMMETRIC . . . PHYSICAL REVIEW D 69, 084024 ~2004!
genitor, the protoneutron star formed has a slightly n
spherical shape~see Fig. 5!. On the other hand, in the co
lapse of a differentially rotating progenitor, a protoneutr
star of a flattened and nonspherical shape is the outcome~see
Fig. 6!. This difference results from the fact that the inn
region is more rapidly rotating in the case of the differe
tially rotating progenitor. It is worthy of note that the valu
of T/W for model A is about 1.6 times as large as that
model C. However, the angular velocity at the rotational a
for model A is about half of that for model C. Thus,T/W
alone is not a good indicator for measuring the significa
of the centrifugal force in rotating stellar core collapses~nor
is the nondimensional angular momentum parameterJ/M2).
Obviously, the local distribution of the angular momentu
plays a more important role for determining the shapes of
formed protoneutron star and shocks.

Convergence of the numerical results is achieved wel
the present computation. In Figs. 1~d!, 3~a!, and 3~b!, we
show the numerical results with a low grid resolution f

TABLE IV. Comparison between the present~upper! and previ-
ous numerical results by Dimmelmeieret al. ~lower!. The time at
bounce, the maximum density achieved, and the maximum am
tude of gravitational waves are shown for the two numerical resu

Model tb rmax (g/cm3) (rh1)max ~cm!

A1 69.5 4.12 561
A1B3G2 69.5 4.02 469
A2 48.7 4.28 215
A1B3G3 48.6 4.23 180
A3 30.3 4.98 32.7
A1B3G5 30.2 4.55 33.9
B1 69.8 3.93 731
A3B2G2 69.5 4.10 596
B2 39.3 3.92 182
A3B2G4 39.3 4.05 141
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models A1, B1, and B2~dotted curves!. It is found that the
evolution of the central density and the central lapse in
low-resolution simulation agrees with that in the hig
resolution one within a small error~except for very late times
for which the numerical error seems to be accumulated
the low-resolution simulation!. This indicates that the grid
resolutions adopted in the present numerical simulation
fine enough to yield a convergent numerical result.

2. Comparison with previous work

Here, we compare the numerical results for models A
A2, A3, B1, and B2 with those for models A1B3G2
A1B3G3, A1B3G5, A3B2G2, and A3B2G4 in@10#, respec-
tively. For these models, both groups adopt almost ident
initial conditions.

Table IV shows the time at achievement of maximu
density, the maximum density, and the maximum amplitu
of gravitational waves for the numerical results computed
the two groups. In Fig. 7, we also compare the evolution
the central density. It is found that the numerical results
the two groups agree within a small error for both models
and B. Only for model B1 does the time at achievement
maximum density slightly disagrees with that for A3B2G
by ;0.3 ms, but apart from this disagreement, the shape
rc as a function of time agrees well in both simulations ev
in this case. Recall that in@10# the conformal flatness ap
proximation to the Einstein equation is adopted, while o
results are fully general relativistic. This indicates that t
conformal flatness approximation is a good approximate
mulation of general relativity for computing axisymmetr
rotating stellar core collapse to a neutron star.

In a precise comparison, the following small systema
disagreements between the two results should be also
dressed:~i! the maximum density achieved in our results
slightly larger for model A and slightly smaller for model B
~ii ! the time at maximum density is slightly delayed in o
results, and this tendency is stronger for larger values ofG1

li-
s.
FIG. 7. Comparison between the evolution of the central density computed in this paper~solid curves! and by Dimmelmeieret al.
~dashed curves! ~a! for models A1–A3 and~b! for models B1 and B2.
4-9
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M. SHIBATA AND Y. SEKIGUCHI PHYSICAL REVIEW D 69, 084024 ~2004!
~i.e., for longer infall times!; ~iii ! for larger values ofG1, the
central density in the relaxed final stage is slightly smalle
our results.

It is difficult to specify the particular reason for thes
disagreements. There are several plausible candidates.
the computational settings are different between two grou
In our simulation, we adopted a uniform grid changing t
grid spacing and grid number, while in@10#, 200 radial grid
points with a logarithmic grid spacing were taken through
the simulation. In our case, the grid spacing is smaller t
0.5 km in the bounce and ring-down phases, although
larger than 0.5 km in the infall phase. On the other hand,
minimum grid spacing is about 0.5 km in@10# for all the
phases. These differences may yield the disagreements
tually, we find that varying the grid resolution results in
small change of the time at the achievement of maxim
density for models A1 and B1@cf. Figs. 1~d! and 3~a!#. Sec-
ond, the slicing condition is slightly different between th
two groups. In@10#, the maximal slicing conditionKk

k50
was adopted, while in our numerical simulation, the con
tion is only approximately satisfied@16#: The equationsKk

k

505] tKk
k lead to an elliptic-type equation fora. In the

exact maximal slicing condition, this equation is iterative
solved until a convergence is achieved. In our case, we
the iteration before complete convergence is achieved to
computational time. Thus,Kk

k'0. This difference may re-
sult in a systematic deviation of the coordinate time at
maximum density. Third, the initial conditions adopted
the two groups are not completely identical, since the eq
librium rotating stars for the initial conditions are comput
with different numerical implementations. The values
T/W and Â may well have disagreements of magnitu
&1%. This may affect the subsequent numerical evolut
slightly.

On the other hand, the difference between the formu
tions adopted for the gravitational field is unlikely to be t
reason for the disagreement. This is because the deviatio
the conformal metricg̃ i j from d i j is very small~typical ab-
solute magnitude is of order;1023 for each component! in
our numerical results. Therefore, we infer that the magnit
of the systematic error due to the conformal flatness appr
mation seems to be smaller than that due to other reaso

B. Gravitational waveforms

1. General feature

The gravitational waveforms are computed in terms of
quadrupole formula described in Sec. II C. Since fully ge
eral relativistic simulations are performed, the gravitatio
waves should be computed from the metric in a wave zo
However, we have found that this is not possible, since
amplitude is smaller than the numerical noise. An estim
by the quadrupole formula indicates that the maximum a
plitude of gravitational waves is smaller than 1025 in the
local wave zone forr;l, wherel denotes the wavelength
which is typically several hundred kilometers.

As illustrated in a previous paper@12#, approximate gravi-
tational waveforms can be computed in terms of a quad
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pole formula for highly relativistic, highly oscillating, an
rapidly rotating neutron stars. In rotating stellar core c
lapses to a neutron star, gravitational waves are domina
emitted during the bounce and ring-down phases. S
gravitational waves are excited by the oscillations of
formed protoneutron star. Thus, it is likely that the pres
approach can yield high-quality approximate gravitation
waveforms in addition to possible underestimation of t
amplitude by;10% due to the absence of higher gene
relativistic corrections.

Figures 8~a!–8~d! show gravitational waveforms fo
model A with various sets ofG1 , G2, and G th . The wave-
forms for models A1, A2, A4, A5, and A6 are classified
type I according to Dimmelmeieret al. @10#. The properties
of type I gravitational waveforms can be summarized as
lows. During the infall phase, a precursor whose amplitu
and characteristic frequency increase monotonically w
time is emitted due to the infall and the flattening of t
rotating core. The duration of the infall phase is*40 ms and
longer than the dynamical time scale defined att50 as
rc

21/2;40 ms. In the bounce phase, spiky burst waves
emitted for a short time scale;1 ms, and the amplitude an
frequency of the gravitational waves become maximum.
the ring-down phase, gravitational waves associated w
several oscillation modes of a formed protoneutron star
emitted and their amplitude is gradually damped due
shock dissipation at the outer edge of the protoneutron s

For model A3@see Fig. 8~c!# for which the simulation is
performed with a small value ofG1, 1.28, the waveforms are
qualitatively different from those for the other simulations:
sharp and distinguishable peak is not found at the boun
Soon after the precursor is emitted during the infall pha
the ring-down waveforms appear to be excited. An outsta
ing feature is that the amplitude in this case is much sma
than that forG151.31 and 1.32 although the wavelength
not significantly different from those for other models. A
cording to @10#, this type of waveform is classified as typ
III.

In Fig. 8~a!, the waveforms for models A1, A4, and A
are presented. For these models, we adoptG151.32 andG2
52.5, so that only the value ofG th is different. In the infall
phase, the waveforms for the three models are very sim
This is natural because, as long as the density is smaller
rnuc, the magnitude ofPth is much smaller than that of th
cold part. Clear differences in the wave phase, wavelen
and amplitude are observed in the bounce and ring-do
phases. The reasons for them are explained as follows.
smaller magnitude ofPth results in a slightly shorter infal
time as reflected in the time at which the amplitude becom
maximum. As a consequence, a difference of the wave ph
is yielded. Stronger shock heating, which generates la
thermal energy, also results in smaller compactness of
protoneutron stars formed. This leads to the results that,
larger values ofG th , the gravitational wavelength, which i
general increases with the stellar radius for a given ma
becomes longer, and the amplitude, which is larger for str
ger shock heating, is larger.

A slight change of the value ofG1, which determines the
dynamics of the infall phase, significantly modifies the gra
4-10
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GRAVITATIONAL WAVES FROM AXISYMMETRIC . . . PHYSICAL REVIEW D 69, 084024 ~2004!
tational waveforms. Comparison among Figs. 8~a!–8~c!
clarifies that with decrease of the value ofG1 the amplitude
of the gravitational waves decreases systematically. The
son for this is explained as follows. For smaller values ofG1,
the central region collapses more rapidly than the outer
gion does. This results in a smaller core mass at the bou
for smaller values ofG1. The amplitude of gravitationa
waves increases with increase of the core mass for a fi
value of the density and, therefore, it is smaller for sma
values ofG1.

In Fig. 8~d!, we compare the waveforms of different va
ues ofG2 with fixed values ofG1 andG th . It is found that the
difference of the waveforms between the two models app
only in the bounce and ring-down phases. This is natu
because the value ofG2 does not affect the infall phase an
mainly determines the equations of state and the radius~or
compactness! of the protoneutron stars formed. Recall tha
smaller value ofG2 results in a larger compactness of t
protoneutron star. This fact is reflected in the slightly shor
wavelength and larger amplitude of gravitational waves
the ring-down phase for smaller values ofG2.

Figure 9 displays gravitational waveforms for model
As in the case of model A, the waveforms are divided in
three parts~precursor, spike, and ring-down!, but the quali-
tative features of the ring-down waveforms between mod
A and C are different. For example, compare the wavefo
for models A1 and C1 for which the values ofG1 , G2, and
G th are identical. For model A1, the waveforms are mod
lated only in the early ring-down phase~e.g., for t
;70–73 ms). In the late ring-down phase~e.g., for t
*73 ms for model A1!, they are fairly periodic and appear t
be composed mainly of one or two eigen oscillation mod
of the protoneutron star formed. On the other hand,
model C1, the waveforms are not very periodic and hig
modulated throughout the ring-down phase. In this case,
eral eigenmodes of the formed protoneutron star appea
constitute gravitational waveforms. Such modulated wa
forms are likely to be due to the fact that the protoneut
star is rapidly and differentially rotating and the oscillatio
modes are excited in a complicated manner at the boun

In Fig. 9~a!, we compare the waveforms of different va
ues ofG th with fixed values ofG1 andG2. As in Fig. 8~a!, for
smaller values ofG th , the maximum amplitude is reached
an earlier time, the wavelength during the bounce and ri
down phases is longer, and the amplitude is smaller. Th
are universal features independent of the initial rotatio
velocity profiles. However, in contrast to Fig. 8~a!, the wave-
forms in the ring-down phase for models C1 and C4 are
very similar. Thus, a small change ofG th from 1.35 to 1.5
significantly modifies the ring-down waveform in the case
differentially rotating initial velocity profiles.

In Fig. 9~b!, we compare the waveforms of different va
ues ofG2 with fixed values ofG1 andG th . In contrast to Fig.
8~d!, the maximum amplitude of gravitational waves
nearly identical for the two models. This suggests that
halting the infall, the centrifugal forces may play an impo
tant role in hiding the effects of the difference in the value
G2. The difference of the ring-down waveforms between
two models is qualitatively the same as that found in F
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8~d!: For smaller values ofG2, the wavelength and ampli
tude of gravitational waves in the ring-down phase a
slightly shorter and larger, respectively.

In Fig. 9~c!, the waveform for model C2 is displayed. Th
should be compared with the solid curve in Fig. 9~a! @or
9~b!# for model C1 at a different value ofG1. Comparison
between the two waveforms shows that with a decreas
the value ofG1, the wave amplitude at the bounce and rin
down phases decreases. This property agrees with that fo
for model A and is likely to be independent of the initi
rotational velocity profiles.

To see the effect of a slight change of the different
rotation parameterÂ, we compare the waveforms of mode
B1 ~solid curve! and C1~dot-dashed curve! in Fig. 9~d!. The
two waveforms are qualitatively similar, but for model C
the amplitude is larger and more modulation of the amplitu
is induced. This illustrates that, with a slight modification
the initial rotational velocity profile, the resulting gravita
tional waveforms are modified significantly.

Figure 10 shows the gravitational waveform for model
In this model, the collapse does not lead to a quasistation
protoneutron star ofrc.rnuc. Instead, a quasiradially oscil
lating star of subnuclear density is formed, and theref
quasiperiodic waves of a long period;10 ms are emitted.
According to@10#, this is classified as a type II waveform.

Convergence of the numerical results appears to
achieved. In Fig. 11, we display the numerical results w
high and low grid resolutions for models A1 and B1. Th
grid spacing in the low grid resolution is about 5/3 as large
that in the high case. It is found that the computed grav
tional waveforms depend only weakly on the grid resoluti
in our choice of grid spacing. We conclude that the g
resolution we choose in this work is fine enough to comp
convergent gravitational waveforms.

2. Comparison with previous work

Here, we compare the gravitational waveforms compu
in this paper with those in@10# for models A1, A2, A3, B1,
and B2. Figures 12 and 13 show the gravitational wavefor
computed by us~solid curves! and by Dimmelmeieret al.
@10# ~dashed curves!. It is found that the waveforms in the
infall phase agree very well with each other. In the boun
phase, on the other hand, the amplitude of our result
larger than that in@10# by ;20% for models A1, A2, B1, and
B2, although they still agree qualitatively. The disagreem
is outstanding in the ring-down phase. The amplitudes
gravitational waves in the ring-down phase for models A
A2, B1, and B2 are larger than those in@10# by a factor of
;2. Moreover, in our results, the oscillations with a nea
constant amplitude continue for several oscillation perio
~*10 ms!. This is not the case in the results of@10#, in which
the amplitude is damped within several milliseconds.

This could be partly due to the differences in grid reso
tion or slicing conditions adopted by the two groups as m
tioned in the previous section. However, the main reaso
likely that the quadrupole formulas adopted by the tw
groups are not identical. In the quadrupole formula we ado
a quadrupole moment is simply defined using a weigh
rest-mass densityr and then the second time derivative
*
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FIG. 8. Gravitational wave-
forms for model A:~a! models A1
~solid curve!, A4 ~dot-dashed
curve!, and A5~dotted curve!; ~b!
model A2;~c! model A3;~d! mod-
els A6 ~solid curve! and A1 ~dot-
dashed curve! grid resolutions.
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taken with no approximation. In@10#, on the other hand, the
quadrupole moment is defined usingr and, in addition, when
taking the second time derivative, the authors discard hig
relativistic terms, keeping only the lowest-order po
Newtonian terms.

This disagreement raises a question: What is a good q
rupole formula in general relativistic simulations? An exc
lent quadrupole formula should yield a high-quality appro
mate waveform for the true one computed from the metric
the wave zone. Thus, to answer the question, it is neces
to compare the gravitational waveforms computed by
quadrupole formula with those extracted from the metric.
@12#, we calibrated the waveforms by performing simulatio
for highly relativistic, highly oscillating, and rapidly rotatin
neutron stars withM /R;0.2 andv/c;0.3 and found that
our quadrupole formula yields well-approximated wav
forms; the wave phases agree well with those computed f
the metric and the wave amplitude is computed within
error of magnitude ofO(M /R) or O(v2/c2). We believe that
the waveforms presented in this paper are well-approxima
ones in phase and within;10% error in amplitude. On the
other hand, the quadrupole formula adopted in@10# has not
been calibrated, since the authors adopted the conformal
ness approximation in which gravitational waves cannot
extracted from the metric. Thus, it is not clear how go
their quadrupole formula is. Since the amplitudes compu
by our quadrupole formula are underestimated by;10% and
the amplitudes computed in@10# are smaller than ours, grav
tational waveforms presented in@10# may contain an error o
magnitude more than 10–20 %.
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V. SUMMARY

We performed axisymmetric numerical simulations of r
tating stellar core collapses to a neutron star in full gene
relativity, paying particular attention to gravitational wav
forms and to comparison of our results with previous resu
@10#. The Einstein field equations are solved in Cartes
coordinates imposing an axisymmetric condition by the C
toon method@22#. The hydrodynamic equations are solved
cylindrical coordinates~with the Cartesian coordinates re
stricted to they50 plane! using a high-resolution shock
capturing scheme with the maximum grid size (2500,250
A parametric equation of state is adopted to model collaps
stellar cores and the protoneutron stars formed, follow
Dimmelmeieret al. @10#. Gravitational waveforms are com
puted using a quadrupole formula proposed in@12#.

We choose moderately rapidly rotating stars as the ini
conditions for which the value ofT/W is between 0.005 and
0.01. Simulations are performed changing three parame
(G1 , G2, andG th) which characterize the equation of stat
The dynamics of the collapse depends on the three par
eters as well asT/W and Â of the initial condition. The
dependence of the evolution of the system and gravitatio
waveforms on these five parameters is studied. The valu
G1 mainly determines the duration of the infall phase and
coherence of the early phase of the collapse. For the sm
value ofG1, the infall time becomes shorter and the collap
is accelerated more in the central region. The result is
the core mass at the bounce is smaller and that the magn
of Fc ~which may be regarded as the depth of the grav
4-12



GRAVITATIONAL WAVES FROM AXISYMMETRIC . . . PHYSICAL REVIEW D 69, 084024 ~2004!
FIG. 9. Gravitational wave-
forms for model C:~a! models C1
~solid curves! and C4 ~dashed
curves!; ~b! models C1 ~solid
curves! and C3 ~long-dashed
curves!; ~c! model C2;~d! models
B1 ~solid curve! and C1 ~dot-
dashed curve!.
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tional potential! at the bounce is smaller for smaller values
G1. The amplitude of the gravitational waves also becom
smaller for smaller values ofG1.

The value ofG2 determines the equation of state for t
protoneutron stars formed. Thus, it does not affect the e
lution during the infall phase. It determines the final value
the central density of the formed protoneutron star and
gravitational waveforms emitted during the ring-down pha
in which the eigen oscillation modes of the protoneutr
stars are excited. The value ofG th determines the strength o
the shock waves. We choose this value as 1.35, 1.5, and
extending the work by Dimmelmeieret al. @10#. It is found
that for smaller values of this parameter the shock hea
becomes weaker and the amplitude of gravitational wa
smaller.

The values ofT/W andÂ play a significant role in deter
mining the dynamics of collapse and the correspond
gravitational waveforms in particular in the bounce and rin
down phases. For the rigidly rotating case (Â→`), the
maximum value ofT/W is '0.009, which we choose in thi
paper. Even in this maximum case, the collapse leads
neutron star irrespective of the values ofG1 , G2, andG th .
This indicates that for rigidly rotating initial conditions neu
tron stars are formed soon after the collapse, irrespectiv
the angular velocity of the initial condition, with our choic
of the equations of state. For the differentially rotating ca
with Â51/4, the collapse does not lead to a neutron star
an oscillating star of subnuclear density is formed forT/W
*0.01 since the centrifugal force is strong enough near
rotational axis. As shown in@10#, more rapidly rotating ini-
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tial conditions withT/W@0.01 may be constructed. For suc
high values ofT/W, a neutron star will not be formed soo
after the collapse.

With a slight change ofÂ from 0.25 to 0.32 for the initial
condition, the angular velocity at the rotational axis
changed by a large factor even ifT/W is approximately iden-
tical. As a result of this change, the subsequent evolution
the collapse and gravitational waveforms in the bounce
ring-down phases is modified significantly. This implies th
the dynamics of rotating stellar core collapses and the co
sponding gravitational waveforms are sensitive not only
the equation of state but also to the initial angular veloc
profile.

FIG. 10. Gravitational waveforms for model D.
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FIG. 11. Gravitational wave-
forms~a! for model A1 and~b! for
model B1 with high~solid curve!
and low ~dashed curve! grid reso-
lutions.
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Several simulations are performed, setting the same in
conditions as those adopted in@10#. It is found that the dy-
namics of the collapse and the bounce for such initial con
tions are very similar to those found in@10#, in which an
approximate general relativistic gravity~the conformal flat-
ness approximation! is assumed. This indicates that such
approximate relativistic formulation is appropriate for com
puting axisymmetric rotating stellar core collapses and
subsequent formation of protoneutron stars.~Note that this is
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the conclusion for the formation of neutron stars. This m
not be the case for black hole formation.!

Gravitational waveforms are compared with a previo
result@10#. It is found that the waveforms are in good agre
ment qualitatively but not quantitatively with those in@10#.
Either of two plausible elements could explain this disagr
ment. One is that the grid resolution and computational s
ting are different between the two groups. This could mod
the waveforms slightly. However, the main reason seem
FIG. 12. Comparison between gravitational waveforms computed in this paper~solid curves! and by Dimmelmeieret al. ~dashed curves!
for models A1–A3@~a!–~c!#.
4-14



GRAVITATIONAL WAVES FROM AXISYMMETRIC . . . PHYSICAL REVIEW D 69, 084024 ~2004!
FIG. 13. The same as Fig. 12 but for models B1 and B2@~a! and ~b!#.
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be that the quadrupole formulas adopted by the two gro
are different. As mentioned in the previous section, there
no unique definition of the quadrupole formula for dynam
cal spacetimes in general relativity. This implies that wh
one attempts to use a quadrupole formula in a relativi
simulation, one needs to calibrate the formula in advance
performing a fully general relativistic simulation and b
comparing the waveforms computed by the quadrupole
mula with those computed from the metric. The quadrup
formula adopted in our study has been calibrated in sim
tions for highly relativistic, highly oscillating, and rapidl
rotating neutron stars@12#. Thus, we believe that the quad
rupole formula adopted in this paper is appropriate and
the numerical results presented here are approximate s
tions of high quality.

In this paper, we focused on neutron star formation and
a comparison with previous work@10#. If a more massive
progenitor is chosen as the initial condition, a black hole w
be formed instead of a neutron star. The formation of bla
holes and corresponding gravitational waves have been s
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