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Axisymmetric numerical simulations of rotating stellar core collapse to a neutron star are performed in the
framework of full general relativity. The so-called Cartoon method, in which the Einstein field equations are
solved in Cartesian coordinates and the axisymmetric condition is imposed around Ghplane, is adopted.

The hydrodynamic equations are solved in cylindrical coordin@eshey=0 plane in Cartesian coordinajes

using a high-resolution shock-capturing scheme with maximum grid size (2500,2500). A parametric equation
of state is adopted to model collapsing stellar cores and neutron stars following Dimmelmeier, Font, and
Muller. It is found that the evolution of the central density during the collapse, bounce, and formation of
protoneutron stars agrees well with that in the work of Dimmelmeier, Font, arMu which an approxi-

mate general relativistic formulation is adopted. This indicates that such an approximation is appropriate for
following axisymmetric stellar core collapses and the subsequent formation of protoneutron stars. Gravitational
waves are computed using a quadrupole formula. It is found that the waveforms are qualitatively in good
agreement with those by Dimmelmeier, Font, andll®tu However, quantitatively, two waveforms do not
agree well. The possible reasons for the disagreement are discussed.
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[. INTRODUCTION In this paper, we study gravitational waves from rotating
stellar core collapses to a neutron star assuming axial sym-
Rotating stellar core collapse is among the most promismetry. The dynamics of the collapse is followed by a fully
ing sources of gravitational waves. To date, there has been r@gneral relativistic simulation. Gravitational waves are ap-
systematic work for the computation of the collapse to aProximately computed using a quadrupole formula adopted
neutron star and of the emitted gravitational waves in fulland tested if12]. The necessity of adopting quadrupole for-
general relativity(but see[1]). Gravitational waves associ- mulas arises from the ffi\gt.that the amplitude of gravitational
ated with the formation of rotating neutron stars have beeN/aves is too small{ 10~ in the local wave zoneto accu-
widely computed in Newtonian gravity2—9] or in an ap- rately extract the waveforms from the raw data sets of the
proximate general relativistic gravift0] using the so-called metric. Although exact grawtahonal_waveforms cannot be
conformal flatness approximatiorfor Isenberg-Wilson- computed, the quad_rupole forml_JIa_|s a useful tool for_ ap-
Mathews approximatiopl1]). As indicated in[10], the gen- pr_oxmate computatlon of gra\{ltat!onal waves associated
h ; . ' with matter motion such as oscillations of neutron stars, as
eral relativistic effects modify the dynamics of the coIIapsein dicated in[12]
ant_j ¢ orrgspondmg gray|tat!onal waveforms s_,lgmﬁ_cantly. Recently, gravitational waves from axisymmetric rotating
This implies that simulation in full general relativity is the

, D tellar core collapses have been extensively computed in a
best approach for an accurate computation of gravitationgly|tivistic manner by Dimmelmeieet al. [10]. As men-

waves. tioned above, they determine the gravitational fields by
During stellar core collapse to a neutron star, the Chara“adopting an approximate formulation of the Einstein equa-
teristic radius changes from the initial stellar core radiustion. The approximation is likely to be applicable to a mod-
~2000 km to the neutron star radius10 km. Adopting a  erately relativistic and stationary spacetime such as that for a
uniform and fixed grid with a grid spacing of1 km, the  rapidly rotating neutron stdf.3]. However, no-one has clari-
required grid number for the simulation is more than 2000fied whether this is the case for dynamical spacetimes. To
for one direction. With current computational resources, it isconfirm that their treatment is indeed appropriate, it is nec-
very difficult to take such a huge number of grid points inessary to compare their solutions with fully general relativ-
three-dimensional simulations. If the progenitor of the neu-stic ones for a calibration. One of the purposes in this paper
tron star is not very rapidly rotating, nonaxisymmetric insta-is to examine whether the numerical solution for the stellar
bilities will not set in and the collapse will proceed in an core collapse computed ii0] is a well-approximated one
axisymmetric manner. By restricting our attention to axisym-for a fully general relativistic solution.
metric spacetimes, the grid resolution can be improved sig- In [10], gravitational waveforms were computed in terms
nificantly for a given computational resource. Thus, as a firsbf a quadrupole formula. In general relativity, there is no
step, it is better to perform axisymmetric simulations than tounique definition of the quadrupole moment, nor is the quad-
do nonaxisymmetric ones for a well-resolved and convergentupole formula, for axisymmetric dynamical spacetimes. The
computation of the collapse, bounce, and correspondingccuracy of gravitational waveforms depends on the choice
gravitational waveforms, focusing only on the moderatelyof the quadrupole formula and the gauge conditions. Thus, to
rapid rotation case. know how accurately the approximate gravitational wave-
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forms can be computed by the chosen quadrupole formula, a

calibration is required by comparing the resulting waveforms M, = f d*xp, , 2

with those computed from the metric as we did 12]. Un-

fortunately, this calibration was not possible 0] since the

authors adopted an approximate general relativistic formula- J:f d3Xp*LAJ(p. ©)

tion for the gravitational field in which the metric does not

carry any information about gravitational waves. Conse- o ] ]

quently, it is not clear whether the quadrupole formula theyTh_e general relat|V|s_t|c hydrodynamlc equations are solved
adopted can actually yield accurate approximate gravita¥Sing a so-called high-resolution shock-capturing scheme
tional waveforms and how large the magnitude of the errof15.14 on they=0 plane with the cylindrical coordinates
is. On the other hand, in a previous pap&z], we did such  (X.2) (in Cartesian coordinates witf=0).

a calibration for a quadrupole formula which is different The fundamental variables for the geometry are

from that in[10], and showed that it is possible to compute

gravitational waves from oscillating and rapidly rotating neu- a, lapse function,
tron stars of high values of compactness fairly accurately, in
addition to possible systematic errors for the amplitude due B%, shift vector,

to neglecting post-Newtonian corrections. By computing
gravitational waveforms by the calibrated quadrupole for-
mula and comparing the results with the previous ones, we
estimate the accuracy of the waveforms computeld@j.

¥ij,» metric in the three-dimensional spatial hypersurface,

This paper is organized as follows. In Sec. Il, our numeri- y=e'?’=de(y),
cal implementations for a general relativistic simulation in
axial symmetry are briefly reviewed. In Sec. IIl, the initial Vij=e Yy,
condition and computational setting are described. Section
IV presents the numerical results. Section V is devoted to a Ki;, extrinsic curvature. (4)

summary. Throughout this paper, we adopt geometrical units
in which G=c=1, whereG andc are the gravitational con-

o/l AN = 4O(K..—~ KK
stant and the speed of light, respectively. We evolvey;, ¢, Aj=e "7(K;; ~y;jK), and the trace of

the extrinsic curvaturi X together with three auxiliary func-
tions F;= "4, with an unconstrained free evolution code
II. NUMERICAL IMPLEMENTATION as in[16,18-20,17,1}

The Einstein equations are solved in Cartesian coordi-
nates. To impose axisymmetric boundary conditions, the Car-
We perform fU”y general relativistic simulations for rotat- toon method is use(ﬂ22]: Assuming reflection symmetry
ing stellar core collapse in axial symmetry using the sameyith respect to the equatorial plane, simulations are per-

formulation as in[14], to which the reader may refer for formed using a fixed uniform grid with the grid si2éx 3
details and baSi_C equations. The fundamental variables fOf( N in (X,y,z) which covers a Computationa' domain such as
the hydrodynamics are 0<x<L, O<z<L, and—A<y<A. Here,N andL are con-
stants and\ =L/N. In the Cartoon method, the axisymmet-
ric boundary conditions are imposedyat = A.

As the time slice, we impose an “approximate” maximal

A. Summary of formulation

p, rest mass density,

&, specific internal energy, slicing condition in whichK *~0 is required[16]. As the
spatial gauge, we adopt a dynamical gauge condjdhin
P, pressure, which the equation for the shift vector is written as
k_ =K
u:U«' four-ve'ociw' atﬁ =Y (Fl + At&tFl)! (5)

whereAt denotes the time step in numerical computation.
1) During the numerical simulations, violations of the

Hamiltonian constraint and conservation of mass and angular

momentum are monitored as code checks. Numerical results
where the subscrifitdenotes spatial componentsy, andz, for several test ca_llculations, in_cluding the stability and col-
and u, the spacetime components. As the variables to béapse_of n_onrotatmg and rotating neutron stars, have been
evolved in the numerical simulations, we define a weightediescribed ir{14]. N B
density p, (=pau'e®®) and a weighted four-velocity[ An outgoing wave boundary condition fé; , h;;(=%;
=(1+e+P/p)u;]. From these variables, the total baryon —d;;), and A;; is imposed at the outer boundaries of the
rest mass and angular momentum of the system, which agomputational domain. The condition adopted is the same as
conserved quantities in axisymmetric spacetimes, can be déhat described i 20]. Kkk is set to be zero at the outer
fined as boundaries.

i dx U
pi=— = —

dt u
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B. Equations of state degenerate pressure is approximated W2B|. Here, K
4/3-T
A parametric equation of state is adopted followingand K, are related byK;=Kop,~ "* where we setp,

Muiller and collaborator§s,10]. In this equation of state, one =1 gl/cnt.
assumes that the pressure consists of the sum of polytropic

and thermal parts as C. Quadrupole formula
P=Pp+Py. (6) In the present work, gravitational waveforms are com-
) o puted using a quadrupole formylB2]. In quadrupole formu-
The polytropic part is given bPp=Kp(p)p' ¥ whereKp |as, gravitational waves at null infinity are calculated from
andI” are not constants but functions ef In this paper, we

follow [10] for the choice oK(p) andI'(p): For a density ool 2 d*k,

smaller than the nuclear density, which is definedpas. hiy=P;Pj\ ———1, (11)
=2X10"g/cn?, T'=T; (=const) is set to bes4/3, and dt

for p=pnue, I'=T, (=const=2. Thus,

where £;; and P,-j= 5,-j—n,-nj (n'=x'/r) denote a trace-free
Kol - quadrupole moment and the projection tensor. From this ex-
= lpr o P=Prue (7)  pression, the + mode of gravitational waves with /=2 in
Kop' 2, p=pnyc axisymmetric spacetimes is written as

whereK; andK, are constants. Sind®, should be continu-
ous, the reIationK2=K1p£&C_F2 is required. Following
[6,10], the value ofK; is fixed to 5x 10" cgs units. With
this choice, the polytropic part of the equation of state for
pP<pnuc, IN which the degenerate pressure of electrons isvherel;; denotes a quadrupole momethy, its second time
dominant, is approximated well. Since the specific internaderivative, and,, a retarded time.

energy should be continuous @t pp,., the polytropic spe- In fully general relativistic and dynamical spacetimes,
cific internal energyp is defined as there is no unique definition for the quadrupole moment, nor

for 'I'ij . Following a previous papéf.2], we choose the sim-

hiuad: Ixx(tret)zlzz(tret) sin20, (12)

K . .
rl—llprrl’ P<Prucs plest definition as
Ep= r\-1
K, (I'2=TKyp f iy
r,-1 nuc =p . li= x'xId3x. 13
I,2_1p + T—D(T,—1) P= Pruc ij P (13

)

With this setting, a realistic equation of state for high-
density, cold nuclear matter is mimicked.

Then, using a continuity equation of the form

The thermal part of the pressui®y,, plays an important dips+ i (pev') =0, (14
role in the case that shocks are generagglis related to the
thermal energy densityy,=¢ —&p as the first time derivative can be written as
Pn="n—1)pep. 9
.= ined 4 sy iy 43
Following [10], the value ofI'y,, which determines the i fp*(v X xl)dx. (15

strength of shocks, is chosen as 1.5 for most simulations in
this paper. Extending the previous wda0], for a few mod-
els, we setl’y,=1.35 or 5/3 to investigate the effect of the ij s
shock heating at the bounce phase and resulting gravitationkj is carried out.
waveforms. As indicated in[12], it is possible to compute gravita-
Simulations are initiated in the following manner. First, tional waves from oscillating and rapidly rotating neutron
equilibrium rotating stars with & = 4/3 polytrope are given. stars of high values of compactness fairly accurately with the
Then, to induce the collapse, we slightly decrease the valupresent choice of;;, in addition to possible systematic er-
of the adiabatic index frorl = 4/3 toT';<4/3. The equilib-  rors for the amplitude of ordeM/R or v?/c?, whereM, R,
rium states are computed with the polytropic equation ofandv denote the gravitational mass, the equatorial circum-
state as ferential radius, and the radial velocity of the collapsing star
and/or formed neutron stars. In stellar core collapsék;?
P=Kop*?, (10)  is at most~0.1, and the outcomes are protoneutron stars of
M/R~0.1. Thus, it is likely that the wave amplitude is com-
where, following[10], K, is set to be 5 10" cm?/s*/g"?,  puted within~10% error. The wave phase will be computed
with which a soft equation of state governed by the electrorvery accurately as indicated ji2].

To computd ;; , finite differencing of the numerical result for
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TABLE I. Central density, baryon rest mass, Arnowitt-Deser-Misner mass, equatorial circumferential radius, ratio of the rotational kinetic
energy to the potential energy, nondimensional angular momentum parameter, central value of the lapse function, angular velocity at the
rotational axis, andh of rotating stars chosen as initial conditions for stellar core collapse simulations.

Model pe(glent) M, (Mg) M(Mg) R (km) TIW JMm? . Q, (119 A
A 1.00x 10'° 1.503 1.503 2267 8.9410°° 1.235 0.994 411 o0
B 1.00x 10 1.485 1.485 1576 5.0010 2 0.839 0.994 6.49 0.32
Cc 1.00x 10'° 1.488 1.488 1568 5.4410 2 0.841 0.994 8.45 1/4
D 1.00x 10 1.500 1.500 1571 1.0410°2 1.146 0.994 11.6 1/4
[l INITIAL CONDITION AND COMPUTATIONAL spherical shape and of a high value W [7]. It is also
SETTING known that rapidly rotating neutron stars of a high degree of

differential rotation is dynamically unstable against nonaxi-
symmetric deformatioKe.g.,[26] and references thergirilo
simulate the collapse with a high initial value @a/W, a
nonaxisymmetric simulation will be necessary. Since our at-
tention here is restricted to the axisymmetric case, we do not
choose such initial conditions.
Simulations are performed for four initial conditions
listed in Table I. Models A and B are almost the same initial
UtU¢=W§(Qa— ), (16) conditions as models A;BS and A3B2 ﬂmO]._(No_te that th_e
value of A for model B is~5x 10? km, which is approxi-
where (), denotes the angular velocity along the rotationalmately equal to that for model A3B2 {ri0].) Careful com-
axis, andw 4 is a constant. In the Newtonian limit, the rota- parison of the present numerical results with thosglby is

A rotating stellar core in equilibrium with thé&=4/3
polytropic equation of statgsee Eq.(10)] is given as the
initial condition for simulations. Following10], the central
density is chosen as.= 10 g/cn? irrespective of the ve-
locity profile.

The velocity profiles of equilibrium rotating stellar cores
are given according to the popular relatid@,25

tional profile is written as carried out using these two models. A variety of values of
Iy, I',, andl'y, are adopted to investigate the dependence of

mﬁ numerical results on the equations of stdfg:is chosen as

Q:Qam- (17 1.28,1.30, 1.31, and 1.3P, as 2 and 2.5, anfly, as 1.35,

1.5, and 5/3. The selected sets are listed in Table II.
Thus, w4 indicates the steepness of differential rotation. In 01[0)urlnr?13the coIIapgS, th(reﬁcentr_al_densuy increases from
this paper, we pick up the rigidly rotating case in which 10 g/CnT to ~5x 10" g/cnr. This implies that the char-
wy— (referred to as model Aand differentially rotating acteristic length scale of the system varies by a factor of
cases withA=w /R, =0.32 (referred to as model Band ~100. One of the computational issues in a stellar core col-
1/4 (referred?oma?s meo_(jeE C and IwhereR, is the coordi- lapse simulation is to guarantee numerical accuracy against a
nate radius at an equatorial sun:ace. In tehe rigidly rotatin significant change of the gharacteristic length scale._ln the
case, we chose the axial ratio of polar radius to equatori arly phase of the collapg@fall phase; see Sec. IV)iin

radius as 2/3. With this choice, the angular velocity at the:r hich it proceeds in a nearly homologous manner, we may

: ; : llow th I with a relatively small number of gri
equatorial stellar surface is nearly equal to the Keplerian Ve o the collapse with a refatively small number of grid

locity; namely, for the rigidly rotating case, a rapidly rotating points by moving the outer boundary inward while decreas-

initial condition with nearly maximum angular velocity is TABLE II. Selected sets of ;, I',, andTy,.
chosen. In the differentially rotating case, we chose stars
with ratio of the rotational kinetic energy to the gravita- Model I, I, |
tional potential energyV of ~0.005 and~0.01, where
Al 1.32 2.5 1.5
1 3 . A2 1.31 25 1.5
T= §J d*xp 0,02, (18) A3 1.28 2.5 15
A4 1.32 2.5 1.35
A5 1.32 2.5 5/3
W= f dSXp*(l'FS)_ M-+T. (19) A6 1.32 20 15
Bl 1.32 2.5 1.5
Here,W is defined to be positive. In Table |, several quanti- B2 1.30 25 15
ties for the models adopted in the present numerical compu- 1 1.32 25 1.5
tation are summarized. c2 1.30 25 15
For the differentially rotating case with a small value of c3 1.32 20 15
A(<1), it is possible to make equilibrium states WiFAW ca 1.32 2.5 1.35
>0.01. With such an initial condition, the collapsing stellar D 1.32 25 1.5

core often forms a differentially rotating star of highly non-
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TABLE Ill. The initial and final grid spacings and location of adopted. The regridding is carried out whenever the charac-

the outer boundaries along tikeand z axes for models A-D. The

units are kilometers.

AX L AX L
Model (initial) (initial) (final) (final)
A 3.775 2265 0.4719 1180
A (low resolution 6.292 2643 0.7865 1337
B 2.601 1613 0.3251 813
B (low resolution 3.902 1639 0.4877 829
C 2.613 1568 0.3267 817
D 2.617 1570 0.3271 818

teristic radius of the collapsing star decreases by a factor of a
few. At each regridding, the grid spacing is decreased by a
factor of 2. All the quantities in the new grid are calculated
using cubic interpolation. To avoid discarding the matter in
the outer region, we also increase the grid number at the
regridding, keeping a rule that the discarded baryon rest
mass has to be less than 3% of the total.

Specifically,N andL in the present work are chosen in the
following manner. First, we define a relativistic gravitational
potential ® .=1— a.(P.>0), which is~0.006 att=0 for
all the models chosen in this work. Sinde, is approxi-
mately proportional taVi/R, @;1 can be used as a measure
of the characteristic length scale for the regridding. Fitom

ing the grid spacing, without increasing the grid number by a=0 to the time at whichb.=0.025, we setN=620. Note
large factor. As the collapse proceeds, the central regiothat the equatorial radius is initially covered by 600 grid
shrinks more rapidly than the outer region does and, hence,@oints. At ®.=0.025, the characteristic stellar radius be-
better grid resolution is necessary to accurately follow such @omes approximately one-fourth of the initial value. Then
rapid collapse in the central region. On the other hand, th¢he first regridding is performed; the grid spacing is changed
location of the outer boundaries cannot be changed by a large half the previous one and the grid number is increased to
factor, to avoid discarding the matter in the outer envelopesN=1020. Subsequently, the value Mfis chosen in the fol-

To compute such a collapse accurately while saving CPUowing manner: for 0.025 ®.<0.05, we sefN=1020; for
time efficiently, a regridding technique as describef2ifj is
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FIG. 1. Evolution of the central density and the central value of the lapse function for mo@®IModels Al(solid curve, A2 (dashed
curve, and A3(dot-dashed curye (b) models Al(solid curve, A4 (dotted curve, and A5(dot-dashed curye(c) models Al(solid curve
and A6 (dotted curvg (d) model Al with high(solid curve and low (dotted curve grid resolutions.
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FIG. 2. (a) The same as Fig. 1 but for models Gblid curve$, C2 (dashed curvgsand C3(dot-dashed curves(b) The same as Fig.
1 but for models Cisolid curve$, C3 (dot-dashed curvésand C4(dotted curves

N=2500, and keep this number until the termination of theshortej as shown irf10]. We note that the dynamical time at

simulations since the maximum value ®f is at most 0.25. t=0 defined byp(jl’2 is ~38.7 ms. Thus, the duration may

In this treatment, the total discarded fraction of the baryorhe written ag(0.8-1.8p_ 2.

rest mass that is located outside new regridded domains is The second one is the bounce phase which sets in when

=3%. ) the densities around the central part exceed the nuclear den-
To check the convergence of the numenca] results,_wesity Pnuc: OF when centrifugal forces, which become stronger

also perform a few IS|muIat|ons using a onv grid resolutlonas the collapse proceeds due to angular momentum conser-

Sﬁgw??‘g I(II)) Ignotg%cilsjdf;%? ;’Oiluoeogﬂ&%i%nggdl\las vation, begin to dominate over the gravitational attraction

— 820" .for 0 OC&CD' sd 1 NzléOO' a.nd for 6 izd) ’ N force. At this phase, the inner core decelerates infall in about

’ ' emT ’ e a few milliseconds ¢ 10p;, Y. Because of its large inertia

=1700. o : :
Simulations for each model with the higher grid resolu-and large kinetic energy due to the infall, the inner core does

tion are performed for 60000—80000 time steps. The CPUO settle down to a stationary state immediately but over-
time required for one model is about 40—-70 h using eightShO(_)tS and bounces back, forming shocks at the outer edge of
processors of FACOM VPP 5000 at the data processing cebe inner core.

ter of the National Astronomical Observatory of Japan. The third one is the ring-down phase or the reexpansion
phase. If the centrifugal force is sufficiently small at the time

that the density of the inner core exceeds the nuclear density,
the bounce occurs when the central density reaches
A. Dynamics of the collapse ~(2-3)pn,c due to a sudden stiffening of the equation of
state. In this case, the inner core oscillates quasiradially for
about 10 ms and then settles down to a quasistationary state.
Figures 1-4 show the evolution of the central densityln the outer region, on the other hand, shock waves propa-
(hereafterp.) and the central value of the lapse function gate outward, sweeping materials which infall from outer
(hereaftera.) for models A—D. Figures 5 and 6 are snap- envelopes.
shots of the density contour curves and the velocity vectors If the angular momentum in the inner region is suffi-
of (v*,v?) on they=0 plane for models A1 and C1 at se- ciently large, the collapse is halted by the centrifugal force,
lected time slices around which shocks are formed. not by the sudden stiffening of the equation of state. In this
As described if10], rotating stellar core collapses can be case, the stellar core does not settle down to a quasistationary
divided into three phases. The first one is the infall phase, istate. Instead, it rebounds due to the centrifugal force and
which the core collapse proceeds from the onset of the graviexpands to be of subnuclear density. After the maximum ex-
tational instability triggered by the sudden softening of thepansion is reached, the core starts collapsing again. It repeats
equation of state due to the reduction of the adiabatic indexhe bounce, the expansion, and the collapse many times. Dur-
During this phase, the central densithe central value of ing each bounce, shocks are formed at the outer region of the
the lapse functionmonotonically increase@ecreasesuntil core, and the oscillation amplitude is damped gradually due
it reaches the nuclear density or the centrifugal force beto the shock dissipation.
comes strong enough to halt the collapse. The inner part of For models A-C, the centrifugal force is not strong
the core, which collapses nearly homologously, constitutegnough to halt the collapse and hence a protoneutron star of
the inner core. The duration of the infall phase in the presententral density larger than the nuclear density is formed irre-
work is between about 30 and 70 ms depending mainly ospective of the values df;, I',, andI'y, (see Figs. 1-80On
the value ofl"; (for the smaller value of ;, the duration is the other hand, for model D, the angular momentum is large

IV. NUMERICAL RESULTS

1. General feature
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FIG. 3. (a) The same as Fig. 1 but for model B1 with higolid curve and low (dotted curve grid resolutions. For comparison, the
results for model Cldashed curveare also shownb) The same a&) but for model B2 with high(solid curve and low(dotted curvegrid
resolutions and for model C@lashed curve

enough to halt the collapse and to prevent the inner core As Figs. 1a) and Za) indicate, the evolution of the cen-
being compact. As a result, the outcome is an oscillating statral density and the central value of the lapse function de-
of subnuclear densitisee Fig. 4. Since the amplitude of the pends strongly on the value &f;. For the smaller value of
oscillation decreases gradually, it will settle to a rotating stad’;, the depleted pressure &0 is larger. As a result, the
of subnuclear density eventually. The adiabatic constant ofollapse is accelerated more and the elapsed time in the infall
this star is=I"4, which is smaller than 4/3, the well-known phase is shorter. Also, since the depleted fraction of the pres-
critical value against gravitational collapse for sphericalsure is larger in the central region than in the outer region,
stars, and 1.329 which is an approximate critical value fotthe collapse in the central region proceeds more rapidly. This
rigidly rotating stard28]. This indicates that the centrifugal results in a less coherent collapse for the smaller valug of
force created by a rapid and differential rotation plays anThis effect makes the mass of a protoneutron star at its for-
essential role for stabilization against gravitational collapsemation smaller and is reflected in the value @f in the
According to[29], the criterion of stability for slowly rotat- ring-down phase, which depends on the compactness of the
ing stars is given by protoneutron star. On the other hand, the final valug of
depends only weakly on the value Bf. This indicates that
T M for the smaller value of 4, the protoneutron star formed has
Qc=3I"1—4- 2\/_\,(3F1_ 5~ kﬁ>0’ (200 amore centrally concentrated structure.

In Figs. 1b) and Zb), the evolution of the central density
and the central value of the lapse function for different val-
ues ofl"y, with fixed values of"; (=1.32) andl’, (=2.5) is
compared. Recall that the value dfy, determines the
strength of shocks at the bounce and at their subsequent
13 -1/3 propagation. Thus, the results here show that a moderate

( ¢ ) change of the value dfy, from 1.35 to 5/3 weakly modifies

10* g/cn?

wherek is a constant which is=6.75 forn=3 and T/W
=0 [30]. For the Newtonian polytropes with~ 3, the stel-
lar radius is given by

M 1/3 M
R~2.3 —) ~73 kn‘(
%Pc 1.M¢g

(21) 1015 ET T 1 T T T T 1 LI T T3

, . o 104

Thus,M/R will be ~0.03 forp.~10* g/cn?. The value of E losE 3
T/W for dynamical stars is not exactly defined in general S Lot g
relativity, but assuming that it approximately increases as ~ Lo 3 E

1/Rec1— «, for a fixed value ofM, we can infer that the
value of T/W would be ~0.15-0.2 for a,~0.9 andk 10%
=6.75. ThereforeQ. would be~0.1-0.2, and, hence, the

rotating star would satisfy the stability condition against 0.95 3 E
gravitational collapse. On the other hand, the expected value s 09F ]
of T/W is so large that the differentially rotating star formed 0.85 £ §
may be unstable against a nonaxisymmetric deformation s | | | e
[26]. This suggests that to clarify the fate of this star it would 08 o0 40 6o 80

be necessary to perform a nonaxisymmetric simuldtid).
However, such a simulation is beyond the scope of this paper
and, hence, particular attention is paid only to models A—C FIG. 4. Evolution of the central density and the central value of
in this paper. the lapse function for model D.

T (msec)
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FIG. 5. Snapshots of the density contour curves ahd of the velocity field of {*,v?) at selected time slices around which shocks are
formed for model A1. The contour curves are drawn gop,,=3X10 %4, with j=0,1,2 . ..,15.

the evolution of the protoneutron stars formed. For a smallemitial condition are approximately equal. Therefore, the dif-
value of I'y,, the final value of the central densitgentral ference of the numerical results comes from the angular ve-
lapse is larger(smalley. This is simply because the amount locity profile of the initial conditions. Figure 3 indicates that
of matter that accretes to the protoneutron star increases antle degree of differential rotation &t 0 is reflected signifi-
hence, the compactness increases with a decrease of tbantly in the oscillation and evolution of the protoneutron
value of I'y,. For a larger value of',, the oscillation am-  stars formed. The quantitative differences are summarized as
plitude of p. is larger. This is due to the fact that stronger follows: (i) the time at the bounce, , for models C1 and C2
shocks result in a larger amplitude of the oscillation of thejs slightly larger than that for models B1 and B2, respec-
core. tively; (ii) the maximum value of the central density for
In Figs. 1c) and 2b), the evolution of the central density models C1 and C2 is slightly smaller than that for models B1
and the central value of the lapse function is compared foand B2, respectivelyiii) the amplitude of the oscillation of
different values ofl", with fixed values ofl"; (=1.32) and the central density and central value of the lapse function in
I'thy (=1.5). [Compare the solid and dot-dashed curves inthe ring-down phase are larger for models C1 and C2. The
Fig. 2(b).] Since the equation of state for a protoneutron staresults(i) and(ii) are simply due to the fact that the centrifu-
is stiffer for a larger value oF ,, the maximum density at the gal force around the central region for models C1 and C2 is
bounce, the final relaxed value pf, and the compactness slightly larger and plays a stronger role in halting the col-
of the quasistationary neutron star are smaller. Since the ifapse. The resultiii) indicates that a small increase of the
fall proceeds deep inside the core, the amplitude of the osangular velocity around the central region in the initial con-
cillation for the central density in the ring-down phase isdition can significantly modify the evolution of the central
larger for a smaller value df,. density. All the resultsi)—(iii ) also show that the oscillation
Figure 3 shows the evolution of the central density andof the central density of the protoneutron stars formed de-
the central value of the lapse functi¢® for models B1 and pends strongly on the initial angular velocity profile.
C1 and(b) for models B2 and C2. The valuesbf, I',, and The effects of differential rotation of the initial condition
I'y, are identical between models B1 and C1 and betweeare also reflected significantly in the shape of the formed
models B2 and C2. Furthermore, the valuesTO#d for the  protoneutron stars. In the collapse of a rigidly rotating pro-

El g g
) = =
(a) (b) X(km) (c) X(km)

FIG. 6. The same as Fig. 5 but for model C1. The contour curves are dravpfdgr=3x10"%4, with j=0,1,2...,15.
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TABLE IV. Comparison between the presdnppey and previ-  models Al, B1, and B2dotted curvek It is found that the
ous numerical results by Dimmelmeiet al. (lower). The time at  evolution of the central density and the central lapse in the
bounce, the maximum density achieved, and the maximum amplipw-resolution simulation agrees with that in the high-
tude of gravitational waves are shown for the two numerical resultsyesgolution one within a small errdexcept for very late times
for which the numerical error seems to be accumulated for

Model t Pmax (g/C7) (rh-+) max (cm) the low-resolution simulation This indicates that the grid
Al 69.5 4.12 561 resolutions adopted in the present numerical simulation are
A1B3G?2 69.5 4.02 469 fine enough to yield a convergent numerical result.

A2 48.7 4.28 215 ) ) _

A1B3G3 48.6 4.23 180 2. Comparison with previous work

A3 30.3 4.98 32.7 Here, we compare the numerical results for models Al,
A1B3G5 30.2 4,55 33.9 A2, A3, B1, and B2 with those for models A1B3G2,
B1 69.8 3.93 731 A1B3G3, A1B3G5, A3B2G2, and A3B2G4 0], respec-
A3B2G2 69.5 4.10 596 tively. For these models, both groups adopt almost identical
B2 39.3 3.92 182 initial conditions.

A3B2G4 39.3 4.05 141 Table IV shows the time at achievement of maximum

density, the maximum density, and the maximum amplitude
of gravitational waves for the numerical results computed by
genitor, the protoneutron star formed has a slightly nonthe two groups. In Fig. 7, we also compare the evolution of
spherical shapésee Fig. 5. On the other hand, in the col- the central density. It is found that the numerical results of
lapse of a differentially rotating progenitor, a protoneutronthe two groups agree within a small error for both models A
star of a flattened and nonspherical shape is the out¢sege and B. Only for model B1 does the time at achievement of
Fig. 6). This difference results from the fact that the innermaximum density slightly disagrees with that for A3B2G2
region is more rapidly rotating in the case of the differen-by ~0.3 ms, but apart from this disagreement, the shape of
tially rotating progenitor. It is worthy of note that the value p. as a function of time agrees well in both simulations even
of T/W for model A is about 1.6 times as large as that forin this case. Recall that ifil0] the conformal flatness ap-
model C. However, the angular velocity at the rotational axigproximation to the Einstein equation is adopted, while our
for model A is about half of that for model C. Thu§/W  results are fully general relativistic. This indicates that the
alone is not a good indicator for measuring the significanceonformal flatness approximation is a good approximate for-
of the centrifugal force in rotating stellar core collapsesr  mulation of general relativity for computing axisymmetric
is the nondimensional angular momentum parama/iet?). rotating stellar core collapse to a neutron star.
Obviously, the local distribution of the angular momentum In a precise comparison, the following small systematic
plays a more important role for determining the shapes of thelisagreements between the two results should be also ad-
formed protoneutron star and shocks. dressed{i) the maximum density achieved in our results is
Convergence of the numerical results is achieved well irslightly larger for model A and slightly smaller for model B;
the present computation. In Figs(dl, 3(a), and 3b), we  (ii) the time at maximum density is slightly delayed in our
show the numerical results with a low grid resolution for results, and this tendency is stronger for larger valuek,of
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FIG. 7. Comparison between the evolution of the central density computed in this (safidrcurve$ and by Dimmelmeieret al.
(dashed curveda) for models A1-A3 andb) for models B1 and B2.
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(i.e., for longer infall timeg (iii ) for larger values of"y, the  pole formula for highly relativistic, highly oscillating, and
central density in the relaxed final stage is slightly smaller inrapidly rotating neutron stars. In rotating stellar core col-
our results. lapses to a neutron star, gravitational waves are dominantly
It is difficult to specify the particular reason for these emitted during the bounce and ring-down phases. Such
disagreements. There are several plausible candidates. Firgtavitational waves are excited by the oscillations of a
the computational settings are different between two groupgormed protoneutron star. Thus, it is likely that the present
In our simulation, we adopted a uniform grid changing theapproach can yield high-quality approximate gravitational
grid spacing and grid number, while [d0], 200 radial grid  waveforms in addition to possible underestimation of the
points with a logarithmic grid spacing were taken throughoutamplitude by~10% due to the absence of higher general
the simulation. In our case, the grid spacing is smaller thamelativistic corrections.
0.5 km in the bounce and ring-down phases, although it is Figures 8a)—8(d) show gravitational waveforms for
larger than 0.5 km in the infall phase. On the other hand, thenodel A with various sets of ;, I', andI'y,. The wave-
minimum grid spacing is about 0.5 km {i0] for all the  forms for models A1, A2, A4, A5, and A6 are classified as
phases. These differences may yield the disagreements. Atype | according to Dimmelmeiegt al. [10]. The properties
tually, we find that varying the grid resolution results in a of type | gravitational waveforms can be summarized as fol-
small change of the time at the achievement of maximumows. During the infall phase, a precursor whose amplitude
density for models Al and Bficf. Figs. 1d) and 3a)]. Sec- and characteristic frequency increase monotonically with
ond, the slicing condition is slightly different between thetime is emitted due to the infall and the flattening of the
two groups. In[10], the maximal slicing conditiorKkk=0 rotating core. The duration of the infall phaseigl0 ms and
was adopted, while in our numerical simulation, the condi-longer than the dynamical time scale definedtaO as
tion is only approximately satisfield 6]: The equationQ(kk pgl’2~40 ms. In the bounce phase, spiky burst waves are
=0=4K /X lead to an elliptic-type equation fox. In the  emitted for a short time scale 1 ms, and the amplitude and
exact maximal slicing condition, this equation is iteratively frequency of the gravitational waves become maximum. In
solved until a convergence is achieved. In our case, we stofie ring-down phase, gravitational waves associated with
the iteration before complete convergence is achieved to savgeveral oscillation modes of a formed protoneutron star are
computational time. Thus,*~0. This difference may re- emitted and their amplitude is gradually damped due to
sult in a systematic deviation of the coordinate time at theshock dissipation at the outer edge of the protoneutron star.
maximum density. Third, the initial conditions adopted by For model A3[see Fig. &)] for which the simulation is
the two groups are not completely identical, since the equiperformed with a small value dtf;, 1.28, the waveforms are
librium rotating stars for the initial conditions are computed qualitatively different from those for the other simulations: A
with different numerical implementations. The values ofsharp and distinguishable peak is not found at the bounce.
T/W and A may well have disagreements of magnitudesoor? after the precursor is emitted durlng' the infall phase,
<1%. This may affect the subsequent numerical evolutiorf"® 1ing-down waveforms appear to be excited. An outstand-
slightly. Ing feature is that the amplitude in this case is much sma[ler
On the other hand, the difference between the formulafhan that forl’,=1.31 and 1.32 although the wavelength is
tions adopted for the gravitational field is unlikely to be the NOt Significantly different from those for other models. Ac-

reason for the disagreement. This is because the deviation GP"ding to[10], this type of waveform is classified as type

the conformal metri¢y;; from &;; is very small(typical ab- _
solute magnitude is of order 10”2 for each componehin In Fig. 8a), the waveforms for models AL, A4, and A5

our numerical results. Therefore, we infer that the magnitud@'€ Presented. For these models, we adgpt 1.32 andl’,
of the systematic error due to the conformal flatness approxi= 2-2: SO that only the value dfy, is different. In the infall
mation seems to be smaller than that due to other reasonsPhase, the waveforms for the three models are very similar.
This is natural because, as long as the density is smaller than
Pnuc: the magnitude oPy, is much smaller than that of the

B. Gravitational waveforms cold part. Clear differences in the wave phase, wavelength,
and amplitude are observed in the bounce and ring-down
phases. The reasons for them are explained as follows. The

The gravitational waveforms are computed in terms of thesmaller magnitude oPy, results in a slightly shorter infall
guadrupole formula described in Sec. Il C. Since fully gen-time as reflected in the time at which the amplitude becomes
eral relativistic simulations are performed, the gravitationalmaximum. As a consequence, a difference of the wave phase
waves should be computed from the metric in a wave zonds yielded. Stronger shock heating, which generates larger
However, we have found that this is not possible, since théhermal energy, also results in smaller compactness of the
amplitude is smaller than the numerical noise. An estimatg@rotoneutron stars formed. This leads to the results that, for
by the quadrupole formula indicates that the maximum amiarger values ofy,, the gravitational wavelength, which in
plitude of gravitational waves is smaller than P0in the  general increases with the stellar radius for a given mass,
local wave zone for ~\, where\ denotes the wavelength, becomes longer, and the amplitude, which is larger for stron-
which is typically several hundred kilometers. ger shock heating, is larger.

As illustrated in a previous papgt2], approximate gravi- A slight change of the value df;, which determines the
tational waveforms can be computed in terms of a quadrudynamics of the infall phase, significantly modifies the gravi-

1. General feature
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tational waveforms. Comparison among Figda)88(c) 8(d): For smaller values of',, the wavelength and ampli-
clarifies that with decrease of the valuelof the amplitude tude of gravitational waves in the ring-down phase are
of the gravitational waves decreases systematically. The reslightly shorter and larger, respectively.

son for this is explained as follows. For smaller value§ gf In Fig. 9(c), the waveform for model C2 is displayed. This
the central region collapses more rapidly than the outer reshould be compared with the solid curve in Figa)9[or

gion does. This results in a smaller core mass at the boun&b)] for model C1 at a different value df,. Comparison

for smaller values ofl’;. The amplitude of gravitational between the two waveforms shows that with a decrease of
waves increases with increase of the core mass for a fixeifie value ofl"{, the wave amplitude at the bounce and ring-
value of the density and, therefore, it is smaller for smallerdown phases decreases. This property agrees with that found

values ofl;. for model A and is likely to be independent of the initial
In Fig. 8d), we compare the waveforms of different val- rotational velocity profiles. _ _
ues ofT", with fixed values of"; andl'y,. It is found that the To see the effect of a slight change of the differential

difference of the waveforms between the two models appeaistation parametefk, we compare the waveforms of models
only in the bounce and ring-down phases. This is naturaB1 (solid curve and C1(dot-dashed curyen Fig. 9(d). The
because the value &f, does not affect the infall phase and two waveforms are qualitatively similar, but for model C1
mainly determines the equations of state and the ra@ius the amplitude is larger and more modulation of the amplitude
compactnegsof the protoneutron stars formed. Recall that ais induced. This illustrates that, with a slight modification of
smaller value ofl’, results in a larger compactness of thethe initial rotational velocity profile, the resulting gravita-
protoneutron star. This fact is reflected in the slightly shortettional waveforms are modified significantly.

wavelength and larger amplitude of gravitational waves in  Figure 10 shows the gravitational waveform for model D.
the ring-down phase for smaller valuesIof. In this model, the collapse does not lead to a quasistationary

Figure 9 displays gravitational waveforms for model C. protoneutron star of.>p,.. Instead, a quasiradially oscil-
As in the case of model A, the waveforms are divided intolating star of subnuclear density is formed, and therefore
three partgprecursor, spike, and ring-dowrbut the quali- quasiperiodic waves of a long periedl0 ms are emitted.
tative features of the ring-down waveforms between model#\ccording to[10], this is classified as a type Il waveform.

A and C are different. For example, compare the waveforms Convergence of the numerical results appears to be
for models A1 and C1 for which the values Bf, I';, and  achieved. In Fig. 11, we display the numerical results with
I'y, are identical. For model Al, the waveforms are modu-high and low grid resolutions for models A1 and B1. The
lated only in the early ring-down phasée.g., for t grid spacing in the low grid resolution is about 5/3 as large as
~70-73 ms). In the late ring-down phadge.g., fort that in the high case. It is found that the computed gravita-
=73 ms for model A}, they are fairly periodic and appear to tional waveforms depend only weakly on the grid resolution
be composed mainly of one or two eigen oscillation modesn our choice of grid spacing. We conclude that the grid
of the protoneutron star formed. On the other hand, foresolution we choose in this work is fine enough to compute
model C1, the waveforms are not very periodic and highlyconvergent gravitational waveforms.

modulated throughout the ring-down phase. In this case, sev-
eral eigenmodes of the formed protoneutron star appear to
constitute gravitational waveforms. Such modulated wave- Here, we compare the gravitational waveforms computed
forms are likely to be due to the fact that the protoneutronin this paper with those if10] for models A1, A2, A3, B1,
star is rapidly and differentially rotating and the oscillation and B2. Figures 12 and 13 show the gravitational waveforms
modes are excited in a complicated manner at the bounce.computed by ugsolid curve$ and by Dimmelmeieret al.

In Fig. (@), we compare the waveforms of different val- [10] (dashed curvgs|t is found that the waveforms in the
ues ofl"y, with fixed values of"; andI’,. Asin Fig. 8a), for infall phase agree very well with each other. In the bounce
smaller values of'y,, the maximum amplitude is reached at phase, on the other hand, the amplitude of our results is
an earlier time, the wavelength during the bounce and ringlarger than that in10] by ~20% for models A1, A2, B1, and
down phases is longer, and the amplitude is smaller. ThesB2, although they still agree qualitatively. The disagreement
are universal features independent of the initial rotationals outstanding in the ring-down phase. The amplitudes of
velocity profiles. However, in contrast to Fig@, the wave-  gravitational waves in the ring-down phase for models Al,
forms in the ring-down phase for models C1 and C4 are noA2, B1, and B2 are larger than those[it0] by a factor of
very similar. Thus, a small change bf, from 1.35 to 1.5 ~2. Moreover, in our results, the oscillations with a nearly
significantly modifies the ring-down waveform in the case ofconstant amplitude continue for several oscillation periods

2. Comparison with previous work

differentially rotating initial velocity profiles. (=10 m9. This is not the case in the results[@f], in which
In Fig. 9Ab), we compare the waveforms of different val- the amplitude is damped within several milliseconds.
ues ofl", with fixed values of"; andI'y,. In contrast to Fig. This could be partly due to the differences in grid resolu-

8(d), the maximum amplitude of gravitational waves is tion or slicing conditions adopted by the two groups as men-
nearly identical for the two models. This suggests that intioned in the previous section. However, the main reason is
halting the infall, the centrifugal forces may play an impor- likely that the quadrupole formulas adopted by the two
tant role in hiding the effects of the difference in the value ofgroups are not identical. In the quadrupole formula we adopt,
I',. The difference of the ring-down waveforms between thea quadrupole moment is simply defined using a weighted
two models is qualitatively the same as that found in Fig.rest-mass density, and then the second time derivative is
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taken with no approximation. IfiL.0], on the other hand, the V. SUMMARY

guadrupole moment is defined usipgnd, in addition, when

taking the second time derivative, the authors discard highetr W e performed axisymmetric numerical S|mu.lat|ons of ro-
relativistic terms, keeping only the lowest-order post- ating stellar core collapses to a neutron star in full general

: ' relativity, paying particular attention to gravitational wave-
Newtonian terms.

I . . . forms and to comparison of our results with previous results
This disagreement raises a question: What is a good quad: : o . . .
. T : 10]. The Einstein field equations are solved in Cartesian
rupole formula in general relativistic simulations? An excel-

lent quadrupole formula should yield a high-quality aIoproxi_coordmates imposing an axisymmetric condition by the Car-

.. toon method 22]. The hydrodynamic equations are solved in
mate waveform for the true one computed from the metricin_ . . . . . )
lindrical coordinategwith the Cartesian coordinates re-

o C
the wave zone. Thus, .to answer the question, it is necessa@?’ricted to they=0 plang using a high-resolution shock-
to compare the gravitational waveforms computed by a ) i ; e

. . capturing scheme with the maximum grid size (2500,2500).
qguadrupole formula with those extracted from the metric. InA i y f state is adopted t del collapsi
[12], we calibrated the waveforms by performing simulations parametric equation of state 1S adopted to modet colapsing
for highly relativistic, highly oscillating, and rapidly rotating st_ellar cores and the protonleuFron stars formed, following
neutron stars withVl/R~0.2 anduv/c~0.3 and found that Dlmmelmeleret al. [10]. Gravitational wavefor.ms are com-
our quadrupole formula yields well-approximated wave-PUtéd using a quadrupole formula proposed1@]. o
forms; the wave phases agree well with those computed from We choose moderately rapidly rotating stars as the initial
the metric and the wave amplitude is computed within arconditions for which the value of/W is between 0.005 and
error of magnitude 0©(M/R) or O(v%/c?). We believe that 0.01. Simulations are performed g:hangmg thrge parameters
the waveforms presented in this paper are well-approximatelf 1, I'2, andI'y,) which characterize the equation of state.
ones in phase and withir10% error in amplitude. On the The dynamics of the collapse depends on the three param-
other hand, the quadrupole formula adopted1fi] has not eters as well as’/W and A of the initial condition. The
been calibrated, since the authors adopted the conformal fladependence of the evolution of the system and gravitational
ness approximation in which gravitational waves cannot bgvaveforms on these five parameters is studied. The value of
extracted from the metric. Thus, it is not clear how goodI'; mainly determines the duration of the infall phase and the
their quadrupole formula is. Since the amplitudes computedoherence of the early phase of the collapse. For the smaller
by our quadrupole formula are underestimated+f0% and  value ofl'y, the infall time becomes shorter and the collapse
the amplitudes computed ji0] are smaller than ours, gravi- is accelerated more in the central region. The result is that
tational waveforms presented|[ib0] may contain an error of the core mass at the bounce is smaller and that the magnitude
magnitude more than 10—20 %. of ®. (which may be regarded as the depth of the gravita-
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tional potential at the bounce is smaller for smaller values of tial conditions withT/W>0.01 may be constructed. For such
I'y. The amplitude of the gravitational waves also becomesigh values ofT/W, a neutron star will not be formed soon
smaller for smaller values df;. after the collapse.

The value ofl", determines the equation of state for the  wjith a slight change of from 0.25 to 0.32 for the initial
protoneutron stars formed. Thus, it does not affect the evocondition, the angular velocity at the rotational axis is
lution dUring the infall phase. It determines the final value Ofchanged by a |arge factor evenrlifW is approximate|y iden-
the central density of the formed protoneutron star and th@cal. As a result of this change, the subsequent evolution of
gravitational waveforms emitted during the ring-down phasehe collapse and gravitational waveforms in the bounce and
in which the eigen oscillation modes of the protoneutronring-down phases is modified significantly. This implies that
stars are excited. The value b, determines the strength of the dynamics of rotating stellar core collapses and the corre-
the shock waves. We choose this value as 1.35, 1.5, and 5/3ponding gravitational waveforms are sensitive not only to

extending the work by Dimmelmeiet al. [10]. It is found  the equation of state but also to the initial angular velocity
that for smaller values of this parameter the shock heatingrofile.

becomes weaker and the amplitude of gravitational waves
smaller.

The values off/W andA play a significant role in deter- L M i
mining the dynamics of collapse and the corresponding 0 T
gravitational waveforms in particular in the bounce and ring-

down phases. For the rigidly rotating casé—éoo), the
maximum value ofl/W is ~0.009, which we choose in this
paper. Even in this maximum case, the collapse leads to a
neutron star irrespective of the valueslof, I',, andT'y,.

This indicates that for rigidly rotating initial conditions neu-
tron stars are formed soon after the collapse, irrespective of
the angular velocity of the initial condition, with our choice
of the equations of state. For the differentially rotating case L

with A= 1/4, the collapse does not lead to a neutron star but
an oscillating star of subnuclear density is formed ToW

=0.01 since the centrifugal force is strong enough near the
rotational axis. As shown ifl0], more rapidly rotating ini- FIG. 10. Gravitational waveforms for model D.
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Several simulations are performed, setting the same initighe conclusion for the formation of neutron stars. This may
conditions as those adopted[ibQ]. It is found that the dy- not be the case for black hole formatipn.
namics of the collapse and the bounce for such initial condi- Gravitational waveforms are compared with a previous
tions are very similar to those found [10], in which an  result[10]. It is found that the waveforms are in good agree-
approximate general relativistic gravitthe conformal flat- ment qualitatively but not quantitatively with those [ib0].
ness approximations assumed. This indicates that such anEither of two plausible elements could explain this disagree-
approximate relativistic formulation is appropriate for com- ment. One is that the grid resolution and computational set-
puting axisymmetric rotating stellar core collapses and theing are different between the two groups. This could modify
subsequent formation of protoneutron st@lote that this is  the waveforms slightly. However, the main reason seems to
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FIG. 12. Comparison between gravitational waveforms computed in this fapier curveg and by Dimmelmeieet al. (dashed curves
for models A1-A3[(a)—(c)].
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FIG. 13. The same as Fig. 12 but for models B1 and &2 and (b)].

be that the quadrupole formulas adopted by the two groupied by several group81,32,17. However, the initial condi-
are different. As mentioned in the previous section, there isions in the previous work are not very realistic for modeling
no unique definition of the quadrupole formula for dynami- a rotating stellar core collapse in nature; namely, stellar core
cal spacetimes in general relativity. This implies that whencollapse to a black hole from a realistic initial condition in
one attempts to use a quadrupole formula in a relativistiGully general relativistic simulation is an unsolved issue. We
Simulation, one needs to calibrate the formula in advance bﬁre Current'y Working in this Subject and will present the
performing a fU”y general relativistic simulation and by numerical results in a Subsequent paper.
comparing the waveforms computed by the quadrupole for-
mula with those computed from the metric. The quadrupole
formula adopted in our study has been calibrated in simula-
tions for highly relativistic, highly oscillating, and rapidly
rotating neutron stargl2]. Thus, we believe that the quad-  We thank Toni Font for discussions and a careful reading
rupole formula adopted in this paper is appropriate and thabf this manuscript, and Harald Dimmelmeier for comments.
the numerical results presented here are approximate solWe also thank Harald Dimmelmeier, Toni Font, Jose-Maria
tions of high quality. Ibanez, and Eward Miler for suggesting this work. Numeri-

In this paper, we focused on neutron star formation and oral computations were performed on the FACOM VPP5000
a comparison with previous worKLO]. If a more massive machine in the data processing center of the National Astro-
progenitor is chosen as the initial condition, a black hole willnomical Observatory of Japan. This work is in part supported
be formed instead of a neutron star. The formation of blacky Japanese Monbu-Kagakusho Graiiiéos. 14047207,
holes and corresponding gravitational waves have been stud5037204, and 15740142
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