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Abstract

Recent fertile development in string theory has provided useful tools for investigation of vari-
ous field theories even non-perturbatively. Among the methods developed, brane configuration
technique is an intriguing and promising way to grasp properties of field theories geometri-
cally. Using this technique, various predictions of new phenomena in field theories have been
made, and they have been checked by explicit field-theoretical calculations. In this thesis, we
concentrate on A" = 4 super Yang-Mills theory (SYM) and its non-commutative deformation
which are realized as low energy effective theories on parallel D3-branes in type IIB super-
string theory. We present two examples which show the powerfulness of the brane technique.
The first example is the 1/4 BPS dyon in the SYM. We make predictions concerning this
new exotic soliton, using string networks which are stable in string theory. Then we explic-
itly construct the soliton solutions in the Lagrangian formalism of the SYM. The constructed
solutions reproduce the properties of the string networks such as masses, supersymmetries
and tension balance. The second example is the non-commutative monopoles. The SYM on
some non-commutative spacetime (NCSYM) admits an interpretation of string-theoretically
equivalent system which is obtained by introducing background constant Neveu-Schwarz (NS-
NS) 2-form field. We construct brane configurations representing solitons in the NCSYM and
examine their existence and properties. Then from the Lagrangian formalism of the NCSYM,
we explicitly construct the non-commutative monopole solution and check the predicted prop-
erties which are proper to the non-commutativity such as non-locality and dipole structure of
the non-commutative monopole. These two examples are turned out to be strong evidence of
validity and effectiveness of the brane configuration technique.
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Chapter 1

Introduction

JERZ -
oy ¥ ince string theory was found to be a candidate for consistent quantum gravity, vast

amount of study has been carried out for the dynamics of string theory. In the 1980’s,
after the appearance of the notable work of Ref. [34], string theory has become a candidate for
the theory of everything containing all the physics of the standard model and gravity. However,
the most regrettable situation in those days was that we had very little knowledge upon non-
perturbative aspects of string theory. This owes to that string theory itself was defined only
as a first-quantized theory, not a second-quantized one. Then the theory had thousands of
perturbative vacua on which the theory is defined. Resultantly, the dynamics which could be
known were only perturbative dynamics, and there was no mean to determine the vacuum of

this theory. Therefore this theory had very poor predictive power on phenomenology.

Recent development of this subject in these 5 years was mainly concerning the non-
perturbative understanding of string theory. This development was triggered by three in-
triguing works, Ref. [75] in which full string dualities were analyzed, Ref. [154] in which the
existence of M-theory describing the strong coupling region of string theory was conjectured,
and Ref. [115] in which extended hypersurfaces called D-branes were found to be fundamental
objects in string theory. Utilizing the information of the non-perturbative region of string
theory given in these works and subsequent studies, string-phenomenology entered a new

phase.

Beside the development of the string-phenomenology, the discovery of the importance
of the membranes and the D-branes provided a very powerful tool for investigating various
field theories. String theory contains an infinite number of particles as excitation of the
elementary string, but taking the decoupling limit (in other words, o’ — 0 limit), the theory

becomes a low energy effective field theory. Using many kinds of D-(and NS-)branes or some

4



compactification of the target space, we can obtain various dimensional field theories with

variety of field content.

One interesting example is MQCD which was first proposed in Ref. [153]. This paper gave
a geometric realization of Seiberg-Witten curve of some N = 2 field theories, based on the
brane realization of these field theories by Ref. [63]. The MQCD is defined with a smooth
5-brane hypersurface embedded in 11-dimensional target space. Since M-theory is expected to
describe the non-perturbative effects of string theory, i.e. the effects of finite string coupling,
the corresponding MQCD describes non-perturbative dynamics of Super QCD. An intriguing
result is that the strong-weak duality of N'= 4 SYM is realized manifestly and geometrically.
(See Refs. [59, 139] and references therein.) The techniques which use configurations of various
branes for analyzing physics in field theories are sometimes called “brane configurations” or

“brane techniques”.

One of the other recent developments with respect to the string-theoretical realization
of field theories is AdS/CFT correspondence initiated by Ref. [98]. The spirit of this corre-
spondence is that the large N limit of conformal field theories are equivalent with classical
supergravities on AdS space. This AdS space is supplied as a near horizon region of the

supergravity solution of the D-branes.

These string-theoretical realizations of field theories have given interesting and intrinsic
understanding of dynamics and statics of the field theories. The point is that this realization
respects the non-perturbative nature of the field theories. The stringy realization is involved
with not only the spectrum of the field theory, solitons living in the theory, and other static
properties in the field theory, but also the non-perturbative symmetries including strong-weak
and electric-magnetic dualities. However, most of the results from the stringy realization
is merely the reproduction of the field theoretical results. Although it was found that the
duality conjectured in the field theory side corresponds to some duality in string theory, this
correspondence does not give any verification of the duality of the field theory since the S-

duality in string theory is still a conjecture.

In a couple of years, many examples confirming the field theory <+ string theory correspon-
dence have been turned in, and the credible basis of the correspondence has been gradually
constructed. Recently, on the basis of this correspondence, predictions of new interesting
phenomena in field theories appeared from the stringy realization. One of the interesting pre-
dictions is using the above AdS/CFT correspondence: in Ref. [97], potential between a quark

and an anti-quark was provided in the strong (‘tHooft) coupling region.



In this thesis, we concentrate on the new solitons in field theories which were first con-
jectured from the stringy realization. The solitons we treat in this thesis are 1/4 BPS dyons
and non-commutative monopoles, both of which are new ingredients from the recent analyses

using the brane configuration techniques.

The field theories we know well are 4-dimensional, and the simplest way to realize the 4-
dimensional field theories in string theory is to consider D3-branes in the type IIB superstring
theory. On this D3-brane whose worldvolume is 4-dimensional, N’ = 4 supersymmetric Yang-
Mills theory (SYM) is realized in the low energy region. As we will explain in the following
chapter, the rank of the gauge group of the realized field theory is arranged by adopting many
parallel D3-branes. The SU(N) theory is provided by N parallel D3-branes. We consider the

spectrum of this theory and the exotic deformation of this theory.

Before the appearance of the D-branes, the known spectrum of this N' = 4 SU(2) SYM
consisted of only the W-bosons, monopoles and dyons. These are labeled by electric and
magnetic charges denoted as (p, ¢). These ingredients have their corresponding alternatives in
string realization: (p, ¢)-string suspended between the two D3-branes. This string is a bound
state of p fundamental strings and ¢ D-strings. The (p, ¢)-charge of the dyon is served by the
charges of this bound state of strings. Using the correspondences that the eigenvalues of the
Higgs fields of the SYM represent the location (and deformation) of the D3-brane surface, and
that the deformed part of the D3-brane surface can be interpreted as a string stuck to the D3-
brane [32], then the classical configuration of the monopoles and the dyons are directly related
to the corresponding brane configurations. In Chap. 2, after briefly reviewing the properties
of the low energy effective action of the D-branes, we construct this brane configurations for

the conventional solitons such as the monopoles and the dyons.

Using the bound state of the strings, string theory admits as stable states string networks
which are composed by the strings with various (p, ¢)-charges and string junctions. If this
network is ended on several D3-branes, then this must corresponds to some stable state in
the N = 4 SYM [20]. In Chap. 3, we give a brief review of the string network and explain
this prediction from the brane configurations. Then we explicitly construct the corresponding
soliton solutions which are new exotic states preserving 1/4 of the original supersymmetries in
the N/ =4 SYM. These solitons are called 1/4 BPS dyons. The constructed solutions possess

beautiful properties reflecting the brane configurations of the string networks.

Another subject in this thesis is the SYM on non-commutative space (NCSYM) which we

deal with in Chap. 4. Due to the fact that the non-commutative worldvolume of D3-brane



is string-theoretically equivalent with the D3-brane in background NS-NS B-field (See Ref.
[131] and references therein), we provide brane configurations corresponding to the monopoles,
dyons and 1/4 BPS dyons in NCSYM. From these brane configurations, it is predicted that the
monopoles and dyons have the same masses as the ordinary monopoles and dyons, and exhibit
certain non-locality and dipole structure. This predictions from the brane configurations are

explicitly checked and confirmed by the field theoretical analysis.

This thesis is based on my papers [66, 69, 70, 71, 72, 73] which have been partly done in
collaboration with A. Hashimoto, H. Hata, S. Moriyama and N. Sasakura.



Chapter 2

Realization of Conventional Solitons

‘ * s explained in the introduction, owing to the fact that on the extended objects called
D-branes many kinds of various dimensional field theories are realized, it becomes
possible to analyze the field theories in the context of (super)string theories and M-theory. In
this chapter, we review the techniques of the string-theoretical realization of the field theories,

especially 4-dimensional ' = 4 super Yang-Mills theory.

2.1 Low energy effective action of D-brane

Since string theory contains infinite number of particle fields as string excitation, if one wants
to obtain a field theory with a finite number of fields, some decoupling procedure is necessary.
The usual one is the o — 0 limit which is often called “decoupling limit”. This procedure
keeps only the fields which are massless (compared to the string scale), and the resultant field
theory involves only a finite number of the light fields. This field theory is the low energy
effective field theory which reproduces the string scattering amplitudes whose external legs

are only the massless excitations.

Although through this decoupling procedure we lose many informations concerning the
full spectrum of string theory, surprisingly enough, the important intrinsic properties of string
theory are encoded in this low energy effective field theories. For example, the various string
dualities [75] were first predicted from the symmetries of these low energy effective field theo-

ries.

The D-brane sector of the low energy field theories of the string theories has been also

indispensable as an evidence for the string duality. The field theoretical actions for this sector



are referred to as “D-brane actions”. This D-brane actions exhibit the duality nature.

In this section, we review the structures of the D-brane action. The D-brane is defined as
an extended object on which open strings can end. Therefore the dynamics of the D-brane
originates in the open string dynamics. The massless excitation of the open superstring is a
1-form U(1) gauge field. The low energy effective action of the open superstrings concerning
this gauge field is 10-dimensional Born-Infeld (BI) action [19]. In the case of the D-branes,
the low energy sector is described by the following effective action [48, 19, 94, 124]:

S =Ty, / g e\ /— det (G + By + 270’ Fu) + Sk + Stermion: (2.1.1)

This action is derived by putting the Dirichlet boundary conditions on the ends of the open
strings. Since the open strings are terminated on the D-branes, the fields in the action lives
on the brane, i.e. the action is p + 1 dimensional, where p is the spatial dimension of the
worldvolume of the D-brane. In the action (2.1.1), Tp, is the tension of the Dp-brane', B, is
the 2-form gauge field from the NS-NS sector, and F),, is the field strength of the U(1) 1-form
gauge field. The metric G is the induced one given by

G = N + 6ij0, X0, X7, (2.1.2)

where g;; is the string metric and X denotes the scalar fields on the D-brane (the indices 4, j
are for the transverse directions, i, j = p+1,---,9, and the indices yu, v are for the longitudinal
directions, p,v = 0,---,p). This scalar field is obtained by the dimensional reduction from
the gauge field in ten dimension (see Eq. (2.2.2)), since originally both the scalar field and the
gauge field came from the open string excitations and the difference between the two is only

the boundary condition of the open string.

The action (2.1.1) is derived for the slowly-varying field approximation, F' > [(0F. If
taking further approximation o/ F < 1, then from (2.1.1) we obtain the ordinary Maxwell
action F),, F* + ...

The second term in Eq. (2.1.1) is the contribution from the Ramond-Ramond (R-R) sector.

Symbolically, it is given as

Sr_p = /em’F AC. (2.1.3)

'Tn this thesis, we adopt the following convention for the tensions: Tp, = 1/(27)PI?*1g for Dp-branes and
Tr = 1/2x1? for fundamental strings. The definition of the slope parameter is given by o’ = [2, where I is the
string length.



This R-R-coupling is important not only for the duality nature of the D-brane action but
also for the soliton realization explained in the following. Let us concentrate on the case of
D3-branes in the type IIB superstring theory. In the D3-brane action, there are the following

couplings
/ d*z [B™F,y + C" (xF),)]. (2.1.4)

The first term came from the BI part in Eq. (2.1.1), and the second term stemmed from
Sr_r (2.1.3). We omitted the numerical factor, and (xF") denotes the Hodge dual of the field
strength F'. The conjectured S-duality in the type IIB superstring theory exchanges C,, with
B,,, and D3-branes in this theory are invariant under this duality transformation. Thus,
for consistency, the D3-brane action must be invariant. Evidently, the couplings (2.1.4) are

invariant if we make the following transformation simultaneously:
F < (xF)u. (2.1.5)

Therefore, the S-duality in the type IIB superstring theory results in the electro-magnetic
duality in the D3-brane worldvolume action. Furthermore, under this S-duality (2.1.5), the
BI action was shown to be invariant [145]. This is one of the evidence of the conjectured
S-duality.

Note that due to the couplings (2.1.4), the D-3brane possibly behave as sources for the
fundamental strings and D-strings which possess charges of the 2-form B field and C field
respectively [138, 76]. Actually, without the D3-brane couplings (2.1.4), the equation of motion
for the B-field in the sense of the 10-dimensional bulk supergravity is

d+dB = §® (2.1.6)

where the delta function §® specifies the locations of the fundamental string. Multiplying
d on the both sides of this equation of motion, then we obtain the vanishing of dé® which
means that the string cannot have its end [76]. However, using the above couplings (2.1.4)
between the B-field and the gauge field on the D3-brane, we obtain

do® =dx F (2.1.7)

instead. The fundamental string charge, which is specified by the delta function, can flow into
the worldvolume of the D3-brane. Thus the fundamental string can end on the D3-brane. This
feature is consistent with the fact that originally the D-branes were defined as hypersurfaces

on which the fundamental strings can end.

10



The interesting is that the same analysis can be applied also for the D-strings using the
C-field, and resultantly, the D-strings can end on D3-branes. How the ends of the strings
can be seen from the D3-brane worldvolume theory? As for the fundamental strings, noting
that the right hand side d x F' of Eq. (2.1.7) is actually a part of the equation of motion for
the gauge fields on the D3-brane, the left hand side of Eq. (2.1.7) is the source for the gauge
field. The form of the source d6® means that the source is placed on the point where the
fundamental string ends. On the other hand, concerning the D-string, since the S-duality
exchanges the field strength F' with its Hodge dual *F', the ends of the D-string behaves as a
monopole on the worldvolume of the D3-brane. These features of the ends of the open branes
are of great importance for the realization of the monopoles and elementary particles by the

brane language.

/\\\ij ™
/ ¥\

)

(

Figure 2.1: Fundamental strings and D- Figure 2.2: The lowest energy state of a
strings can end on D-branes. The arrows fundamental string suspended between
represent the flow of the source current. two D-branes is the W-boson.

Before ending this section, let us comment on the case with many parallel D-branes [152].
For concreteness, we consider two parallel D3-branes. Since on each brane there exists a U(1)
gauge field, the total gauge symmetry is U(1) x U(1). As explained above, the fundamental
string suspended between the two D3-branes have the charge (1,—1) or (—1,1) depending on
its orientation. These stretched strings have masses due to their lengths which are identical
with the distance between the two D3-branes, thus according to charges, the lowest energy
states of these stretched strings are W-bosons. If the two D3-branes coincide on top of each

other, then these stretched strings become massless and the U(2) gauge symmetry is restored.
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Taking into account the fact that the diagonal U(1) decouples, the low energy dynamics of
the two parallel D-branes is described by the SU(2) non-Abelian gauge theory dimensionally

reduced from ten dimensions.

2.2 Born-Infeld dynamics

The Born-Infeld action proposed 60 years ago gets revived as an effective action describing the
dynamics of the D-brane, and the properties of the action has contributed to make explicit
the non-perturbative nature of string theory such as the string dualities, as explained in the
previous section. In this section, we introduce so-called “Born-Infeld dynamics” [32, 56, 93,
64, 47, 142, 36] in which the dynamics of the D-brane is investigated with use of the purely
field-theoretical BI action in the approximation of ignoring the gravity. We review the notable
paper by C. G. Callan and J. Maldacena [32] in which certain singular classical solutions on

the worldvolume of the D-brane were interpreted as strings stuck to the D-brane.

The D-brane action contains the scalar fields X¢ in the induced metric on the D-brane as
seen in Eq. (2.1.2). These scalar fields are in fact the Nambu-Goldstone bosons with respect
to the breaking of the translational invariance in the directions transverse to the D-brane.
Therefore, the value of the field X corresponds to the location of the D-brane. Consideration

of this scalar field is expected to give the information on the shape of the branes.

As mentioned in the previous section, the dynamics of the Dp-brane is controlled by the
dimensionally reduced BI action. Taking the static gauge in the flat spacetime background

metric (2.1.2), the action is given by?

S = —Th, / /= det (nu + 0, X0, X, + Fu). (2.2.1)
This action is derived also by the dimensional reduction from the 10-dimensional BI action
S—_T /dl%\/— det(nuy + Farw) (2.2.2)
with use of the following identity [56]
det < —]\jlt ]@ > =det M - det(N + A'M ™' A), (2.2.3)

and by rewriting the gauge field in the transverse directions as A* = X*. It is possible to derive
the relations between the tensions of various p-branes, using the above dimensional reduction
and the dualities [125, 126, 127, 128, 78|.

2In this and the next section, we put I, = 1 and rescale 2nF — F for simplicity.

12



2.2.1 Classical solutions and their interpretation

In this section, we consider how the strings attached to the D-branes can be seen from the
viewpoint of the worldvolume theory. Before adopting the fully non-linear treatment of the
BI action, let us deal with the linearized action (Maxwell action) which is justified when the
field strength is small compared to the string scale. The action is given by expanding the BI
action (2.2.1) by the fields as

S ="Tp, / st (—EFMV(:U)F”V(:U) - %@Xi(x)a”Xi(x)) . (2.2.4)

This action is of course the dimensionally reduced Maxwell action which was originally in 10

dimension.

Let us study a fundamental string stuck to a Dp-brane. Considering the supersymmetries
of the configuration in the target space, one finds that a half of the supersymmetries on the

worldvolume are left unbroken. The supersymmetry transformation for the gaugino is
6\ =TMNEy ve. (2.2.5)

Here we write the gauge field in the original 10-dimensional notation, and € is the supersym-

metry parameter which is a complex 32-dimensional spinor.

We expect that some BPS state preserving some supersymmetries on the worldvolume
represents the above brane configuration. Since the end of the string attached to the D-brane
behaves as a point electric charge, a corresponding static solution (in the Coulomb gauge) of

the action for p > 2 corresponding to the attached string is

c cp(p — 2) _
AO = Tp—IiQ <£r = —aer = IZnT) where r = (226)
For this solution, we have
IMN Fyy oc T%g,. (2.2.7)

The solution is found to break all of the supersymmetries since the left hand side of (2.2.7)
does not have any zero eigenvalue. So as to construct a BPS solution, we turn on also a single
scalar field X? which satisfies the equation of motion 9*F,9 = 0. Omitting the index 9 for

simplicity, the point scalar charge solution is

X=—2

(2.2.8)

arp=2’

13



where « is a parameter specifying the charge. Using (2.2.6) and (2.2.8), the BPS condition

reads
(T°+ar®) e = 0. (2.2.9)

Taking o = £1 preserves half of the supersymmetries, hence the solution with e = +1 is BPS.

Callan and Maldacena interpreted this solution as an attached fundamental string elon-
gated along the 9-th direction: the justification of this interpretation is as follows. First, from
Eq. (2.2.8), the solution represents deformed Dp-brane surface elongated to the infinity in the
9-th direction. Second, the solution preserves half of the world volume supersymmetries, and
the number of the preserved supersymmetries is 8 which is expected from the target space
viewpoint. Third, as seen below, the energy of the solution is identical with the energy of the

attached string.
The energy of the solution is actually divergent, hence we introduce a cut off §. Then the
energy is given as
1
Eele(é) - TDp /dpr 5 (F()2r + F927")
c(p—2)*Q, /OO dr
s

(2m)Pg rr=l
= % X (5)]. (2.2.10)

Note that the energy is in proportion to |X(d)|, thus the energy per unit length in the 9-th
direction is given by the coefficient of the right hand side of Eq. (2.2.10). We would like to
verify that this coefficient is equal to the tension of the fundamental string. However, now we
treat U(1) gauge theory and the electric charge is not quantized but only satisfies the Dirac
quantization condition. For this reason, we have to study also the magnetic charge solution.

The magnetic field with a point source is (we concentrate on the case p = 3)

cm)

and this is non-BPS by itself in the same manner as before. We excite the scalar field simul-

taneously as

X="". (2.2.12)

14



Using the solution (2.2.11) and (2.2.12), the factor in the supersymmetry transformation for
the gaugino (2.2.5) is found as

9¢(m)
3

1
TNy = 2193 + 231 + 231712 + o (21091 + 2olg2 + 23003) | - (2.2.13)

From this relation, we see that the solution is BPS if the matrix
F1F2F3Fg —al (2214)

has a zero eigenvalue. Taking @ = +1 leaves half of the supersymmetries unbroken, and

computing the energy, we obtain

1 M0
Bul® = Top [0 5 (167 + F) = 1250 x @)1 (22.15)

Summarizing the results, for the electric solution and the magnetic solution, the energy

per a unit length in the 9-th direction is

c3|Q M
Toe = |23| 33 ) Tmag = % (2216)
(27)3g (27)3g

As mentioned above, the coefficients ¢; and ¢™ are related with each other by the Dirac

quantization condition?:

2mn

=0 €. 2.2.20
TD3(47T)2 " ( )

For unit electric and magnetic charges, we obtain a relation

cac™ = 712g. (2.2.21)

3In the Heaviside unit system, the action and the Coulomb law are

e 5 m

1 PN o A
— = [ doF,, Fr — A, dzt = & i= g 2.2.1
S 4 / 7w ‘ /worldline nee ¢ dmr? g b 4mr? ’ ( 7)
The correspondence can be read from the action (2.2.4) and the solutions (2.2.6) and (2.2.11) as

A, =/Tp, A,, e=d4n\/Tp, c3,  m =4mw\/Tp, ™. (2.2.18)

The phase which is developed by the wave function of an electric charge when rotating twice around the unit
magnetic charge is

—e%/iidai =...=—em. (2.2.19)

The single-valuedness of the wave function of the electron leads to the condition (2.2.20).

15



If we identify the energy Ty with the fundamental string tension 1/2, then using (2.2.16)
and (2.2.21), we obtain T}, = 1/2mg, which is precisely the tension of the D-string. Since
the electric-magnetic duality on the D3-brane worldvolume is known to be the S-duality of
the type IIB superstring theory, we have seen that the Dirac quantization condition on the
worldvolume is consistent with the S-duality of the string theory, under the interpretation by

Callan and Maldacena.

::::::::::
\\\\\\\\\
:::::::::::

\\\\\\\\\\\

\\\\\\\\\\

Figure 2.4: The deformed surface of the
Dp-brane corresponding to the funda-

mental string is given by the configura-
tion of the scalar field X°.

Figure 2.3: A fundamental string stuck to a
horizontal Dp-brane.

It is straightforward to check the situation in which many fundamental strings are stuck to

the D-brane. Since the equations of motion are linear, we can take the superposition of each

classical solution. In order to preserve the supersymmetries, we must take the parametera
common for all the strings. The total energy is
E = T /
Dp M

2
1
d’r — ( )
priD(r,-,éi) 2

2
Z(‘:l :TDp/de' (Z|5l|2+225l(9])
i 7 i.J

= Tpy Vd”r SIEF + Qp(p - 2) ZAEJ%;”] , (2.2.22)

2
+

D&

5" 0,X;

= Tb, / d’r

where A(()i) is the potential which is made by the point charges except for the i-th one cg). Not-
ing that the second term is represented as aT¢.e >-; X(;) where X(;) is the sum of X contributed
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from the scalar charges except for the i-th one, then the total energy reads
E =T, Z | X (6;)]- (2.2.23)

The energy is the sum of all the stuck fundamental strings. This is another consistency check

of the interpretation by Callan and Maldacena.

2.2.2 Born-Infeld analysis

In the previous subsection the linearized version of the equations of motion was considered.
However, the solution considered above is divergent near the charge, and in that region there
is no reason for believing that the linearized Maxwell action is correct. Here in this subsection,
we take into account the non-linear nature of the original BI system. Although (2.2.6) and
(2.2.8) is a solution of the linear Maxwell-scalar system, in the following we shall see that this

solution is also the one for the non-linear BI system.

Restricting our attention to the electric case (for the magnetic case, see Ref. [56]), the BI

action is given by

S =Ty, [+ (\/(1 &)1+ |0:X ) + (£ X) — X2 — 1) (2.2.24)

We turn on a single scalar field X° in the same manner as before. The conjugate momenta
for A*(u # 0) and X are

E(1+10X1?) +20,X (€0, X)
VU= R+ 10X ) + (£:8:X)2 — X2
X
VA= &P+ [0X) + (E0,X)2 - X2

P =Ty,

(2.2.26)

The equations of motion for the static configuration are derived from this expression as

82-71'2- _ 0, 8Z T]%pazX + TK'i(Tl'jan)
VIB,(1+[0:XP) + 77 + (m,0,X)?

= 0. (2.2.27)

These complicated equations have the same solution (2.2.6) and (2.2.8), due to the fact that if
we put the previous BPS condition 7r; = —0; X the above non-linear equations reduce to the
linear ones. Surprisingly, this solution of the non-linear equations have the same properties:

computing the energy of the solution using non-linear Hamiltonian, then the result is the
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same. The energy is given by the tension times the length of the string. Furthermore, it can
be shown that the solution is preserving half of the supersymmetries in the supersymmetric

BI system [93]. Thus the configuration is stable.

Though we solved the equations of motion from the BI action, the solution near the origin
is still out of the region where the BI action is correct. This is because, the derivative of
the field strength is also diverging near the point charge. However, the author of Ref. [142]
verified that the solutions (2.2.6) and (2.2.8) are also the solutions of the equations of motion
in all order in o/ expansion. Due to this verification, we can believe that the solutions (2.2.6)
and (2.2.8) give proper background configurations when investigating the D-brane dynamics

using these solutions.

Although the solution is in the same form, non-BPS deformation from the electric BPS
configuration exhibits completely different aspects. Let us consider a fluctuation around the
BPS solution of the BI system. The equation of motion for the fluctuation coordinate 1 which
denotes the small fluctuation originating in the scalar field other than X? is

n2q? 10 0
1+ i(r,t) — == [r?=n(r,t) | =0. 2.2.28
(14 78 i) = g (gt 2229

Here we put p = 3 for simplicity (for other p, see Ref. [93]). In the region away from the

core, r — 00, the first term in Eq. (2.2.28) becomes a usual kinetic term for 7 and then the
fluctuation behaves as a free particle moving in the 3-dimensional worldvolume space. On the
other hand, in the region near the origin, taking the limit » — 0, we obtain the following

equations of motion when changing the variables into 7 = 7g/r (~ X?°):

f4

72g2\ . _ 92
(1 + (T, t) — @n(x, t) =0. (2.2.29)
In the z — oo limit, this equation describes the free propagation in 1-dimensional space. Thus

the fluctuation 7 corresponds to the fluctuation of the string attached to the D-brane.

If the above description captures the nature of the attached string correctly, the bound-
ary condition for the propagating fluctuation should be Dirichlet-type. Let us calculate the

potential between two regions. We introduce a frequency w as i} = —w?n, and changing the

Y = Wi, K = gew?, E(y) = /\; dy\/1 4+ k2 /y*. (2.2.30)

Then the equation (2.2.29) is reduced to the 1-dimensional potential problem:

variables as

. N\ . ~ 2/ a4\ /4
(poten‘mal - 8—§2> n=r, n= (1 + K%y ) n. (2.2.31)
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where —oo0 < & < o0. In the weak coupling limit k — 0, this potential approaches to the
infinitely high delta function whose singularity is placed at £ = 0. This means that in the weak
string coupling (where the perturbative definition of the D-brane is correct), the fluctuation of
the fundamental string part feels Dirichlet boundary condition at the point where the string
is attached.

The authors of Ref. [93] derived the same type of potential in a completely different manner.
They used a string o model in the gravity background of the Dp-brane solution. The string
in that background was found to feel the same potential as obtained above. This is very non-
trivial in the sense that in the above analysis we ignored the gravity while in the latter the
gravity played an essential role. This sort of gravity <+ gauge theory correspondence seems to
be universal [120, 27, 81].

Another issue on the BI dynamics is concerning the decay of certain D-brane systems. The
D-branes and the fundamental strings stuck to them preserve some of the supersymmetries,
and thus they are BPS states. The supersymmetry properties are intimately related to the
stability of the state, hence the finite deformation to non-BPS configurations is expected to
describe the decay of the D-brane systems [47, 122, 36].

2.3 Generalization to the D-brane bound state

In this section?, we study the basic properties of the worldvolume BI system in a uniform
electric field®. A Dp-brane with the uniform electric field can be identified with a bound state of
the Dp-brane and fundamental strings (called an (F,Dp) bound state) [152, 4, 136, 95]. This is
easily seen from the D-brane action (2.1.1), noting that the constant electric field is equivalent
with the constant By, field which indicates the uniform distribution of the fundamental string
on the D-brane. In the same manner, the uniform magnetic field is equivalent with the
constant B, (u,v # 0). This spatially polarized B-field is of importance in the light of
the correspondence with the non-commutative geometry (see Chap. 4). Our analysis in this

section gives the basis of the analysis in Chap. 4 concerning the monopoles in NCSYM.

We consider a fundamental string ending on this bound state, as a generalization of the
previous section and Refs. [32, 56]. Though the supergravity solution representing this (F,Dp)

bound state has been constructed recently [96], one of the missing important ingredients in

4This section is based on my work [70].
Related issues are found in Refs. [14, 110, 111, 80].
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string theory is explicit supergravity solutions representing intersecting branes [147, 55, 53,
79, 65]. Since the gravity <> field theory correspondence mentioned in the previous subsection
seems to be universal, the analysis from the field theory side may provide some information

in the supergravity side.

In Sec. 2.3.1, we study the BPS property and stability of the configuration. Then in Sec.
2.3.2, we investigate the (Dirichlet and Neumann) boundary conditions for the attached string
by means of BI equations of motion, and see that these boundary conditions are consistent
with the ones deduced from the viewpoint of string worldsheet a la Polchinski [41]. In Sec.
2.3.3 we perform the gravity analysis using a string o model in the supergravity background
of the (F,Dp) bound state.

2.3.1 Stability of BPS configuration

First, let us see how the uniform electric field and a point charge in it are allowed as stable
BPS configurations®. We treat the low energy effective theory of a Dp-brane extending along
the directions (012---p). The argument on the linearized version of this system given in the
previous section and Refs. [32] and [56] tells us that half of the worldvolume supersymmetries

are preserved when the fields on the brane satisfy the following BPS condition
Fo, = afy,, with o ==£1, (2.3.1)

where Fy, should be understood with a scalar field Ag = Xy. This BPS equation (2.3.1) is
expected to be derived also from the non-linear BI theory [35, 93]. Under the relation (2.3.1),
equations of motion of the BI theory agree with the ordinary ones in the Maxwell-scalar
system. As a solution’, it is possible to generalize the solution adopted in the previous section

and Ref. [32] so as to include trivially a uniform electric field®:

Xo = —Ay = —% + Exs. (2.3.2)

6 Although we consider here only the BPS system and fluctuations around the BPS configurations, particular
non-BPS solutions of the non-linear BI system are fascinating. The first reason is that, they are analogue of
the first proposal by Born and Infeld [57, 58, 26, 47, 142] (called “Blon”or “pinched” solution). The second
one is that, they are concerned with the brane - anti-brane annihilation [32, 122] (called “throat” solution,
or “(charged) catenoidal” solution in Ref. [56]). The brane - anti-brane annihilation can be described also by
tachyon condensation [18, 135]. A recent result on the non-perturbative tachyon potential [6] is based on the
Matrix theory, in which generally there exists a uniform gauge field strength on the constructed brane. Thus
the non-BPS configuration of the (F,D3) bound state is of importance since we can check the calculation of
Ref. [6] from another side.

"We choose ae = —1 and p > 3 in this section.

8This background (2.3.2) defines an exact conformal field theory, since the derivation in Ref. [142] depends
not on the explicit form of the scalar potential, but only on the BPS relation (2.3.1).
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Figure 2.5: “Tube-like” configuration of Dp- A
brane surface representing a string. Now the
Dp-brane is tilted, in order to be a BPS con- Figure 2.6: Force balance of the config-
figuration, under the uniform electric field. uration.

This configuration represents a charged particle in the background electric field £ = x5 which
is uniform on the Dp-brane®. As seen from Eq. (2.3.2), the attached fundamental string is not
perpendicular to the Dp-brane, because of the uniform field strength (see Fig. 2.5). In other

words, the Dp-brane is now tilted in order to preserve some supersymmetries.

From the viewpoint of target space supersymmetries, it is also possible to see that the
configuration given by Eq. (2.3.2) preserves a part of the supersymmetries to be stable. For
simplicity, consider the case of p = 3. Taking T-dualities in two directions along x; and x5,
then the tilted D-string (on which a constant field strength exists) appears. This D-string can
be interpreted as a dyonic string carrying both NS-NS and R-R 2-form charges [152]. Following
the argument developed in Ref. [133], at the spatial infinity the conserved supercharges are
1/4 of the original ones, under the existence of this dyonic string and a fundamental string
perpendicular to the (123)-plane. The T-duality transformation does not change the number of
preserved supersymmetries, hence the configuration of Eq. (2.3.2) preserves 1/4 of the original

target space supersymmetries (at least at the spatial infinity).

Although this configuration is stable because of its BPS property, naively one might be

%A point electric charge in a uniform background magnetic field is not a BPS configuration. A BPS
configuration with a magnetic point source in a uniform magnetic field, which corresponds to a D-string ending
on the D3-brane - D-string bound state, will be discussed in Chap. 4. We will find that the configuration of this
uniform magnetic field is intimately related to the worldvolume non-commutativity, and the tilted configuration
provides an essential property of monopoles in NCSYM. An issue concerning the uniform magnetic field is
found also in Ref. [92].
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afraid of instability due to an electric force on the point charge in the uniform electric field.
Actually, the charge at r = 0 is (p—2)c,€2,_1, and the force along the tilted direction can be

read as

1
V1+E2
Note that the strength of the “physical” electric field* is Tp, £, where T, is the tension of the

Dp-brane. The final factor in Eq. (2.3.3) is for extracting a component of the force along the
tilted direction. Now, what happens is that this force (2.3.3) is exactly cancelled by Ty = 1/27,

fsource - _(p_Q)Cprfl ’ Tng ) (233)

the tension of the fundamental string emanated from the Dp-brane (see Fig. 2.6). Actually,

the contribution of the string tension along the tilted direction is

fo__ £ 1
Strlng_m2ﬂ_7

and using the charge quantization condition (p—2)c,Qy—1 = g (27)P~" (see Ref. [32]) and

(2.3.4)

Tpp = 1/(2m)Pgg, it is easy to see the force balance as

fsource + fstring = 0. (235)

This is consistent with the stability expected from the BPS property of the configuration.

2.3.2 Boundary conditions

Worldsheet picture

One of the remarkable properties of the description of the intersecting strings in the BI system
is that the boundary conditions for the attached strings can be reproduced, as explained in
the previous section [32, 93, 120]. Now, our interest is not the pure D-branes but the (F,Dp)
bound state. In this case, the boundary condition in the usual worldsheet picture are known
to be modified. We shall study this first, and check the consistency with the BI theory later.

In the worldsheet approach of D-branes by Polchinski et al. [41], the boundary conditions

of a fundamental string attached to the D-brane on which a uniform gauge field strength exists

0The charge quantization is calculated using the action

T, /dp+1a\/— det(hags + Fag),

therefore the Gauss law derived from this action is 9;(Tp, &) = 0.
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are [31, 94, 4]

@, X" —FLa.X")| =0 (u=0,--,p), (2.3.6)

0.X"| =0 (i=p+1,---,9). (2.3.7)

o=0

For the directions transverse to the Dp-brane (Dirichlet directions), the Dirichlet boundary
conditions do not change in spite of the existence of the electric field on the Dp-brane. On
the other hand, for the Neumann directions, the uniform electric field Fy3 = £ yields so-called
“mixed” boundary conditions, which relate values of two or more scalars at the boundary.
How can these mixed boundary conditions be understood in terms of only a single particular
scalar, say X° ? Defining new coordinate scalars as X* = (X°+ X?) /v/2, then the above
boundary conditions (2.3.6) along the plane spanned by z° and % reads [8]

=0. (2.3.8)

o=0

(a,Xi + 5aTXi)

A wave solution which respects this phase shift at the boundary o = 0 is easily found as
XE=A, (exp li(T+0 Fa/2)]+expli(T —o + a/2)]) (2.3.9)

where the phase shift « is defined by a relation & = tan(«/2), and Ay is the amplitude of the

wave, normalized as |A| = 1. Hence the expression for the scalar X3 is
X* = V2 (X" = X7) =2V2cos(a/2) (expli(r + 0)] + expli(r — 0)]). (2.3.10)

Here we have chosen A, = —A_ = 1, since this choice satisfies a requirement that the
amplitude of the wave coming in is equal to the one of the wave going out. The expression
(2.3.10) indicates that the boundary condition for X3 is purely Neumann-type, not the mixed
type. In the following, we will see that the above boundary conditions are reproduced in the

BI analysis.

Transverse (Dirichlet) directions

First, let us investigate the Dirichlet directions. For simplicity, we shall concentrate on the
case p = 3 hereafter in this section. Denoting the fluctuation in a direction transverse to both
the attached string and the D3-brane as 7, the equation of motion for this fluctuation is given
by [32]

(1+10:X]7) i — Ap = 0. (2.3.11)
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Substituting the configuration under consideration (2.3.2) and putting the time dependence
of the fluctuation exp(—iwt), then Eq. (2.3.11) becomes

21E gs
[<1+52+ 7:29 cos ) + T95>w +A]n_0 (2.3.12)

where r = /2% + 23 4+ 2% and cosf = z3/r. Now one can see that the dependence on 6 appears
in the equation, therefore the solution of this equation cannot be spherically symmetric. We

should take into account the #-dependence of the solution.

Assuming that the solution does not depend on another variable ¢ in polar coordinates,

we can expand 7 by Legendre functions, a system of orthogonal functions, as
Zm )P,(cos ). (2.3.13)

We require that if one takes the limit & — 0 then the solution should recover the one given in

Ref. [32]. It is possible to construct such a solution, and the result is (see App. A.1)

n(r,0) = né”(r)-(HiPz(ww [2”598“’ lﬁ (i+1) 21—1)]>

=1 i= 1

+(higher order terms). (2.3.14)

In the RHS, the “higher order terms” consist of terms which do not contribute to the phase
of the total wave flux (the magnitude of those higher order waves dump as taking the limit
r — 0. The region r ~ 0 corresponds to the tip of the tube in Fig. 2.5, where the initial and
final states of the wave are defined on the fundamental string.) The spherically symmetric

factor 7760) (r) is the solution of the equation

[(1 + “—i) + %1 ' (r) =0, (2.3.15)

Y

where we have put x? = (1+&?)n%g2w? and y = mgsw/r. This is exactly the same one obtained

in the previous section and Ref. [32], except for the £-dependence of k. Using the tortoise-like

= /jg J1+ K248, (2.3.16)

Eq. (2.3.15) can be rewritten as a Schrodinger-type equation

coordinate

(‘d—2+V(§>>ﬁ=ﬁ, where 7= (1+52/y") (23.17)

The potential V' (§) approaches to a delta-function with infinite area as one goes to the weak
coupling limit g3 — 0. Thus the solution (2.3.14) is subject to the Dirichlet boundary condition
at the weak coupling limit, as expected by the worldsheet prescription in Sec. 2.3.2.
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Longitudinal (Neumann) directions

For the string fluctuation in the longitudinal directions, which is described by the fluctuation
of the scalar X°  we shall follow the argument given in Ref. [123]. Turning on fluctuations
of both the gauge field and the scalar field X?, the authors of Ref. [123] obtained the same
equation (2.3.11), for the fluctuation of the gauge field, n = 0 A;. The fluctuation of the scalar
field, 6X?, is related to 6 A; as

0;A; +0,6X° = 0. (2.3.18)

Therefore the boundary conditions for the 6X? was found to be Neumann-type.

As discussed in Ref. [123], among the various modes in §X°, the physical mode which
precisely corresponds to the fluctuation along the D-brane is the one carrying the angular
momentum [ = 1 in the worldvolume language. The solution (2.3.14) is composed of the
modes of all [, hence it may seem to be difficult to extract only the physical mode mentioned
above. In order to get the physical fluctuation along x3, we shall turn on only §A,. Then the
relation (2.3.18) gives

—iwé X? (z %AZ> = ; (%néo)(r) + %(Wﬁng)Zn(gO) (r)) + - (2.3.19)
The second term in the parenthesis in the RHS stems from the [ = 2 excited part in the
solution (2.3.14), and this mode actually has Dirichlet property. However, taking the weak
coupling limit, this term vanishes (and this is also the case for other terms denoted by “ -.”
in Eq. (2.3.19), which indicate unphysical [ # 1 modes).

The other longitudinal directions (along x' and z?) can be analyzed in the same way.
Summing up all together, we conclude that in the weak coupling limit, for the fluctuations
along the longitudinal directions the boundary conditions are Neumann-type, as expected from

the worldsheet picture.

Due to the change of the frequency parameter  in the differential equation, there remains
E-dependence at finite coupling g;. Calculating the transmitting amplitude, the total power
emanated from the end of the attached string [123] is now (1+£2) times the ordinary flux w¢?.
This result is natural in the sense that in the BI system the speed of light changes under the
uniform field strength background. If we turn on the background electric field in the Bl-scalar
system, the velocity of the fluctuation becomes 1/\/@, as seen when we neglect the terms

originated from the point source in the differential equation (2.3.12). This change can be
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viewed also as a change of the frequency w, therefore, this results in the change of the total

energy flux.

2.3.3 Supergravity analysis

In the previous subsections, we have investigated BI dynamics in the uniform electric field,
for the BPS configurations and the fluctuations around them. For the BPS configuration,
naive force balance ensures the stability of the configuration, and the fluctuations around the
configuration satisfy precisely the boundary conditions expected from the worldsheet analysis
a la Polchinski.

Here we comment on the relation to the supergravity calculation. In Refs. [93, 120], a test
string in the background of supergravity solution of D3-branes are analyzed using the string o
model approach. It was found that fluctuations of the scalar fields on the worldsheet feels the
same form of the potential as in the BI analysis. In our case of the D3-brane with the uniform
electric field, this property would be able to be confirmed in a similar manner. Recently,
the supergravity solution representing the (F,Dp) bound state was constructed [95, 96]. The
worldsheet action of the static probe string (which corresponds to the tube part in Fig. 2.5)

in this background is

, £ 1
\/1+52H

We turn on only the relevant two scalars, X3 (parameterizing the direction along the electric
flux) and X (the radial coordinate in the transverse directions). In Eq. (2.3.20), H and H'

S = / drdo [(H’)1/4H—3/4\/ (XD2+ H(X))? - Xj—— (2.3.20)

are harmonic functions in the transverse space. The explicit form of these functions is

HEl—l—i H =1+ @

X" A+ (X" (2.3.21)

The second term in Eq. (2.3.20) stems from the coupling of the probe string to the non-trivial
NS-NS 2-from background produced by the fundamental strings condensed in the D3-brane.

Near the infinity of the transverse space, two harmonic functions are approximated as H ~
H' ~ 1, hence the static solution lead from the equations of motion is satisfying X} = kX',

where £ is an integration constant. Substituting this relation into the action (2.3.20), we have

~ / drdo X', (m k \/7> / drX, £

\/78> (2.3.22)

(mk

infinity
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Noting that X is positive, the action is minimized at the value £ = £. Thus at the spatial
infinity we obtain the tilted configuration of the string: X; = £X', which is exactly matched

to the configuration considered in Sec. 2.3.1.

It would be possible to analyze the full structure of the potential which the fluctuation
of the string feels, according to the procedure developed in Refs. [93, 120]. Let us define the
location of the “core” of the potential by the value of X | where the first term in the harmonic
function (2.3.21) (in this case, 1) is comparable to the second term (~ 1/X71). Then, the
locations of the cores of the two functions H and H' are different from each other. For this
reason, the potential which the scalar feels, computed in the supergravity formulation, is
expected to be different from the one obtained in Sec. 2.3.2 and Sec. 2.3.2. However, in the
weak coupling limit, two cores may overlap with each other and this potential will reproduce

the appropriate boundary conditions considered in Sec. 2.3.2.

2.4 SYM ingredients from brane techniques

As well as the supersymmetric U(1) gauge theories analyzed in the previous sections, non-
Abelian gauge theories can have their counterparts in the brane description, as explained at
the end of Sec. 2.1. As the Dirac monopole is realized as a D-string attached to the D3-brane,
the "tHooft-Polyakov monopole [141, 116] and the Julia-Zee dyon [89] in 4-dimensional SYM

are realized in the same manner.

In this section we see how solitons such as the monopoles and dyons are realized by brane
configurations. The key which mediates between the conventional SYM picture and the brane
configurations is the D-brane action. When many parallel D-branes exist, the low energy
effective theory describing this system is a non-Abelian generalization of the BI action [146]'!.
Unfortunately, the precise form of the non-Abelian BI action is still beyond the reach of us
due to the complexity of the derivation of the action [60, 114, 148, 10, 68, 26]. However,
since in the U(1) case the classical BPS solution have the same form for the BI system and
the linearized Maxwell system. Thus we expect that this is also the case for the non-Abelian
effective theory [25, 64, 73, 69]. In the following, we believe this assumption and adopt the
SYM analysis instead of the fully non-linear treatment. We follow mainly Ref. [64]. (See Ref.
[25] for the non-Abelian BI analysis.)

HThe related references before the appearance of the D-brane are Refs. [62, 44, 143, 144, 3].
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The action of the bosonic part of the 4-dimensional N” = 4 SYM is given by'?
1 1 1
§= - [dw (G5 + (D a2y 2.4.1
[ (S ). 241
where we restrict our attention to the case of two parallel D3-branes on which SU(2) SYM is

induced. The definition of the field strength and the covariant derivative is

Fu = 0,A5 — 0,A% + ¢ AL AS, (2.4.2)
D,®} = 9,97 + " AL &5, (2.4.3)

where the index ¢ runs from 1 to 6, thus specifies the directions transverse to the D3-brane.

In the following, we shall turn on only a single scalar field.

One of the candidates of the D-brane action describing low energy dynamics of many

parallel D-branes is the following symmetric-trace version of the non-Abelian BI action!3:

S = —TpsStr / d4x\/ — det (n,“, + T F + DHXD,,X). (2.4.4)

Expanding the square root and the determinant in the action and picking up the terms
quadratic in the field strength and DX, then we obtain

1 1
S~ ~Ts Tr [ d's (ZszFQ + —(D#X)2> . (2.4.5)

D
Comparing this action with the above SYM action (2.4.1), we get the correspondence between
the ordinary SYM variables and the string-theoretical variables as
I Tps 1
g 2I¢  Amg

O(r) = Ty X(r), (2.4.6)

Here we have identified the gauge field in the SYM action (2.4.1) with the one on the D-brane.

2.4.1 Realization of ’tHooft-Polyakov monopole and Julia-Zee dyon

It is almost evident that a D-string suspended between the two D3-branes corresponds to the
‘tHooft-Polyakov monopole. This is easily seen by considering the charges of the configuration

as in the case of the W-boson which was explained at the end of Sec. 2.1.

The explicit configuration of the tHooft-Polyakov monopole was given in Ref. [118] using

the spherically symmetric ansatz

A = €415(1 — K(1))/r, Ay =1,J(r)/r, O =1, H(r)/r. (2.4.7)

12We are using the following normalization of the group generators: Tr T°T" = §%°/2.
13In this section, we normalize the factor Tf_1 in front of X in the square root.
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The monopole solution is given by
K(r) = Cr/sinh(Cr), J(r) =0, H(r) = Crcoth(Cr) — 1. (2.4.8)

The eigenvalues of the scalar field ® represent the location of the surface of the two D3-branes.
After diagonalization, the eigenvalues are

B(r) = + (c coth(Cr) — 1) | (2.4.9)

r

Therefore at the infinity of the worldvolume, the eigenvalues approach to some constant values.
The effect of the D-string disappears at the infinity, hence these values give the locations of
the two D-branes through the relation (2.4.6). The separation A of the D3-branes are

A =C/T;. (2.4.10)

Reading the asymptotically next-to-leading order terms from the eigenvalues, we have

A 1
Xn~=— .
2 2Tf T

(2.4.11)

From the 1/7 behavior, the magnetic charge placed at the origin is given by c(m) = m, using
ls = 1. This charge is precisely the one given in Sec. 2.2.1. Writing the mass of the monopole

in terms of the brane language,

47 C Tf

Mass = —— = —A = Tp,A. (2.4.12)
Iym g

Hence the mass is correctly reproduced by the naive brane picture. This feature was important
in the previous sections for the justification of the interpretation by Callan and Maldacena.
Now for the soliton configuration in non-Abelian theories, the field theoretical properties are

seen to be reproduced from the brane technique.

The analysis above is easily generalized to the case of the Julia-Zee dyon. In this case, as
easily recognized, the suspended string in the brane picture is a (p, ¢)-string, which is a bound
state of p fundamental strings and ¢ D-strings. The explicit field theoretical solution given in
Ref. [118] is

Cr

Cr Cr
K(r) = sinh(C'r)

,ﬂm:gmqtaagﬁ—q,Lmq:mmyk&ﬂa§—4@4w)

This dyon consists of the clouds of both the electric charge 4w sinh~/gyy and the mag-

netic charge —4m/gyy. Quantum mechanically, the electric charge should be quantized as
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Figure 2.8: The diagonal eigenvalues of the scalar field of the 'tHooft-Polyakov
monopole. The corresponding brane configuration is depicted in Fig. 2.7.

4 sinh v/ gyy = pgym, where p is an integer. Using the correspondence (2.4.6), we obtain a

relation
pg = sinh 7. (2.4.14)

The brane separation is calculated from the eigenvalues of the solution for the scalar field

(2.4.13) in the same manner as
A = C coshv/T;. (2.4.15)

Using these relations (2.4.14) and (2.4.15), the mass of the dyon is rewritten in terms of the
brane language as
ArC

Mass = (coshy)*—— = T(p,A. (2.4.16)
Iym

Here we have used the following formula for the (p, ¢)-string tension
4T

Tp.q) = To1y/ (p9)? + ¢* = cosh Lt (2.4.17)
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with the magnetic charge ¢=—1 of the solution (2.4.13). We have seen again the agreement

between the two pictures.

2.4.2 W-boson and S-duality

As for the W-boson, since there is no classical configuration representing it, the direct applica-
tion is impossible. However, since the S-duality in the type IIB superstring theory exchanges
a D-string by a fundamental string, we can use the monopole configuration instead of the W-
boson. Let us see the consistency of the above brane picture with the S-duality. The reasoning

in the following is similar to the one presented in Sec. 2.2.1.

D3-branes are invariant under the S-duality, because at the supergravity level, the self-dual
4-form gauge field which couples to the D3-brane is left intact under the S-duality transforma-
tion. Driven by this fact, Tseytlin showed by an explicit calculation that the D3-brane action

is invariant under the electric-magnetic duality [145]. He used the following Abelian BI action

5= [da <\/det(5u,, T F/V) + %AHV(FM,, - 2@4,,)) | (2.4.18)

which is written in Euclidean notation and the field A, is a Lagrange multiplier with anti-
symmetric indices. Then integrating out the gauge field A, from the action (2.4.18) gives the

following action

5= [t <\/det(5u,, n ﬁu,,@) , (2.4.19)
where we have introduced the dual gauge field and its field strength by
M = €upe0pAy,  Foy = 0,4, —0,A,. (2.4.20)

Therefore, in our notation, the S-duality makes the exchanges

1 g G
Ths = — L, = . 2.4.21
D= gl e Ty (2.4.21)

If we keep only the quadratic terms in the same way as before, the dualized action in terms

of the original variables are found as

_ __Tr/d4 (4ij v Tf (D, X) ) (2.4.22)
Comparing this action with the ordinary SYM action (2.4.1), we obtain the correspondence
1 1
O(r)=—X(r), 5 =-L (2.4.23)
[Y gym  Am
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Using this correspondence, it is straightforward to check the mass and the charge of the
monopole . From the asymptotic behavior of the monopole solution provides the brane sep-
aration A = Cg/T; and the charge ¢® = 7g which coincides with the one given in Sec. 2.1.
The mass of the monopole in this S-dual theory is equal to T;A, which is identical with the

energy of the stretched fundamental string.

2.4.3 Nahm construction and D-string realization

In the above realization, monopoles are constructed using the suspended D-strings or (p, q)-
strings. Since also on this string there is an effective theory describing the string dynamics,
naively one expects that the same brane configuration can be described by this worldsheet
gauge theory. In Ref. [43], the worldsheet gauge theory of the D-strings ending on the D3-
branes is identified with the SU(2) monopole moduli space of ADHMN construction [106, 107]
in a 4-dimensional supersymmetric Yang-Mills-Higgs system. This work [43] provided an
intriguing example justifying the fact that the brane techniques give clear understanding of

the conventional solitons in a geometrical manner.

The 2-dimensional effective theory on the D-string is obtained by dimensional reduction

of the 10-dimensional SYM [152]. Thus the relevant 2-dimensional action is'
2 1 v Yo erpuer | Lier e
S = TDI /d X TI' |:_ZF;LVFM + §D#€ D#é- + Z[g ,6 ] + Sf. (2424)

Here Tp; is the tension of the D-string. The D-string extends in the direction (01), and the
eight scalar fields £/ (I = 2,---,9) contained in the above action represent the transverse
fluctuation of the D-string. This system possesses (8, 8) supersymmetry (we omit the fermion
terms Sy for convenience). From the action (2.4.24), we have the following expression for the

energy of this system:
1 1
U =Ty /dx 5 [52 + (Dog”)? + (Dag")? = 5[, 7P| (2.4.25)
The coordinate x = 2! denotes the spatial direction of the worldsheet, and £ is the electric

field. With this energy formula, we shall study the BPS nature of the 2-dimensional system.

When one deals with a single D-string, the scalar and the gauge fields are Abelian, and
hence there is no potential term. All the scalar fields decouple from each other. First, let us

turn on only one scalar field S = £2, since we expect that the dyonic string will be realized

14Tn this subsection we put Iy = 1 and rescale the fields as 274 — A and 27¢& — €.

32



by turning on the electric field on the brane and this scalar field is necessary for preserving
some supersymmetries, as in Sec. 2.3.1. Then the (z, S(x))-plane (which is equivalent to the

(€', £?)-plane) is interpreted as a 2-dimensional plane on which the string lies.

The supersymmetry transformation of the gaugino is

6)\o¢z' =2 [(0’05'1 - 0'15'0 ﬁCgZ‘g

[0}

+ (6%5% — 6%5%) FC5iDoS + (0'5° — 0361)ngiD1S] . (2.4.26)

where i denotes the index of SU(4) subgroup of R-symmetry, and « is a spinor index. With
the BPS condition

the transformation (2.4.26) vanishes if half of the supersymmetry parameters (,; are set equal

to zero'®:

Gy = 0. (2.4.28)

Thus half of the 16 supersymmetries of the D-string effective theory are preserved with the
BPS conditions (2.4.27) 5. Adopting the gauge A; = 0, a solution of (2.4.27) is found under

the requirement of time-independence of the configuration as[42]
Ag = £8S. (2.4.29)

This BPS condition is independent of the worldvolume dimension considered, as seen in Ref.
[32]. Due to the Gauss’ law, the electric field on the D-string must be a constant. Thus this
corresponds to the fundamental string (see Sec. 2.3), and the resultant configuration is the

(p, 1) string [152]. Using a proper BI Hamiltonian, the energy of the (p, 1) string is reproduced.

To describe the perpendicular D3-branes in the D-string worldsheet gauge theory, we turn
on three more scalar fields X' = £*2 (i = 1,2,3), which are interpreted as coordinates
parameterizing the D3-brane worldvolume. This means that the D3-branes extend in the

direction (0345). Together with the previously considered fields, Ay and S, the energy formula

15The 2-dimensional fermion is denoted as ¢ = ({—,¢y)7.

16The number of the supersymmetries which the (p, ¢)-string preserves in the target space is 16, not 8. The
rest 8 supersymmetries would be supplied from the non-linearly realized supersymmetry [9, 131]. The reason
why we impose a condition that the 8 supersymmetries are preserved is for the latter convenience in deriving
the BPS conditions for string networks in Sec. 3.1.2.
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becomes

U=~/  dv T [ (£ £D1S)” + (DoS)?  2D1 SE

+(DeXH? + (D, XH? — [S, XT)? - %[Xi,Xj]Q] . (2.4.30)

The gauge group is chosen to be SU(2) for a reason that will be explained below. The D-string
terminates at © = 2*), where the D3-branes are located. Thus this theory is defined on the

spatial interval z(7) < z < ().

In the presence of the scalar fields X?, the equation of motion for the electric field reads
D€ +i[X", Dy X"] = 0. (2.4.31)
With the help of the resultant relation
Tr2D,SE = Tr20,(SE) +iTr2[S, X' Do X", (2.4.32)

the energy (2.4.30) is bounded in the same way, except for the terms consisting only of the

scalar fields X?, as
U =Ty /dx %Tr [ (€ £ D1S)? + (DoS)* ¥ 20, (S€)
+(D0Xi F i[9, XZ'])2 + (D X")? — %[Xi,Xj]Z ] . (2.4.33)
For the last two terms consisting of X*, we have the identity

e [(DyX7)? — 5[Xl,XJﬂ

2
-y (Dle + % > e”kXJX’“) ¥ é’al Tr(é*XIXIXF).  (2.4.34)

) g,k

Hence, finally the energy is bounded as follows:
1 : .
U =T, /dx ST [(5 + DyS) + (DoS)” + (DoX' F i[S, X))

- 2

+ (DlXi + %eij’“XjX’“> ]

e i o ()

FIon Te[SE] | F Tpr5 Tr [P XXX

Z gboundary + 8D3 (2435)

where Epoundary 1S the energy contributing to the mass of the (p, 1)-string, and

e

i i i
Epy = Tpi 5 Tr €7 X XJX’“LH. (2.4.36)

34



Therefore, the conditions for saturating the energy bound are, in addition to (2.4.27),

Do X" Fi[S, X"] =0, (2.4.37)
D X'+ TR XIXF = . (2.4.38)

In order to solve these BPS equations, (2.4.27), (2.4.37) and (2.4.38), first note that Eq.
(2.4.37) is trivially satisfied with the previous BPS condition (2.4.29), which is a solution of
the conditions (2.4.27). Thus we are left with Eq. (2.4.38). If we substitute the gauge fixing
condition A; = 0, this remaining condition (2.4.38) is the Nahm equation for the construction
of monopoles in ADHMN method [106, 107].

In Ref. [43], the relation between this Nahm equation (included in Nahm data) and the
D-string approach in string theory was discussed. To precisely compare our situation with the

Nahm data, we choose the interval defining the worldsheet to satisfy

o) = i21 (2.4.39)
a

(). Tt is claimed in

without loss of generality. D3-branes are located at these boundaries, x = x
Ref. [43] (for related discussion, see Ref. [149]) that the boundary conditions which represent

k finitely separated D-strings terminating on the D3-branes are

. T
b <z ~ if> (2.4.40)
where new rescaled variables are defined as X* = FiX* /a, z = ax, and the matrices T* define

an irreducible k-dimensional representation of SU(2):

[T, T7) = ekT*, (2.4.41)

The asymptotic expression (2.4.40) with (2.4.41) is actually a solution of the Nahm equa-
tion (2.4.38) near the boundaries. The scalar X diverges at the boundaries, and this implies
that there are D3-branes there. Equation (2.4.40) is consistent with the fact that in the D3-
brane worldvolume gauge theory,[32] an attached D-string is represented as |z — z(*)| ~ 1/r

with 7 ~ | X?|, at r ~ oo.

It should be noted that for & = 1 the solution of the Nahm equation is trivially a constant'”.

Extending this trivial solution, one finds that a constant diagonal matrix also satisfies the

"With this Nahm data, one can construct a single BPS monopole solution [118, 23] using the ADHMN
method.
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Nahm equation (2.4.38). Though this vacuum is ordinarily adopted, it belongs to a reducible
representation of SU(2) in the Nahm language. The author of Ref. [43] asserts that the
reducible representation indicates that D-strings exist infinitely far from each other, and that
a configuration of finitely separated D-strings should satisfy an irreducible boundary condition.
Furthermore, with a constant diagonal matrix solution, it is impossible to incorporate the effect
of the D3-branes. Thus we take the simplest choice £ = 2 in the following. Therefore we set
T = 0;/2i.

Let us check the consistency in terms of the energy bound. The term &p; in the energy
bound (2.4.35) is expected to involve the energy of the D3-branes at the boundaries. In fact,
estimation of (2.4.36) by substituting Eq. (2.4.40) leads us to the relation

1 1
Eps =T —7———= + I . 2.4.42

This expression is independent of the length of the interval (the parameter a), and diverges

correctly as 73, which indicates the volume of the D3-brane.
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Chapter 3

String Junction and 1/4 BPS Dyon

= Chap. 2, conventional solitons such as monopoles and dyons are realized by the

. brane configurations. As explained in the introduction, owing to the rapid progress
in the string theory side, now the brane technique provides new predictions and results of
particular field theories. One of the most interesting one is the prediction and the construction
of 1/4 BPS solitons in N' = 4 SYM, which was motivated from the discovery of the string
networks. The string network is composed by string junctions, and is found to be stable and
preserving 1/4 supersymmetries in the target space. A naive extrapolation of the results for
the conventional solitons explained in Sec. 2.4 leads to a prediction of the existence of new

solitons, corresponding to the configuration of Fig. 3.1.

In this chapter, after reviewing the basic properties of the string junction (network) in
Sec. 3.1, we present in Sec. 3.2 an extended review of the notable work [20] by O. Bergmann
who predicted the existence of this soliton. Then in Sec. 3.3, based on my works [72, 73]
in collaboration with H. Hata and N. Sasakura, we provide an explicit soliton configuration
corresponding to this string junction'. After explaining our strategy to solve the Bogomol'nyi
equations, we investigate some properties of our solutions, and give exact solutions in the case
some of the free parameters of the general solutions take certain values. In Sec. 3.4, we show
in detail the features of our exact solutions for SU(3), SU(4) and SU(5) as examples. Various
interesting properties of the solutions are also discussed there. In Sec. 3.5, we calculate the
long-range force between two dyons in the SYM theory, and find the consistency with the idea
that a three-pronged string can be produced as a bound state of two strings. Sec. 3.6 contains

summary of this chapter and discussions. In App. B, we show that our solutions satisfy the

'While the paper [73] was in the final stage of preparation, an article [82] appeared which has an overlap
with our discussions on exact solutions for general N.
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equations of motion of the non-Abelian BI action, and the other appendices contain several

formulas used in the text.

D3 (D2, q2)
(p1,q1)

<

D3

N

(p?n (]3)

D3 Figure 3.2: Three (p,q)-strings
meet at a junction and form a
three-pronged string.

Figure 3.1: A string network is
terminated on three D3-branes.

3.1 Properties of the string network

The string network is used everywhere now in various situations in string theory. It was
conjectured originally in Ref. [125] that a three-pronged string would exist as a stable state
possessing the following properties: the forces from the three strings is balanced, and the 2-
from charges of the three strings conserve at the junction. The BPS feature of such a pronged
string has been shown by several authors in both the string picture [42, 119, 133] and the M-
theory picture [88, 103, 83]. The relations to the field theory BPS states have been investigated
in several contexts [52, 51, 77, 104, 134, 20, 21, 22].

3.1.1 Pronged string as a 1/4 BPS configuration

A naive expectation is that the three (p, ¢)-strings can join with forming a junction where the
force is balanced and the (p,¢)-charge is conserved [125]. These two conditions are written

explicitly as

3 3 3
Yopi=26=0 > Tpghi=0, (3.1.1)
=1 i=1 =1

38



where (p;, ¢;) is the NS-NS and R-R charges of the i-th string, and the vector n; denotes the
direction of the i-th string (see Fig. 3.2).

We follow Ref. [133] showing that the three-pronged string satisfying these two conditions
(3.1.1) preserve 1/4 of the target space supersymmetries. Let us put the pronged string on
the (89)-plane. It is easily checked that the following assignment of the vectors provides the

force balance at the junction point:
n; = (cosb;,sinb;), (3.1.2)

where the angle 6; is defined as 0; = Arg(p + iq/g). The supersymmetries which the (p,q)

string directed along this vector n preserves are [76, 133]
e, +ieg = T - T(ep, — ieg), (3.1.3)

where T'M are the 10-dimensional gamma matrices. Substituting the definition (3.1.2) for
all 7 into the above supersymmetry constraint, then only for the three-pronged string which

satisfies the charge conservation condition, eight target space supersymmetries are unbroken:
e, = T3, er = T8, er, = [T %g. (3.1.4)

Thus at least at the spatial infinity, the three-pronged string is a 1/4 BPS state and hence
stable. Connecting many string junctions by component strings, then we obtain a string
network. If at all the junction point forces are balanced and the charges are conserved,
then it is evident that the whole configuration of the network preserves 1/4 of the original 32
supersymmetries. This is due to that fact that the remained supersymmetries are independent

of the charges of the component strings, as seen in Eq. (3.1.4).

3.1.2 Realization of pronged string in 2-dimensional gauge theory

Unfortunately, any supergravity solution representing the pronged string has not been con-
structed, hence the field theoretical realization of the pronged string is important for the
investigation of the pronged strings. First we review the considerations given in Ref. [42]?,
where a three-pronged string is realized as a configuration of a 2-dimensional worldsheet ef-

fective gauge field theory on a single D-string. The action of this theory is Eq. (2.4.24).

In the picture of the type IIB superstring theory, the configuration of the pronged string

preserves eight of the original 32 supercharges. By the existence of the D-string on which

?See also Ref. [54].
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we carry out computations, the supersymmetry is broken to half of the original supersymme-
tries, i.e., 16 supercharges in 2 dimensions are preserved at this stage. Therefore the junction
configuration observed from the D-string standpoint is expected to preserve half of the 16
supercharges. As seen in Sec. 2.4.3, the BPS condition (2.4.29) left the eight supersymme-
tries unbroken, thus this condition (2.4.29) is expected to be the one for the pronged string

configurations?.

In the D-brane worldvolume theory, a fundamental string attached to it and extending in
the transverse direction is described by a source of the gauge field on the D-brane, since the
charge of the string should be conserved at the endpoint of the string as seen in the previous
chapter. For the case of a Dp-brane with p > 2, one can regard a “spike” configuration around
the source as a fundamental string [32]. On the other hand, this is not the case when the
body in the D-string (p=1), because it has only one spatial dimension and the source does

not form a spike. The equation of motion for the electric field with a source located at x = x,
D& = ngd(x — xy), n ez, (3.1.5)
has the following BPS solution’:

pg(x — x0) + ¢, (z < o)
Ay =S = 3.1.6
° { (pg — ng)(z — m0) +q. (x> x0) (3.16)
Here g is a string coupling constant equal to the fundamental electric charge, and the charges

n and p are integral numbers since electric flux on the D-string is quantized [32].

As seen from the solution, the scalar field S is a linear function of z. There is a kink at
x = xo (see Fig. 3.3), and at this point the electric charge is altered by ng. The authors of
Ref. [42] interpreted this situation as follows: n invisible fundamental strings® are attached
to the D-string, and they form a string junction at ©x = xy. Now the D-strings have electric
charges, thus they are interpreted as a (—p, 1) string® (for z < x¢) and a (p—n, —1) string (for

x> Tp).

This interpretation is justified by the fact that force balance condition is satisfied at a

junction point. Naming the regions x < xy “string 17, z > xy “string 3”, and the invisible

3BPS properties of the multi-pronged string are investigated using the worldsheet approach in Ref. [33] in
another way.

4We adopt the upper sign in Eq. (2.4.29) without loss of generality.

SRef. [42] deals with the case n = 1. Though the state with |n| > 2 is marginal, our treatment in the
following sections requires this marginal state.

6The charge of a string is defined as the one following a direction oriented toward the junction point.
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string 2

/\ N
/ 0
string 1 string 3

Figure 3.3: The solution (3.1.6) representing a three-pronged string. The dotted line denotes
the invisible fundamental string.

fundamental string “string 2”7, the tension of each string is read from their charges as

1 1
T, =T,p* + —, T, =nT, T3 =Ty/(n—p?+ —, (3.1.7)
g g

where T is the tension of a single fundamental string, 7" = ¢Tp,. If we assign this tension to
each region of the solution, one can confirm that the following force balance conditions are

satisfied at the junction point x = 2. One is in the horizontal direction (parallel to ),

1

(3.1.8)
\/ (pg)? \/ 1+ (pg — ng)?
and the other is in the vertical direction (parallel to the string 2),
Ty ng — Py (3.1.9)
\/1+ pg)? V1+ (pg — ng)?

A tree web with more prongs can be constructed straightforwardly in the same way. One
can see that at every junction point the force balance conditions are satisfied if the charges

are conserved there.

In this way of realizing the pronged string, the component strings (strings 1, 2 and 3) are
straight and infinitely long. Thus the configuration favors the SL(2,7) S-duality symmetry
as discussed in Ref. [42].

For further justification of the above interpretation (presented in Ref. [42]), let us investi-

gate the energy bound of this configuration. The energy formula (2.4.25) with a single scalar
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field S is written as
U =Tp /dx %Tr [£2 + (DoS)? + (D15)’]
= Tiy /dx %Tr (£ £ D1S)? + (DyS)* F 2D, S €]
= Tp / da % Tr [(€ + D1S)? + (DyS)* F 20,(SE) + 25D, €] (3.1.10)

Therefore using Eq. (3.1.5), the energy is bounded by some boundary charges and a source

contribution as follows:
U >| Esource + Evoundary |, (3.1.11)
where
Esource = —Ip1ngS(x = x9) and  Epoundary = ID1 [Tr SS} J_rz (3.1.12)

The equality in (3.1.11) holds when the BPS conditions (2.4.27) are satisfied.

The term Eouree indicates that there actually exists a fundamental string 2, since we can

express the source contribution as
Esource = 1T’ (—S(ZL‘ZQL‘O)) . (3113)

The value S(z=x,) denotes the coordinate of the endpoint of the fundamental string. Thus
its length is |oo — S(z = xy)|. Equation (3.1.13) appropriately represents the energy of the
fundamental string with this length.

On the other hand, one can see that another contribution to the energy, Epoundary, represents
strings 1 and 3. Since Epoundary is divergent with non-zero n, we restrict the domain of z to
the interval [—L, L] for evaluating this term. Then for the solution (3.1.6), we have

+L

5b0unda.ry =1 [TI' Sg] I
= Tp1 [(pg — ng)*(L — o) + (pg)*(L + x0)]. (3.1.14)
Here we have assumed that L is sufficiently large, so that zo € [—L, L]. In order to see that
the strings attached to the boundaries + = £ have tensions 77 and 73, we move the junction

point by dxy (> 0) in the z direction (see Fig. 3.4). The energy changes as a result of this

horizontal translation by

65boundary = 65boundary (xO + 5l‘0) — 65boundary (xO)

= Tpa [(p — n)’9” — p*9*] 0o (3.1.15)
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Figure 3.4: Moving the junction point by dz( in the x direction.

This expression is consistent with the naive argument from the string picture; in other words,
Eq. (3.1.15) can be written in the form

|55b0unda.ry| = TI(SZI + T3513 (3116)

with the variations of the length of string 1 and 3

0l = dxon/1 + (pg)?, 3y = —5:v0\/1 + (ng — pg)?. (3.1.17)

We have seen that the energy bound (3.1.11) appropriately reflects the energy of a three-
pronged string with no endpoint. Now the interpretation presented in Ref. [42] has been justi-
fied also from the viewpoint of the BPS energy bound, where necessary information regarding
the energy of the three-pronged string is encoded in Eq. (3.1.11). In particular, among three
component strings, the existence of the invisible fundamental string (string 2) is guaranteed

by the source contribution of the energy bound.

3.2 1/4 BPS states in 4-dimensional SYM from multi-
pronged strings

3.2.1 Prediction from string theory

As explained in Chap. 2, particular sorts of field theories have their counterparts in string

theory, as a low energy effective theories on D-branes. A typical example of such interplay
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is given by the 4-dimensional A" = 4 SU(N) SYM broken spontaneously to U(1)¥~. As we
have seen in the previous chapter, this theory can be studied as an effective field theory on
N parallel D3-branes [152, 145, 61]. The invariance of D3-branes under the SL(2, 7) duality
transformation of the type IIB superstring theory implies the SL(2, Z) duality symmetry of
the N' =4 SYM [105, 132]. The (£1,0) strings stretching between different D3-branes preserve
1/2 supersymmetry of the D3-brane world volume and appear as the massive W-bosons of
the broken gauge symmetries in the field theory. The SL(2, Z) duality symmetry implies the
existence of other BPS states of the field theory corresponding to the general (p,q) strings
with relatively prime integers p and ¢. The states with (p,£1) are monopoles and dyons,
the field configurations of which are explicitly known in the form of the Prasad-Sommerfield
solution [118]. The existence of the states with ¢ = 2 was shown by the quantization of the
collective modes of the two monopole solutions [132], while the existence of the states with
q > 2 was discussed in [130, 117].

On the other hand, as we have seen in Sec. 3.1, these suspended strings are possibly general-
ized to the multi-pronged strings. This configuration preserves 1/4 of the 32 supersymmetries
in the type IIB superstring theory (3.1.4), and thus a BPS object. Therefore, it is natural to
expect a configuration depicted in Fig. 3.1, in which legs of the three-pronged string are ter-
minated on the D3-branes. This configuration is possible since strings with any (p,q)-charges
can end on D-branes due to the invariance of the D3-branes under the type IIB S-duality.
Furthermore, the configuration of Fig. 3.1 preserves 1/8 of the original supersymmetries: the
existence of the parallel D3-branes along the (0123) directions put the following constraint for

unbroken supersymmetries
e, = DT TR, (3.2.1)

This constraint preserves a half of the supersymmetries originally preserved by the multi-
pronged strings (3.1.4). From the viewpoint of the D3-brane worldvolume theory, the number
of the preserved supersymmetries is 1/4 of the NV =4 SYM.

How can this pronged-string be seen from the field theory side? Bergman presented the
resolution of this question [20]. He obtained an evidence for the existence of the corresponding
1/4 BPS states in the N' =4 SU(N) SYM theory with N > 2, showing that the mass of the
three-pronged string agrees with the mass of the corresponding field theory state under the

assumption of its BPS saturation. In the following, we give an extended review of his work
[20].
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In that paper, however, the configuration itself in the field theory was not obtained. Such a
1/4 BPS state was shown to have non-parallel electric and magnetic charges [20, 49], and this
fact makes it a non-trivial issue to solve the equations of BPS saturation. The first explicit
construction was given by me and collaborators [72, 73]", and this will be explained from the

next sections.

3.2.2 BPS bound and Bogomol’nyi equations

Although first predicted in Ref. [20] for the specific example of the SU(3) case, we treat here
general SU(N) case. This enables us to consider the BPS saturated solutions which correspond

to the string theory BPS states of multi-pronged strings connecting N D3-branes®.

The properties of supersymmetry-preserving states are constrained by the supersymmetry
algebra including the Hamiltonian which determines the mass of the state. We consider 4-
dimensional N/ = 4 SU(N) SYM. Omitting the fermionic terms, the energy of this system

reads,
U= / d%% Te {(B:)* + (&) + (DiX)* + (DiY)? + (DoX)* + (DoY) = [X, Y]}, (3.2.2)

where & = Fy; and B; = 1/2¢;;,Fj;, are the electric and magnetic fields, and the covariant
derivative is defined by D, X = 0,X —i[A,, X]. We have put the Yang-Mills coupling constant
equal to one, and shall consider the case of vanishing vacuum theta angle. In Eq. (3.2.2), we
have kept only two adjoint scalars, X and Y, among the original six which should describe
the transverse coordinates of the D3-branes. This is because we are interested in the multi-
pronged BPS string states preserving 1/4 of the supersymmetry, and such string networks

must necessarily lie on a two-dimensional plane.
In this chapter we assume the D-flatness’ [X,Y] = 0. To derive the BPS saturation
condition, we rewrite the energy (3.2.2) as [49]
1
U= /d3x§ Tr {(Sl cosf — B;sinf — DZ-X)2 + (B;cos @ + & sinf — DiY)2

+(DoX)* + (DY )’} + (Qx + My) cos 0 + (Qy — Mx)sin®,  (3.2.3)

"See also Ref. [91] for the construction using the ADHMN formalism.

8The following analysis is base on the paper [73], and the case with specific SU(3) case was discussed in
Ref. [72].

9Due to the D-flatness, we can diagonalize X and Y simultaneously and hence consider definite D3-brane
surfaces described by the eigenvalues of X and Y as we shall do in later subsections. The Bogomol’'nyi equations
without imposing the D-flatness are given in Refs. [82, 91]
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where 0 is an arbitrary angle, and ()xy and My y are defined by

Qx = / &z Tr (E:DiX) = / dS; Tr (§:X), My = / &z Tr (B;D; X) = / dS; Tr (B, X) .
r—00 r—00

(3.2.4)
Since each term in the integrand of (3.2.3) is non-negative and 6 is arbitrary, we obtain the
BPS bound:

U > Egps = (Qx + My)? + (Qy — My)®. (3.2.5)

The lower bound in (3.2.5) is saturated when the following conditions hold:

D;X =&;cosf — B;sinf, (3.2.6)
D;Y = B;cosf + &;sin b, (3.2.7)
[X,Y] =0, (3.2.9)
with the angle 6 given by
. Qy — Mx Qx + My

sinf = ————, cosf = ———. 3.2.10
Egpg Egpg ( )

In addition to the four equations (3.2.6)—(3.2.9), we have to impose the Gauss law,
D& =0, (3.2.11)

since we used it in converting the volume integration of Q) x y (3.2.4) into the surface one. Note
that Eq. (3.2.10) is an automatic consequence of the two equations (3.2.6) and (3.2.7) and need
not be imposed independently. In the next subsection, we show that the SYM configurations

satisfying Eqs. (3.2.6)—(3.2.9) preserve 1/4 supersymmetry.

3.2.3 Supersymmetric aspects of the solution

It was argued in [49, 20] that the solution with non-parallel electric and magnetic charges has

1/4 supersymmetry. Here we shall examine this property in detail.

The Lagrangian of the 4-dimensional A" =4 SYM is given by [113]

1 a va i_a a 1 a 1 a
L= _ZFWFH + 5)‘K’Y“Du>‘K + §(DuAi)2 + §(DuBz' )?
i 3@ i oY) c
—§gfabc>\K(aKLA? + ZBKL’Y5B£))>‘L
1

—7 ((fabcA?A§)2 + (funeBYBS) 42 (fabcA;?B;f) L (3212)
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where K and L are the indices of the 4 representation of the SU(4) R-symmetry. The matrices

«a and [ span the antisymmetric part of 4 x 4, which transform in 6:

01 O3 iO’Z
= ( ) ) Qi = ( ) ) a3 = ( . )
—01 —03 109

61=<7;02 i02>a 522(_1 1), 53:<_w? i@)' (3.2.13)

Here o; denote the Pauli matrices. The Lagrangian is invariant under the N/ = 4 supersym-

metry transformation. The supersymmetry transformation of the gaugino is given by

—1

oAk = |5 0" Fu = i7" Dy (o' A; + i B:)

+%g€ijkak[14ia Aj] + %gﬁijkﬁk[Bia Bj] + gazﬂj [Aia Bj]% KL €r, (3-2-14)

where the parameter ¢;, denotes a Majorana spinor.

In investigating the supersymmetric aspects of our solutions, we identify (As, B3) with
(X,Y) and put A, and B3 equal to zero due to the SO(6) (~ SU(4)) R-symmetry of the
action. Plugging the Bogomol'nyi equations (3.2.6)—(3.2.9) into the above supersymmetry

transformation (3.2.14), we obtain
. % ) a l i a
P a— —Z(O’O 6KL + Y O‘%(L)gi - (50—]6ijk5KL — 7k756?(L> Bk :| €r,. (3215)

Since the angle 6 can be absorbed by a rotation in the (X,Y’) plane, we have put § = 0. In
our solutions the electric and magnetic fields behaves differently from each other, and thus we

obtain two constraints'® on ey

0 o (ioy 0 0 o _
(o 5 =i (5 ), (o 5=

o, 0 [ —tos O o; 0 _
l&KL ( 0 Ui) +1 ( 0 i02>KL ( 0 _Ui>] er, = 0. (3.2.16)
Representing the Majorana spinor €;, by a Weyl spinor 7,
¢ — (ZUZ"L> , (3.2.17)
Ui

00ur convention of the Dirac matrices are

0 _ 1 i _ i _ 1 ,uu_i oAV
7—( 1) 7= L, o=l ) =5
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and substituting (3.2.17) into (3.2.16), we find the conditions

Lo m I — m
T, s | = T, s | = 0. (3.2.18)
i1 T4 i1 M4
The solution is obtained as
N = armn, (ala ag, ag, 0,4) = 67393 (07 07 ia 1) ) (3219)

where 7 is a constant Weyl spinor. Thus the BPS states discussed in this chapter preserve one
supersymmetry (3.2.19) out of the original four, and the phase factor in Eq. (3.2.19) indicates
the remaining U(1) R-symmetry.

In this N' = 4 system, we have two independent central charges Qx and My after an
appropriate SO(6) R-transformation (a subgroup of this transformation is used to put 6 to

zero. The formula for the lower bound of the energy is given by

1
U= /d3x ST {(EFDX) + (BFDY) + (DoX)’ + (DoY) = [X, Y} & Qx + My

> max{ |Qx + My|, |Qx — My] }, (3.2.20)

which depends on the relative sign of the charges () x and My-. Though we solve only one of the
two cases in this chapter, this is not essential because the Bogomol’'nyi equations of another
case are just obtained by the substitution X — —X. Since our solutions have non-zero Q) x
and My, their masses saturate either | Qx + My | or |Qx — My|, and not both. Generally,
states saturating & bounds are generated by 2(N — k) fermionic creation operators made of the
supercharges. Hence our BPS configuration of SYM belongs to a supermultiplet with n x 26
(n: integer) components. This implies that this multiplet contains states with spins higher

than or equal to 3/2.

3.2.4 SYM solutions and the IIB picture of string networks

In this subsection, we shall discuss the asymptotic (r — 0o0) behavior of the solutions and
its relation to the IIB picture of the string networks. Suppose that we have a static solution
(A,(F), X(F),Y(f)) to the equations (3.2.6)—(3.2.9) and (3.2.11), and that their asymptotic

forms are, after a suitable gauge transformation, given (locally) as follows:

1
X ~ diag(z,) + o diag(u,), (3.2.21)
r
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1
Y ~ diag(y.) + o diag(v,), (3.2.22)
diag(e,), (3.2.23)
diag(ga), (3.2.24)

with £ = #/r. For these asymptotic behaviors, we have

N N
x =2 Z €ala, My =27 Z JaTa, (3.2.25)
a=1

a=1
and similarly for @)y and My .

Now, this solution is interpreted as representing a configuration of N D3-branes a =
1,2,..., N at transverse coordinates (z,,¥,) from which a string with two-form (NS-NS and

R-R) charges (e,, g,) are emerging in the direction (u4,v,). This is because the eigenvalues

X, Y

D3-brane

Figure 3.5: “Tube-like” configuration of D3-brane surface representing a string.

of the scalars (X,Y") are interpreted as the transverse coordinates of the D3-branes and the
“tube-like” part of the D3-brane surface (corresponding to smaller ) can be regarded as a

string [32] (see Fig. 3.5). The string directions (u,,v,) are not arbitrary but are related to

(eaaga) by [133] ) .
Ug \ _ [ cCOS — sin €,
(%) N (sinﬁ cos > (ga> ’ (3.2.26)

where 6 is the angle given by (3.2.10). Leaving the derivation of Eq. (3.2.26) for our SYM
solutions in Sec. 3.3.1, we shall discuss the IIB picture of string networks deduced from (3.2.26).
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In the analysis we shall consider tree'! string networks lying on a flat plane. We can show
that, given (eq, ga), (T4, Ya) and (uq, v,) (a =1,2,..., N) satisfying Egs. (3.2.10) and (3.2.26),
it is possible to draw “generalized” tree string networks on a plane made of 3-string junctions

satisfying the following two properties:

(A) The positions of the 3-string junctions in the network is consistently given in such a
way that the direction of each component string A is parallel or anti-parallel*? to the
vector (u4,v4) which is related to the charge vector (e4, g4) by Eq. (3.2.26). Here, the
component strings include the N strings emerging directly from the D3-branes as well as
the internal strings connecting 3-string junctions, and the charges (e4, g4) are uniquely

determined by the conservation condition at the junctions.

(B) The sum of the masses of the component strings constituting the network coincides with
the BPS bound Egps (3.2.5) of the energy:

Egps =Y Tala. (3.2.27)
A

Here, Ty = +2m\/€% + g% and £, are the tension and the length of the string A, re-
spectively, and the sign factor of the tension T4 is positive (negative) if the string A is

parallel (anti-parallel) to the vector (w4, va).

In appendix A.2, we present a proof of the properties (A) and (B) valid for general N using a
technique which reduces the problem to the simple N = 3 case. The string networks satisfying
(A) and (B) are “generalized” ones in the sense that we are allowing strings with negative
tension (see Fig. 3.6). As seen from the proof given in appendix A.2, there are in general
more than one possible string networks for a given set of (e, g,) and (x4, g,). In order for it
to be possible to identify a physical network consisting only of strings with positive tension,
(%4, Ys) cannot be arbitrary but have to satisfy conditions determined by the charges (eq, g,)-
Such a condition is given by Eq. (3.5.1) for the N = 3 case. In Sec. 3.4.2, we analyze our
exact SYM solutions satisfying the BPS saturation condition for the N = 4 case to find that

for every parameter value of the solution there are corresponding physical networks. Though

' Here we allow a tree network to contain crossings of the strings. Such string networks with crossings may
be regarded as containing loops if we identify the crossing points as four-string junctions. We shall discuss
this point later in Sec. 3.4.2.

12A string A connecting two 3-string junctions (or a D3-brane and a junction) a and 3 with coordinates
(T, Yo) and (zs,ys) is parallel (anti-parallel) to the vector (ua,v4) defined to be directed from a to 3 if t4
satisfying (q,Ya) +ta(ua,va) = (x3,ys) is positive (negative).
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(@ (b)

Figure 3.6: String networks on a plane corresponding to the same set of (e,, g,) and (x4, y,)-
The blobs represent D3-branes. The network (a) is physical, while (b) is unphysical since it
contains a string with negative tension (dashed line).

it is generally expected that, for (z,,y,) and (e,, g,) associated with a BPS saturated SYM

configuration, we can always identify physical networks, we do not yet have a proof of it.

We mentioned at the beginning of this subsection the interpretation of the eigenvalues of
the scalars (X,Y") as the coordinates of the strings emerging from the D3-branes. However, as
we shall find later, such interpretation does not match the string network picture for finite r
since the lines corresponding to the eigenvalues of the scalars are generally curved. Moreover,
multiple 3-string junctions in the networks with N > 4 is impossible in this interpretation due

to the analyticity of the scalars as functions of the four dimensional coordinates of the SYM.

3.3 Explicit construction of the 1/4 BPS dyon

3.3.1 Spherical symmetry and monopole solutions

Let us prepare a framework for constructing the BPS saturated SYM configurations. Putting

0 = 0 as explained before, the equations to be solved are

DX =&, (3:3.1)

as well as (3.2.8), (3.2.9) and (3.2.11). Our strategy for the construction of the solutions is
the same as in Ref. [72] for the SU(3) case. First, we prepare an SU(N) monopole solution
(A;(%),Y(#)) to Eq. (3.3.2). Then, Eq. (3.3.1) is automatically satisfied by putting Ay (%) =
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—X(t), while Eq. (3.2.8) holds due to Eq. (3.2.9) and the time-independence of our solution.
Therefore, we have only to solve Eq. (3.2.11), i.e.,

D;D; X =0, (3.3.3)

under the D-flatness condition (3.2.9). As we did in Ref. [72], we adopt as the monopole
solutions to Eq. (3.3.2) those given in Ref. [150] constructed using a general formalism for
spherically symmetric solutions of Ref. [151]. In the following, we shall present our problem
in the formalism of Ref. [151] and explain the monopole solutions of Ref. [150] (see also Ref.
[17]).

Our solutions (A;, X,Y) are assumed to be spherically symmetric with respect to an an-

gular momentum operator J, i.e., they satisfy
[Ji, A]] = ieijk:Ak:a [Jl, X] = [Jl, Y] = 0, (334)

The present J is the sum of the space and the gauge group rotations:

J=L+T, (3.3.5)
where L = —it x V is the generator of the space rotation and T' is the maximal SU(2)
embedding in SU(N) with T3 = ;diag(N —1,N —3,---, =N +1). The monopole solution

of [150] assumes the following form for the vector potential:
A(#) = (M(r,t) - T) x i/r, (3.3.6)
where the Lie algebra valued function M; should satisfy the spherical symmetry condition,
[Ji, M| = i€, M. (3.3.7)

Various formulas are derived by using the expression V = £8/9r — (i/r)f x L for the space
derivative as well as the spherical symmetry properties, Eqs. (3.3.4) and (3.3.7). We need in

particular the following three:

DY =Y+ 2§ x [M,Y], (3.3.8)
r
7:11 1 . ]-2 A
&:_ﬁmygmebmmw@ —;@x@xhﬂ%, (3.3.9)
2 1 .
_QQX:XW+?V—7(%—ﬁ@NMMM%Xﬂ (3.3.10)

where the prime denotes the differentiation 0/0r.

52



Due to the spherical symmetry it is sufficient to construct solutions on the positive z-axis.

The monopole equation (3.3.2) and the Gauss law constraint (3.3.3) on the z-axis are reduced

to
1
rty’ = 3 (M, M_] —Ts, (3.3.11)
M. = F[M.,Y], (3.3.12)
2 1
X" + ;XI - ﬁ([MJra [M,, X]] + [M,, [M+7X]]) = 07 (3313)

with My = My £iM,. As seen from Eqgs. (3.3.1), (3.3.2) and (3.3.8), the z-component of the

electric and magnetic fields on the positive z-axis are equal to the derivatives of the scalars:

=X, B=Y. (3.3.14)

The matrix-valued functions M (r) and Y'(r) of Ref. [150] are given on the positive z-axis
as
(M )mn = Ot am(r),  M_ = MTI, (3.3.15)
1
Y = diag (Ym(r)) = 2_ diag (\I]m(r) - \Ilm—l(r)) , Yo=Uy=0, (3316)
r

using a,,, and W,,, which are further expressed in terms of @Q,,(r) as

- QL (MMQu1Qums1)"?, (3.3.17)

U, (r)=-r(nQ,) +mm  (@=N-m), (3.3.18)

@ (T)

with @y = Qn = 1. The functions a,, and My satisfy Egs. (3.3.11) and (3.3.12) if Q,,(r) is a

solution to

(Q;n)Z - QmQZl =mm Qm«lemfl; (3319)

form=1,2,..., N — 1. In Ref. [150] they found the following @Q,, satisfying (3.3.19):

Qm="1m>. I e TI @Cuw—2y)", (3.3.20)
Dm a€Dm bEDm
where 7, is given by
[V n!
Iy e e
and the sum in (3.3.20) is over the (Z) distinct ways of dividing the integers {1,2,..., N}

into two groups, D,, with m elements and D,, with 7 elements.

Y (3.3.21)
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In (3.3.20), 9, (a =1,2,..., N) are arbitrary parameters satisfying >~ vy, = 0. They are
nothing but y, appearing in the asymptotic expression (3.2.22) of the scalar Y if the condition
Yy < Yo < --- < yp is satisfied. This is seen from the asymptotic behavior of In @Q,,,

InQy = -2 yar + const. + O (e’2<ym’ym‘1)r) (r — 00), (3.3.22)
a=1

and Eq. (3.3.18). Using (3.3.14), we find that the asymptotic form of the magnetic field is

B, ~ —T3/r? and hence the magnetic charges g, of the present solution are given by
(ga) =(-N+1,-N+3,...,N—1). (3.3.23)
On the other hand, the behavior of @,,(r) of (3.3.20) near the origin r = 0 is
Qum =1"" (14 gur® + 0(%))  (r ~0), (3.3.24)

where the coefficient ¢, of the sub-leading term is given by'?

2mm N,
m= e > Yo 3.3.25
Im = NNz 1) &Y (3:325)
The leading behavior r™™ of (Q,, is consistent with the regularity of the solution at r = 0.

Since we have adopted the diagonal form (3.3.16) for the scalar Y, the D-flatness condition
(3.2.9) implies that the other scalar X is also diagonal. The diagonal form of X is also a
consequence of the spherical symmetry [J3, X] = 0 (3.3.4) implying [T3, X] = 0 on the z-axis.

Therefore, we express X in terms of N — 1 functions @, (m =1,2,...,N — 1) as
1
X = diag (X) = o diag (P = @1),  Bp = By = 0. (3.3.26)
r

Then, Eq. (3.3.13) for X is reduced to

2
am

o) — 2 (29, — @1 — Dy1) =0, m=1,...,N -1 (3.3.27)

This differential equation can be solved numerically and for a certain special values of (y,)

analytically. In the next subsection, we shall present an exact solution.

Before closing this subsection, we derive the relation (3.2.26) for our SYM solutions. This

is an immediate consequence of (3.3.14) for £, and B, and the asymptotic expressions (3.2.21)

30ne way to derive Eq. (3.3.25) is as follows. Eq. (3.3.19) implies that g, satisfies the recursion relation
(2mm — 2)¢m = MM (¢m+1 — ¢m—1), whose solution is given by ¢,,, & mm (incidentally, this recursion equation
is the p = 1 case of Eq. (3.3.31), which is solved in App. A.3). Taking into account the initial condition

01 = NTRTy Lnes U2 Obtained from (3.3.20), we get (3.3.25).
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— (3.2.24). They lead to Eq. (3.2.26) with 6 = 0, (u,v.) = —(€q,9.).- (Note that, since
M, (r) decays exponentially as r — oo as seen from Eqs. (3.3.17) and (3.3.22), so do the
other components &, , and B, ,.) Eq. (3.2.26) in the case of non-vanishing 6 is obtained by a
rotation of (X,Y") and hence (u,,v,).

3.3.2 Exact solutions

It is possible to construct an exact solution to the equations (3.3.27) for the following special

values of (y,):
(yl, Y2,. .., yN) =C (—N+1, —N+3, AN N—]_) s (3328)

where C' is a positive constant. For this (y,), Q,, is given explicitly by'*

sinh Cr\"™™
o , 3.3.29
an = (") (3:3.20)
and Eq. (3.3.27) becomes
O — (2B, — By — By 1) =0,  m=1,--,N—1, (3.3.30)
sinh” r

where we have put C' = 1 since C can be absorbed into the rescaling of r.

To rewrite the differential equation (3.3.30) into a diagonal form, let us consider the eigen-

value problem for the non-differential part of (3.3.30):

mim (21},(5) - U,E,’;Ll - vfff),l) =p(p+ 1)), m=1,---,N—1, (3.3.31)
where the eigenvalue is expressed as p(p + 1), and we have v[()p) = 1;1(5) = 0. The solution to

Eq. (3.3.31) is given in App. A.3. There we show that p characterizing the eigenvalue takes
the integer values; p =1,2,..., N — 1. The explicit form of the eigenvectors vffj) is also given

there. Then, by expressing ®,,, as

N-1
®,,(r) = Z Ufﬁ)cp(p) (r), (3.3.32)
p=1

the differential equations (3.3.30) are reduced to diagonal ones for ®):

plp+1
P (r)" — ﬁw(m (r)y=0. p=1,---,N—1, (3.3.33)

14 The easiest way to derive (3.3.29) is to first obtain Q; from Eq. (3.3.20) and then use the recursion relation
(3.3.19) to get @, with higher m.
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In order to solve (3.3.33), we make a change of variables from r to y = €%, and con-
sider P (y) = (y — 1)P¢® instead of . Eq. (3.3.33) is then transformed into a Gauss
hypergeometric differential equation:

2

e PP + 1 —(1 - 2p)y] — g — 2P = . (3.3.34)

y(1—vy)—

The general solution to (3.3.33) is therefore given as a linear combination of two independent

ones:
P =B, (y = 1) "(F(=p, —p, 1;9) + ¢ [F(=p, —p, L;y) Iny + F*(—=p, —p, 1;y)])  (3.3.35)

where!®

F(=p,—p,Liy) = Xp: (112)2 v, (3.3.36)

k=0

F*(=p,—p, L;y) = —2§p:<>2§k:< — ;>yk, (3.3.37)

=1

and 3, and ¢, are constants. For our present purpose, ¢, must be chosen in such a way that

©® of (3.3.35) is non-singular at y = 1 (r = 0). Such ¢, is given by

_ (glé %) o (3.3.39)

The derivation of (3.3.38) is given in appendix A.4. There we obtain the solution using the
analytic continuation of the hypergeometric functions. For example, ¢® with p = 1,2 and 3

are'®

D=3 (rcothr —1),

2 cosh?r + 1
wm)::__ﬁQ(CO“JT——T——§EEEP7T—> y (3:&39)
15 3coshr(2cosh?r + 3)

B) = (-1 - + .
4 bs ( sinh®r 11 sinh?® r

As for the other scalar Y for the present (y,) of (3.3.28), ¥,, of (3.3.16) is given using
(3.3.18) and (3.3.29) by
V,, = —mm (r cothr — 1) . (3.3.40)

Since v{!) oc mm, this is the p = 1 term of (3.3.32).

BF* (e, B,7;y) = (0/0a+ 0/8B3 + 20/07) F(a, 8,7 ).

16,1 and ¢?) were written as ¢, and @_ for the N = 3 case in our paper [72].
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3.4 Behavior of the solutions

In this section, we shall discuss various aspects of the solutions: explicit analysis of the exact
solutions for the cases N = 3 (Sec. 3.4.1) and N = 4,5 (Sec. 3.4.2), the behavior of the
solutions near the origin for general N (Sec. 3.4.3), the concept of the effective charges (Sec.

3.4.4), and new solutions for the cases where some of y, are degenerate (Sec. 3.4.5).

3.4.1 Exact solutions for SU(3)

Following the procedure of obtaining exact solutions in the previous subsection, let us analyse
the properties of the exact solutions for SU(3). According to Eq. (3.3.28), we choose the

special values of (y,):

(y1,92,y3) = (=C,0,C). (3.4.1)

Then using eigenvectors v = (2,2) and v® = (—2,2) and the explicit solutions p") and ¢
in Eq. (3.3.39), we obtain an exact solution. From the solution, we can read off the following

values for the locations of the D3-branes and the electric and magnetic charges of the strings:

(Ta»Ya) = {(51 - ;52, —1> ; (gﬁm 0> , <—51§52, 1)} ; (3.4.2)
(cas9a) = {281 =205, =2),  (48,,0), (=26, — 20, 2)}. (3.4.3)

In particular, for (3, 32) = (—1/4,1/4), the three charges are (—1,—2), (1,0) and (0,2). In
Fig. 3.7, we plot the trajectories of the D3-brane coordinates in course of changing r by the
solid lines. In course of decreasing r, the D3-branes approach the origin of (X,Y’) and meet
there at r = 0, where the gauge symmetry is restored. The trajectory of the brane D, is just
a straight line. This is a general feature of our exact solutions and comes from the boundary
condition y» = 0. We obtain a bending trajectory of Dy for a general case of y, # 0, in which

we solved the equations only numerically.

The branes D; and D3 connect smoothly to each other at the origin. The behavior of the
solutions near the origin will be discussed in Sec. 3.4.3. Noticing the fact that the brane D,
has no magnetic charge!” while the branes D; and D3 have non-zero magnetic charges, this
might come from our technical preference that we describe the BPS states by the classical

treatment of the SYM theory, i.e. electrically. Then the interpretation of the trajectories

"We mean the charge (e,, g.) by the electric and magnetic charges of the brane D,,.
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Figure 3.7: The D3-brane configurations (solid lines) and the three-pronged strings from the
[IB picture (dashed lines).

might be that the branes D; and D3 are the two parts of one very heavy smooth magnetic

object pulled and bent by the light electric brane Ds.

In Fig. 3.7, we also draw three dashed straight lines tangent to the D3-brane trajectories
at r = oo. They meet at one point and their forces balance. This would be a non-trivial
consistency check of our approach. As discussed in Sec. 3.2.4, this configuration agrees with
the three-pronged strings in the IIB picture. On the other hand, the behavior of our solution
at finite r is quite different from the above IIB picture. The bending of the trajectories of the
D3-branes will be analyzed in Sec. 3.4.3.

The obtained BPS saturated spherically symmetric regular configurations in N' = 4 SU(3)
SYM theory are carrying non-parallel electric and magnetic charges (a,2), (b,0) and (—a —
b, —2), where a and b take arbitrary real values. Assuming the quantization of the electric
charges a and b and the SL(2,Z) duality symmetry, our solutions imply, in general, the
existence of the junctions of the three IIB strings carrying the two-form charges (p, q), (Ir,(s)

and (—p — lr, —q — ls), respectively, where [, p, q,r, s are integers satisfying ps — qr = 2.

In addition to the bending of the solutions, another difference between our solutions and
the IIB picture is the number of degrees of freedom. Now let us count the number of degrees
of freedom of a 3-string junction in the string picture. As for the charges, the three magnetic
charges are fixed to (—2,0,2) from the beginning, but we have the freedom of two electric
charges (the other electric charge is determined by the charge conservation). Then, since the

string tensions are determined by the charges, the relative directions of the three strings are
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Figure 3.8: The deformation of the D3-brane
surface drawn by the eigenvalues of the scalar
fields. The vertical direction is along the D3-
brane worldvolume, and the horizontal direc-
tions are spanned by X and Y.

29

Figure 3.9: Corresponding brane configura-
tion in string theory.



determined by the force balance condition. We have the freedom to choose the lengths of
each string. We should not count the freedom of rotating or shifting parallelly the 3-string
junction in the two-dimensional plane, because we fixed these degrees of freedom in solving
the equations. We absorbed the angle # in Sec. 3.3.1, and the center of the three D3-branes
are fixed by the tracelessness of the adjoint scalar fields. Thus we have in total five degrees of
freedom in the string picture. However, the number of degrees of freedom of our solutions is

four, consisting of y1, y2, 31, 3. This does not agree with five's.

This difference might again come from the limitation of the electric description of the
3-string junction. Since electrically charged objects are the fundamental degrees of freedom
themselves in the electric description, the introduction of a bare electric charge would neces-
sarily cause the problem of singularities in the solutions. Nevertheless, in our solutions, we
have one D3-brane (D, in Fig. 3.7) which is charged only electrically. However, we may have
the possibility that, if we had the freedom to introduce a bare electric charge, the number of

the degrees of freedom would increase from four to five.

In fact, the difficulty of a bare electric charge appears in a different way in our construction
of the solutions. We took the maximal embedding of SU(2) to SU(3) in the analysis. Because
of this, the magnetic charge is 2 and not 1. Taking the minimal embedding of SU(2) does
not work. It turns out that, to obtain non-parallel electric and magnetic charges, we have a

singularity at the origin, which is the bare source of the electric field.

We tried another way to introduce a unit magnetic charge. In the degenerate case of
Y1 = Y2, the magnetic charges of the D3-branes become (1,1, —2) [17, 150]. But in this case
the asymptotic behavior at r ~ oo of the differential equation for X changes from the non-
degenerate cases, and the solutions regular at r = 0 diverge at r = oo (lim,_, ¢1(r) = 00)
except the case of parallel electric and magnetic charges. Thus we could not introduce one
unit of magnetic charge in our solutions'®. The degenerate case for N > 3 will be studied in
Sec. 3.4.5.

3.4.2 Exact solutions for SU(4) and SU(5)

In this subsection, we shall study the exact solutions presented in the Sec. 3.3.2 in more detail

(1,2,3)

for the cases N = 4 and 5. First, let us consider the SU(4) case. Since the eigenvectors v,

18See Sec. 3.6 for the discussion for general SU(N).
9Without the spherical symmetry ansatz, it is possible to obtain the unit magnetic charge [91].
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(with appropriate normalization) read (see App. A.3)

3 1 1
dW=14, d@=[o0]|, ®=|-2], (3.4.4)
3 -1 1
the X-coordinates of the four D3-branes are given by
X, 301 1 "
X 11 -1 —3|(”
= 0? |, (3.4.5)

X3 2T _1 —1 3 90(3)
X, 3 1 -1
in terms of p(13% of Eq. (3.3.39). The charges (e4, go) and the D3-brane coordinates at infinity

(%4, Ya) determined from the asymptotic form of the present exact solution are

(e1,91) = BB+ B+ 5, =3), (e2,92) = (b1 — B2 — 305, —1),
(e3,93) = (=B — P2+305, 1), (es,94) = (=301 + 2 — 3, 3), (3.4.6)

and
(@1,1) = (%51 + %52 + 1—3153, _73> (2, 2) = (%& - %ﬁz - 1%53, _71> ;
(73,13) = (‘%51 - %52 + 1—9153, %) , o (za,y0) = (‘%51 + %& - 1—3153, g) . (3.4.7)

For (31, (2, 33) = (—03,0,0), we have X, = Y. In this special case, all the D3-branes and
strings are located on a straight line which passes the origin. The charges (e,, g,) are parallel

to each other and the configuration preserves 1/2 supersymmetries.

In Fig. 3.10, an example of the typical configurations is presented with solid curves. Notice
that the four D3-brane surfaces bend and have a common tangent at the origin. We have

chosen the parameters (3, in order for the electric charges to take integer values.

As explained in Sec. 3.2.4, we can find the configuration of a four-pronged string in the
string picture from the asymptotic behavior of the solution. In the case of four D3-branes,
there are three different ways to connect the D3-branes by a four-pronged string (see Fig. 3.11).
Among them, the physical configurations are chosen by the condition that the tensions of all
the strings should be positive. The four-pronged string in Fig. 3.10 (dotted lines) corresponds
to the case (a) of Fig. 3.11. In general, the correspondence between the parameters (3, and

the type of the four-pronged string is as follows:

3 25
case (a) = |[Ba] > 5\/ﬁ|53| or |3 < ﬁ|53|,
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".,.......,.......,..._ -
O

sk 1

Figure 3.10: The trajectories of (X,,Y,) of the N = 4 exact solution (solid lines). The pa-
rameters are chosen as (31, 2, 33) = (1, —2, —2), which give the electric and magnetic charges
(€a,9a) = (—1,-3),(9,—1),(=5,1), (—3,3). The dotted lines describe the corresponding four-
pronged string in the string picture.

3 45
case (b) = 5”ﬁ|63| < |Ba] < ﬁ|53|,

15 3
case (¢) = §|53| < |Ba] < 5\/;|53|. (3.4.8)

Note that the whole parameter space of 3, is covered, namely, we can identify at least one
physical four-pronged string configurations for every value of 3,. When |3;| = 5,/%| (5] holds,
the three cases degenerate. There is no internal string, and the four strings meet at a point,

which is not generally at the origin.

An interesting fact is that in the regions

3 45 15 25
e — — — 3.4.9
\/ 11|53| < |Ba] < 11|53|a 22|ﬁ3| < B3] < 11|53 ) ( )

two cases satisfy the positive tension condition. In the former region, the condition is satisfied
by (a) and (b), and in the latter by (a) and (c). In fact, for the trajectories of (X,,Y,)
described in Fig. 3.10 (where the four-pronged strings configuration corresponding to the case
(a) is drawn by dotted lines), there is another string configuration corresponding to the case

(c) shown in Fig. 3.12. The string configuration of Fig. 3.12 has a crossing of strings and hence
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Figure 3.11: Three different ways of connecting the four D3-branes.
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Figure 3.12: Another four-pronged string configuration corresponding to
the trajectories (solid lines) of Fig. 3.10.
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contains a loop in it if we regard the crossing point as a four-string junction. It is generally the
case that, in the regions of (3.4.9), one of the two string configurations contains a string crossing
and the other does not. Therefore, if we discard the string configuration with a crossing by
classifying it as a loop configuration, then we recover the one-to-one correspondence between
the BPS states in the string theory and those in the field theory.

Figure 3.13: The trajectories of the five D3-brane coordinates (X,,Y,) of the exact solu-
tion (solid lines), with charges (eq,9,) = (—1,—4), (=5,—-2), (6,0), (—3,2), and (3,4). The
corresponding five-pronged string in the string picture is represented by dotted lines.

The analysis of the exact solution for SU(5) can be carried out in the same manner. In Fig.
3.13, we present the trajectories of the five D3-brane surfaces (X,,Y,) and the corresponding
five-pronged string configuration for a certain 3,. Notice that the D3-brane surfaces 1, 2, 4
and 5 have a common tangent at the origin (X,Y") = (0,0), while the surface 3 sticks to the

others.

3.4.3 D3-brane surfaces near the origin

Since the two scalars X and Y must vanish simultaneously at » = 0 due to the regularity
of the solution, all the N D3-brane surfaces, which are described by the eigenvalues of the
scalars, meet at the origin (X,Y) = (0,0) of the transverse plane. In this subsection we shall

study how the D3-brane surfaces meet at the origin for general V.
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For this purpose, let us consider the behaviors near the origin of the scalars X and Y in
our exact solution of Sec. 3.3.2. Rather than expanding the expression (3.3.35) with respect
to r, it is easier to return to the differential equation (3.3.33) to know the behavior of @
near r = 0. In fact, Eq. (3.3.33) is approximated near r = 0 as

1
PP ()" — %w(m 0 (r~0), (3.4.10)
and the solution regular at r = 0 should behave as ¢® ~ P+l Therefore, the leading
contribution to @, (3.3.32) comes from the p = 1 term. This fact, together with the expression
(A.3.6) for v{)) implies that ®,,(r) ~ 2axmmr? (ax is an m-independent constant) and hence

that the leading behavior of the eigenvalue of the scalar X is given by
Xp(r) ~ax(N —=2m + 1)r. (3.4.11)

The behavior of the other scalar Y should be the same as (3.4.11) except the constant ax

since Y is also a solution to the differential equation (3.3.27). Therefore, we get
(X, Yin) ~ (N —2m+ 1) (ax,ay)r (r ~0). (3.4.12)

The concrete expression of the constant ay is obtained from Eqgs. (3.3.18) and the ¢, term of

(3.3.24):

2

ay = N D) Z 2. (3.4.13)

From Eq. (3.4.12) we can deduce the followings. The shape of the junction of N D3-brane
surfaces at the origin (X,Y) = (0,0) of the transverse plane differs depending on whether N
is even or odd. When N is even, all the N D3-brane surfaces have a common tangent at the
origin: half of the D3-brane surfaces X,, (1 < m < N/2) are “smoothly” connected to the
other half (N/2+1 < m < N) of the surfaces at the origin (X,Y’) = (0,0). On the other hand,
when N is odd, the above picture is true except for the D3-brane surface with m = (N +1)/2
since, for this particular m, (3.4.12) vanishes and the leading behavior of (X(N+1)/2, Y(N+1)/2)
is given by the next O(r?) term which is generically not parallel to (ax,ay). Therefore,
among N D3-brane surfaces, N — 1 have a common tangent at the origin, while the remaining
one meets with the others with an angle. We saw in Sec. 3.4.2 that the above behaviors are
actually realized in the cases with N = 3, 4 and 5 (see Figs. 3.7, 3.10 and 3.13).

The above analysis about the behavior of the scalars near r = 0 was concerning the exact

solution of Sec. 3.3.2 for X. To obtain the behavior of a general solution corresponding to (y,)
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other than (3.3.28), we have to analyze the differential equation (3.3.27) near r = 0. Naive
substitution of the leading expression of a?,, a2, ~ mm, derived from (3.3.24) into (3.3.27)
gives Eq. (3.3.30) with sinh®r replaced by 72. Therefore, the same expansion as (3.3.32) leads
to (3.4.10) and one would conclude that the above behaviors of the scalars near the origin
are not restricted to the exact solutions. Though we have confirmed that this naive analysis
is valid for N = 3, 4 and 5, it must be checked that the other ¢(@ with ¢ # p enters in a

harmless way in the apparently higher order terms of Eq. (3.4.10).

Finally in this subsection, we shall give two comments. Our first comment is concerning
the behaviors of the scalars near the origin when N is odd: one D3-brane (X,,,Y;,) with
m = (N + 1)/2 stick to the rest N — 1 branes with an angle when N is odd. Noticing that
the R-R charge g¢,, vanishes only for this particular m (c.f. (3.3.23)), this phenomenon would
be ascribed to the fact that we are describing the BPS states by the classical treatment of the
SYM theory (i.e. electrically) as we mentioned in Sec. 3.4.1.

Secondly, the fact that all the D3-brane surfaces have a common tangent at the origin
when N is even means that all of them cannot be globally straight in the transverse plane.
Otherwise, the charges (e,, g,) are all parallel. This is the case also when N is odd as is seen

from the force balance condition.

3.4.4 Effective charges

From the discussions in the previous subsection, the solutions with non-parallel electric and
magnetic charges are necessarily described by curved lines. As discussed in Sec. 3.2.4 and
appendix A.2, the asymptotic behavior (r — o) of the curved lines reproduces the multi-
pronged string configuration in the string picture. In this subsection, we shall point out that

this feature can be extended to any finite r.

The basic equations used in the proof of Appendix A.2 are?®

N

Z (uaya - Uaxa) = 07 (3414)

a=1

(tas va) = —(€a, ga), (3.4.15)
N N

U= |QX + MY| =27 Z €qTq + Z 9aYa| - (3416)
a=1 a=1

20We take 6 = 0 for simplicity without losing generality.
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Thus if we can define quantities at finite 7 which satisfy the equations similar to (3.4.14),
(3.4.15) and (3.4.16), then one can conclude the same results as in appendix A.2, that is, we
can form a multi-pronged string in the string picture using the tangent vectors at r, and the
configuration has the satisfactory properties concerning the tensions of the strings, the BPS

bound, the formation of a planer tree junction diagram, etc.

The natural generalization of x, and y, would be just given by the diagonal elements of the
Higgs fields X,(r) and Y, (r), where we assume a gauge in which X (r) and Y (r) are diagonal.
Viewing the asymptotic behaviors (3.2.21) and (3.2.22), the generalization of (u,,v,) would
be —2r?(X!(r),Y!(r)), where the prime denotes the derivative in the radial direction. Then
the generalization of (3.4.14) would be expected as

W(r)=r*Tre (X' (r)Y(r) — X(r)Y'(r)) = 0. (3.4.17)

It is enough to show (3.4.17) on the positive z-axis because of the spherical symmetry. Both
X, and Y, satisfy the same differential equations (3.3.13), which is in the form (rX,)"” +
SV AL (r)(rXy) = 0 with a symmetric matrix A,°(r). Using this fact and taking a derivative
of (3.4.17), one finds W’ = 0. Since W = 0 at r = oo from (3.4.14), the equation (3.4.17)

holds in the whole space.

Now let us define the r-dependent charges (e,(7), go(7)) by the electric and magnetic fields

in the radial direction:
diag (e,(r)) = 2r2E,(r), diag (g.(r)) = 2r*B,(r), (3.4.18)

where the diagonal form of the &.(r) and B, (r) is guaranteed by (3.3.8) coming from the
spherical symmetry ansatz. Then (3.4.15) trivially holds from the Bogomol'nyi equations
(3.3.1) and (3.3.2).

As for the last equation (3.4.16), we first define the energy in the spherical region |z| < r
in the D3-brane world volume by

U, = d*z U, (3.4.19)

lz|<r

where U is the energy density appearing in (3.2.3). Because of BPS saturation, the equality in
(3.2.5) holds for the energy U, and the charges Qx y (r) and Mx y(r), the definitions of which
follow (3.2.4) for the spherical region || < r. From (3.3.1) and (3.3.2), Qy(r) — Mx(r) =0
holds, and hence the two charges do not contribute to the BPS bound of U,.. Plugging (3.3.8)
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Figure 3.14: The tangent lines to the D3-brane surfaces (solid curves) at r = oo (dashed lines)
and at a finite r (dotted lines).

and the same equation for X into the definitions of the charges @ x(r) and My (r) and noting
the fact that the second term of (3.3.8) does not contribute, they become

Qx(r) = 4mr®Te(X (r) X' (7)), My (r) = drr®Te(Y (r)Y'(r)). (3.4.20)

Thus from the definition of the effective charges (3.4.18) and the Bogomol’nyi equations (3.3.1)
and (3.3.2), the same equation as (3.4.16) holds for the quantities we have defined.

Because of the regularity of the solutions at » = 0, it is a general property that the effective
charges (e,(r), g4(r)) vary as functions of r and tend to zero as r — 0. If the ratio e,(r) : g.(r)
depends on r, the D3-brane trajectories bend. We show the SU(3) case in Fig. 3.14 as an
example. The three straight lines starting at (X,(r),Y,(r)) in the direction —(ey(r), go(r))
meets at a common point. Namely, the trajectories of the D3-branes on the transverse plane
is developed in such a way that for every r the tangent lines to the trajectories form a string

junction carrying the effective charges.
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3.4.5 Solutions with degenerate y,

Up to now we have considered the cases with distinct y,. When some of the y, degenerate, we
can construct solutions with magnetic charges different from (3.3.23) [150]. In this subsection,

we shall discuss solutions with degenerate y, for the SU(4) case.

Since we have y; < ys < y3 < 14, the patterns of the degeneracy are classified as

(i) (=s,—s,s,5),
(Y1, Y2, y3, ya) = § (ii)  (—s,—s,—s,3s) or (—3s,s, s, s), (3.4.21)
(iii) Ounly one pair in (y,) is degenerate,
with s > 0. As stated in Sec. 3.4.3, the analysis of the solutions of the differential equations
(3.3.27) at r ~ 0 does not depend on the values of y,. On the other hand, as we shall show

below, the asymptotic behaviors of the solutions change drastically.

Let us first examine the case (i). Since Eq. (3.3.20) is ill-defined for degenerate y,, we

introduce an infinitesimally small parameter § as follows:
(Y1, Y2, Y3, ya) = (=5 + 10, =5 + 26, 5 + a3d, 5 + auf), (3.4.22)

where 32 a, = 0. Substituting this into Eq. (3.3.20) and taking the limit § — 0, we obtain

the asymptotic behaviors

3 3
Q1(r) ~ @TGQST, Qo (r) ~ 64546487’ Qs(r) ~ gmm, (r — 00). (3.4.23)

It follows from these equations that the magnetic charges of this solution are given by (g,) =
(—2,—2,2,2). Then, substituting (3.4.23) into (3.3.17), the differential equation (3.3.27) in

the asymptotic region is approximated as

o 2 —1 0
-0 0 0|@+...=0, (3.4.24)
"\o -1 2

where ® is a column vector ® = (P, D, <I>3)T, and the dotted part is multiplied by the powers
of the exponentially decaying factor e 2*". Since the eigenvalues of the 3 x 3 matrix in (3.4.24)
are 0 and 2 (doubly degenerate), there are two independent divergent modes which behave
as 12 for large r. In order to obtain a physically sensible ®,,, we have to adjust two of the
parameters of the solution to eliminate the divergent modes. As we mentioned in Sec. 3.4.3,
the number of free parameters in the SU(4) solution X regular at r = 0 is three. Therefore, we

are left with only one free parameter. Recalling that the other scalar Y is already a solution to
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the same differential equation as for X with regular behavior (3.2.22) at r — oo, we find that
X must be proportional to Y, implying that the solution is an uninteresting one with parallel
charge vectors. Analysis for the case (ii) leads to the same situation, namely, two divergent
modes exist at infinity. Hence we conclude that for (i) and (ii) there is no non-trivial regular

solution.

Next, let us consider the case (iii). In this case, the magnetic charges of the solutions
are (—2,—2,1,3), (—3,0,0,3) and (=3, —1,2,2) corresponding to three different degeneracy
patterns of (ya), ¥1 = Yo, Y2 = y3 and y3 = yu, respectively. We shall take the case y; = ys.
Then, similarly to Eq. (3.4.24), the differential equation (3.3.27) is approximated for large r

as
L2 -1 0
-0 0 0|®+...=0. (3.4.25)
“\o o o

In this case, the eigenvalues of the 3 x 3 matrix are 0 (doubly degenerate) and 2, and there is
only one harmful divergent mode. Therefore, contrary to the cases (i) and (ii), there can be
non-trivial solutions since we still have two free parameters in the solution after eliminating

one divergent mode.

For these solutions regular at » — oo we have

1
(X0, 7) = (X2, %) = 0 (5) (3.4.26)
This is because Eq. (3.4.25) implies
2
(2®, — ®y)" — = (20; — D) +...=0 (3.4.27)

for 20, — ®, = 2r (X; — X,), and the divergent 7? term in the solution at r — oo has
been eliminated by fine-tuning to leave the 1/r term. From Eq. (3.4.26) and the asymptotic
expressions (3.2.21) and (3.2.22), we find that (x1,y1) = (w2, y2) and (e1, 91) = (eq, g2) hold
for the present solution. In the IIB picture, two strings 1 and 2 degenerate completely, and

the situation is reduced to the three-pronged string.

An example of the solutions for (y,) = (—1/2,—1/2,0, 1) obtained by a numerical method
is presented in Fig. 3.15. We see that two D3-brane surfaces 1 and 2 approaches to each other
as r — oo as mentioned above, though at the origin they behave in the way explained in Secs.
3.4.2 and 3.4.3.
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Figure 3.15: A configuration with (y,) = (—1/2,—1/2,0,1). The locations of two D3-brane
surfaces 1 and 2 at » = oo coincide. The behavior near r = 0 is magnified in the small window.

3.5 Existence condition of three-pronged string

In the string picture, the existence of a three-pronged string connecting three parallel D3-
branes depends on its two-form charges and the relative locations of the D3-branes [20]. Let
us consider three D3-branes denoted by Dy, D, and D3, and a three-pronged string connecting
them (Fig. 3.16). We denote the two-form charges of the strings ending on the Dy, Dy and D3
by (e1,91), (€2,92) and (e3, g3), respectively, where the charges are conserved at the junction:
z;?’:l e = Z?Zl g; = 0. Since the force balance condition determines the relative directions
of the three strings meeting at the junction, the shape of the triangle formed by the three
D3-branes is constrained. One can show easily that the necessary and sufficient conditions for
the existence of a three-pronged string connecting the D3-branes are given by the following

conditions for each angle 6; at the vertices D; of the triangle:
6; < Angle|(ej, g;), (ex, gx)] for different i, j, k. (3.5.1)

Here Angle[v;, vs] denotes the angle between the two vectors v; and v, having a common
initial point. When the length of one of the strings vanishes, one of the equalities holds in

(3.5.1). In such cases the configuration is a stable BPS state with two strings located at the
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same point in the D3-brane world volume. When the D3-brane locations are changed further
out of (3.5.1), the stability may be lost. Thus the process of changing D3-brane locations
from (3.5.1) to the outside may be observed as a decay process of a field theory BPS state
of a three-pronged string to two dyon states [20, 21]. On the other hand, when two strings

Figure 3.16: The triangle formed by three parallel D3-branes (solid lines). The charge vectors
are described by the lines with an arrow. The dotted lines denote a three-pronged string
connecting the D3-branes.

with some two-form charges are located at a finite distance in the D3-brane world volume,
and the configuration of the D3-branes satisfies (3.5.1), the strings may attract each other
and decay to the stable BPS state of a three-pronged string. Thus the evaluation of the force
between two dyons would be another way to see the conditions (3.5.1). In this section, we
will estimate the force between well-separated two dyons following essentially the approach of
Refs. [49, 100, 101, 90], and will actually reproduce (3.5.1).

Let us consider the following configurations of D3-branes and strings. Three parallel D3-
branes Dy, Dy and Dj are located at (z1,y1), (z2,y2) and (z3,y3) in the transverse two-
dimensional plane, respectively (Fig. 3.17). An (e, g1) string connects D; and D3, and an
(€2, g2) string connects Dy and D3. The two strings are separated by a distance R in the
D3-brane world volume. The two strings appear as two dyons with the electric and magnetic
charges (e1, ¢1) and (ez, g2) under the different U(1) subgroups of SU(3), respectively, in the
D3-brane world volume theory. The dyon corresponding to the (eq,g;) string is denoted by
dy and the other one by dy. We assume the distance R is large enough to allow treating the

dyons as point-like particles.
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Figure 3.17: Two strings with charges (e1, g1) and (es, g2) (dotted lines) connect one common
and two different parallel D3-branes (solid lines). The two strings are separated by R in the
D3-brane world volume.

There act a Coulomb force between the two dyons. The Coulomb potential is obtained as

™

VCoulomb(R) = E(QIQQ + 9192), (352)

by simply adding the electric and magnetic contributions.
Another force is generated by the long-range Higgs field. Let us first evaluate the mass of
the dyon d; by neglecting the effect of the other dyon d,. By calculating @) xy and My y from

the asymptotic behaviors of the electric and magnetic fields (3.2.21)-(3.2.24), and plugging
them into (3.2.5), the mass of the dyon d; is obtained as

myp = 271'\/6% + g% 113, (353)

where ;3 = \/(asl —23)2 + (y1 — y3)? is the distance between D; and Dj. This mass agrees
with the corresponding string mass by identifying 27/e? + ¢? as the string tension. We shall

evaluate the potential energy between the dyons by taking into account the R-dependence of

the distance /13 caused by the long-range effect of the other dyon ds.

From (3.2.21) and (3.2.22), the long-range behaviors of the Higgs field generated by the
dyon d, are given by

1
X ~ diag(z, x2, 13) + Y7 diag(0, uz, u3),

. 1.
Y ~ diag(y1, yo, y3) + R diag(0, vy, v3), (3.5.4)

where the u, and v, are related to the charges by (3.2.26). The R-dependent terms of the third

components cause the R-dependence of the distance [y3. The factors are expressed explicitly
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as
(us,vs) = /€3 + g3 Iy, (3.5.5)

where 153 is a unit vector parallel to the string connecting D, and Ds:

Ton — (xz—xa,yz—ya)
23 — .
\/(552 —x3)? + (y2 — y3)?

Plugging these asymptotic behaviors into (3.5.3) and taking the first order in 1/R, we obtain

(3.5.6)

the potential energy from the long-range Higgs field as

™ ~ ~
Vitigss (R) = =51/ + g2/e + g3 Lis - I, (3.5.7)

Adding this to the Coulomb potential (3.5.2), the total potential energy is obtained as

™

VR) =~ (Ve + g1+ 63 lis - Tos = 162 — 9150 ) (35.8)

The cancellation between the Coulomb and the Higgs contributions occur when the angle
between 13 and los equals that between the two vectors (eq, g1) and (e, g2). In case the former
angle is smaller than the latter, the force between the two dyons is attractive, and vice versa.
Thus we obtain the inequality for 65 in (3.5.1) from a field theoretical viewpoint. Repeating
similar discussions for the other combinations of two strings, we obtain all the inequalities in
(3.5.1).

3.6 Summary and discussions

In this chapter, according to the predictions from string theory, we have constructed 1/4 BPS
states in A/ = 4 SU(N) SYM theory by solving explicitly the Bogomol’nyi equations under the
assumption of spherical symmetry. The solutions correspond to the string theory BPS states
of a multi-pronged string connecting N different parallel D3-branes. Here each string ending
on D3-branes carries the two-form charges (e;, N — 1), (e2, N — 3),---, (en, —N + 1), where
e, take real values satisfying > ,e, = 0. The NS-NS charges e, (or electric charges in the
SYM theory) may be quantized if the quantization of the collective modes of our solutions is
performed. We have also shown that, by fine-tuning some of the parameters, we can construct

solutions with magnetic charges different from above.

As we have studied in Secs. 3.2.4, 3.4 and appendix A.2, the trajectories of D3-branes have

interesting behaviors. We have shown that, from the asymptotic behaviors of our solutions,
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we can generate the BPS saturated configuration of the corresponding multi-pronged string,
that is, straight strings compose a tree diagram with junctions and the forces balance at each
junction. On the other hand, the behaviors at finite r are quite different from the above
IIB picture. The trajectories bend non-trivially and all the D3-brane surfaces meet at the
origin r = 0. Nonetheless, an interesting feature of the trajectories is that we can actually
generate the string picture configuration at every r by defining appropriately the effective
electric and magnetic charges. At the origin » = 0 the directions of all the charge vectors
with non-vanishing magnetic charges degenerate, and hence all the D3-brane trajectories with
non-vanishing R-R two-form string charges meet there with a common tangent. This fea-
ture apparently violates the SL(2,Z) duality symmetry, and may come from our technical

preference that we treat the SYM theory merely classically, i.e. electrically.

We have constructed exact solutions for general SU(N) in the case the vacuum expectation
values of one of the Higgs fields (V') are parallel to the magnetic charges. The number of the
free parameters of our exact solutions are given by N, one from the overall factor of the Higgs
field and N — 1 from the vacuum expectation values of another Higgs field (X). In the general
cases of our (non-exact) solutions, the vacuum expectation values of the first Higgs field can
be varied continuously, and hence the total number of the free parameters is expected to be
given by 2N — 2. The solutions should be regular at the whole space including » = 0 and
should converge to finite values at » — co. We have checked the number of the free parameters
up to SU(6) by expanding explicitly the second-order differential equations (3.3.27) at r ~ 0
and checking numerically the safe convergence of the solutions at r — co. A general proof of

this fact has not been given.

This number of the free parameters of our solutions is interesting because it does not agree
with the expectation in the IIB picture, as discussed in Sec. 3.4.1. Let us consider a tree
diagram composed of straight string segments and three-string junctions in a two-dimensional
plane. Here we assume the number of external strings ending on D3-branes is N and they have
the same fixed R-R charges as the magnetic charges of our solutions. We have the freedom to
take N —1 NS-NS charges (the other one is determined by the charge conservation). Then the
relative directions of the strings in the diagram are determined by the force balance condition.
We have the freedom to take the 2N — 3 lengths of each string segment in the diagram. We
should not count the freedom of the parallel shift and the rotation of the whole diagram,
because we fixed these degrees of freedom in obtaining our solutions (see Sec. 3.3.1). Thus
the total number of the degrees of freedom is given by 3N — 4, which exceeds the above

degrees of freedom of our solutions by N — 2. We do not have any reliable explanation of
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this discrepancy, but may point out that the freedom of choosing the two-form (or electric
and magnetic) charges does not seem to be fully incorporated as can be seen from the r ~ 0
behaviors of our solutions discussed in the second paragraph of this section. Thus we hope
the number of free parameters of such solutions may agree with the string picture if we find
a better formulation in field theory respecting the SL(2, Z) duality symmetry to describe the
1/4 BPS states.

In certain parameter regions of our solutions for SU(4), we found two distinct multi-
pronged string networks which can correspond to the same field theory BPS states, as discussed
in Sec. 3.4.2. However, regarding a crossing of strings as a four-string junction, one of the
networks always contains a loop [133, 84, 1], while the other one is genuinely tree-like in such
cases. Thus, if we choose the tree one as the corresponding string configuration, we recover
the one-to-one correspondence between the BPS states in the string theory and those in the
field theory. More precisely, we can continuously deform the diagram of Fig. 3.12 to Fig. 3.10
by shrinking the internal loop. As seen in Sec. 3.2.4, from the soliton solution we only observe
the locations of the D3-branes and (p,q)-charges of the external strings, thus we have no
information concerning the internal structure of the network including loops. The information
on the loop deformation might be obtained by studying the zero modes of the solution with
the parameters in the region (3.4.9). The zero modes of the 1/4 BPS dyon was investigated
in Ref. [16].

In Sec. 3.5, we discussed the force between two strings connecting one common and two
different parallel D3-branes by regarding the strings as dyons and calculating the long-range
force between them in the SYM theory. In a certain parameter region of the D3-brane coor-
dinates, the force is attractive, and a three-pronged string can be formed as a bound state
of the two strings. This result is another support to the existence of a three-pronged string

connecting D3-branes.

The supermultiplet of a 1/4 BPS state should contain states with spins higher than one
(see Sec. 3.2.3). The appearance of a field with such a high spin is unusual in a field theory
without gravity. It is intriguing to note that a 1/4 BPS state is a non-local object and cannot
appear as an elementary local field. To see this, let us consider a (0, 1) string connecting two
parallel D3-branes separated by a distance [. This string state corresponds to a monopole in
SU(2) SYM theory. One sees that the energy of a monopole is given by Eq ) = T1/g, while
its width is dr(,1) = (T1)~" by viewing the explicit expression of the monopole configuration,

where T" and ¢ are the string tension and the string coupling constant, respectively (see Sec.
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2.4). By performing the SL(2,Z) duality transformation on the equation Eg 1671y = 1/g,
we obtain E, )07y, = |[p + ¢r|*/Im7 for a (p,q) string in general. Thus one cannot take
o0r — 0 limit simultaneously for two strings with non-parallel NS-NS and R-R charges by
taking an appropriate limit of 7. This fact implies that a 1/4 BPS state cannot appear as
an elementary local field in any SL(2,7) equivalent description, because it has non-parallel

electric and magnetic charges.

In appendix B, we have shown that our solutions are also solutions of the non-Abelian
BI action proposed in [146]. Among the developments of the BI physics explained in Secs.
2.2 and 2.3 and found in Refs. [32, 64, 56, 93, 57, 58, 26, 47, 142, 36], a remarkable fact is
the coincidence between the brane worldvolume approach and the target space approach [93].
Since any solution of supergravity corresponding to string junctions has not been constructed
yet, we hope our brane realization of string junctions will give a certain insight to a supergravity

realization of string junctions.

It is clear that there are some unsatisfactory points to be overcome in our formulation
to describe the general 1/4 BPS states. We need more freedom to choose the magnetic
charges. An SL(2,7) invariant formulation is also needed. It is known that Nahm equations
[107, 106, 40] describe monopoles on D3-branes by 1-brane dynamics (see Sec. 2.4.3 or Ref. [43])
rather than the D3-brane dynamics as we did. It might shed light on the above problems if the
formulation is extended to multi-pronged strings considering appropriate boundary conditions
of 1-brane fields at junctions like those given in [33]. See Ref. [69] for the progress in this

direction.

Since we use only two adjoint Higgs fields in our strategy of solving the Bogomol'nyi
equations, our results may be also applicable to N' = 2 SQCD. Thus the states discussed
in this chapter might be related to the exotic states with non-parallel electric and magnetic
charges observed recently in [139] in A/ = 2 MQCD [153] (See also [49, 2] for some discussions

on such exotic states).

After this work [72, 73] was carried out, much progress has been made concerning the
properties of the 1/4 BPS dyons [12, 13, 15, 16]. In these references, the low energy dynamics
of this exotic dyon was discussed, and unified description of the creation of this state as a

bound state of many dyons was provided.
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Chapter 4

Non-Commutative Monopoles and
Tilted Brane Configurations

2 he development in string theory in this half a decade has enabled us to understand

@ various perturbative and non-perturbative phenomena in field theories by geometrical
and intuitive pictures. This progress in string theory is now beyond the province of reproduc-
tion of the result of the field theories, that is, now the string theory has predictive power in

various field theories.

As we have seen in the previous chapter, one of the most intriguing examples in the above
progress is the 1/4 BPS dyon solution in 4-dimensional A'=4 SYM. The study of the 1/4 BPS
states in the SYM was triggered by the discovery of the stable string network in the type [1B
superstring theory [129, 42]. When this string network has its ends on D3-branes, these states
preserve 1/4 supersymmetries of the original D3-brane worldvolume theory [20]. After the
study from the string theory side, there appeared some works [72, 73, 82, 91] in which explicit
field theoretical solutions for the corresponding solitons were constructed. The properties of
the solution favor the string theory interpretation with respect to their (p, ¢)-charges, masses

and supersymmetries.

Recently, quantum field theories on non-commutative geometries have received renewed
attention following the observation that they arise naturally as a decoupled limit of open
string dynamics on D-branes [38]. In the formalism of Ref. [38], SYM on non-commutative
spacetime (NCSYM) arises from Fourier transforming the winding modes of D-branes living in
a transverse torus in the presence of NS-NS 2-form background [45]. To be concrete, consider
a D-string oriented along the Ol-plane and localized on a square torus in the 23-plane in the

background of Bsz. In the absence of Bss, the Fourier transform is equivalent to acting by
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T-duality in the 23-directions. In the presence of the B3, however, the Fourier transform
(I) and T-duality (II) acts differently. On one hand, (I) gives rise to the NCSYM with
non-commutativity scale

[T, 2] = i0,,. (4.0.1)

On the other hand, (II) gives rise to D3-branes in the NS-NS 2-form background. The precise
map of degrees of freedom between (I) and (IT) is highly non-local and was described in a
recent paper [131] as a perturbative series in the non-commutativity parameter . The physics
of (I) at large 'tHooft coupling can further be related to (IT) in the near horizon region [67, 99]
in the spirit of the AAS/CFT correspondence [98]. Yet, these equivalences have contributed
very little to the understanding of the localized observables in the NCSYM. The difficulty
stems largely from the fact that we do not yet understand the encoding of the observables in

one formulation in terms of the other with sufficient detail.

To study the localized structures, it is natural to introduce localized probes. Topologi-
cally stable solution such as a magnetic monopole seems particularly suited for such a task.
Instantons on non-commutative space-times have also been studied [109, 50, 140, 102] along

this line.

In this chapter, we will study the static properties of magnetic monopoles, dyons, and other
related structures in the NCSYM with A" = 4 supersymmetry!. Since the non-commutativity
modifies the equation of motion for the gauge fields, one must first establish the fact that
these solutions exist in the first place. To this end, the equivalence between (I) and (IT) will
prove to be extremely useful; magnetic monopoles and dyons can be understood in (IT) in the
language of brane configurations. Masses, charges, and supersymmetries of these objects can
be analyzed in the language of (II). The fact that these objects stay in the spectrum of the
theory in the decoupling limit provides a strong evidence that objects with the corresponding
mass, charge, and supersymmetry exist in the NCSYM. In the language of (II), it is also
straightforward to argue for the existence and stability of exotic dyons which arise from three-

pronged strings [1, 42, 133, 20] and other complicated brane configurations.

The analysis in (IT) provides new feature of the monopole in the NCSYM: it is predicted
that the NCSYM monopoles exhibit a certain non-locality and dipole structure. This predic-
tion should be examined directly from the field theoretical analysis of (I). We carry out the

explicit construction of the NCSYM monopoles, and show that this feature actually emerges.

'Related 1/2-BPS and 1/4-BPS constant field-strength solutions on tori were discussed in Refs. [85, 86, 87].
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This chapter is based on Refs. [66, 71]. We will begin in Sec. 4.1 by briefly reviewing
some basic facts about the NCSYM (I) and how they arise as a decoupling limit. Then we
will explain the basic notions of the monopoles in the NCSYM in Sec. 4.2. In Sec. 4.3, we
provide brane configurations in (IT) which correspond to the monopoles, dyons and string 1/4
BPS dyons in (I). Following the prediction concerning the NCSYM monopole in Sec. 4.3, we
verify in Sec. 4.4 this prediction by constructing the explicit configuration in the Lagrangian
formalism of the NCSYM in (I).

4.1 Non-commutative Yang-Mills from string theory

In this section, we will review the string theory origin of the NCSYM. To be specific, let us take
our spacetime to have 3+1 dimensions. We will not consider the effect of making time non-
commutative. Then, without loss of generality, we can restrict our attention to the case where
the only non-vanishing component of the non-commutativity parameter is o3 = —f55 = 27 A2,
(A has the dimension of length.) The NCSYM with coupling §ym and non-commutativity 6,
is defined by the action

/d4 ( Fo « B 4 D&, « DA, + .. ) (4.1.1)
gYM
where the index a runs from 4 to 9 specifying 6 scalar fields. In Eq. (4.1.1), “...” corresponds
to the fermion terms, F' is the covariant field strength
EF,=0,A,—0,A, —iA, x A, +iA, A, (4.1.2)
and D, ® is given with the covariant derivative as
D,®=0,d—id, «®+idx A, (4.1.3)

The *-product is defined with the non-commutativity parameter 6;; by
( %9)(e) = @) exp (50558 o(0) = F(@g(e) + 51, 9}@) + O, (41.4)
where {f, g} is the Poisson bracket,
{f,9}(x) = 0;;0:f (x) 0;9(). (4.1.5)

Relevant details about non-commutative geometry and the NCSYM are reviewed in Refs.
(38, 131].
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According to the construction of Ref. [38], this theory is equivalent to D3-branes in the
background NS-NS 2-form in the o/ — 0 limit while scaling

1 i a,g ) CY’Q ) A2
gs = EQYM\/ m; Vos =X = mz ) Bys = o (4.1.6)

and keeping A, ¥ and gy fixed. In the presence of D-branes, longitudinally polarized constant
NS-NS 2-form is not a pure gauge and has the effect of inducing a magnetic flux on the world
volume. The magnetic fluxes in this context can be interpreted as the non-threshold bound
state of D-strings oriented along the 1-direction. When multiple parallel D3-branes are present,
the same number of D-strings get induced on each of the D3-branes. When the 23-directions
is compactified on a torus of size ©p = /> /A?] the ratio of the number of induced D-strings

and the number of D3-branes is precisely n;/nz = ¥?/A2%

The map between gauge fields Au of the NCSYM (I) and the gauge fields A, living on the
D1-D3 bound state (II) was constructed in Ref. [131] to leading non-trivial order in €, and

takes the form
. 1
A= A — Z9’“ [Ag (0,A; + F) + (0,A; + F) Ag] + O(6?) (4.1.7)

The resummation of this series is not well understood at the present time?.

4.2 Basic notions of NCSYM monopoles

We are interested in studying the properties of the monopole-like objects in the NCSYM (I).
To simplify our discussions, we shall take as the gauge group the simplest one U(2). Note that
the group SU(2) is not allowed here since the algebra of any special unitary group is not closed
when the multiplication is defined by the x-product. Some basic properties of the NCSYM
action is already manifest. First, the x-product acts like an ordinary product for the constant
fields in the Cartan subalgebra of the gauge group. Therefore, NCSYM can be Higgsed just
like the ordinary SYM. This is important since BPS monopoles exist as a stable state in the
Higgsed SYM. Second, if we assume that only the magnetic field and one component of the

scalar (say (i>9) is non-zero, the energy of the system without the electric field is given by

1

~

9ym

E =

1. N ~ ~
T /d3x bﬂj « By + D;b « Db (4.2.1)

2The higher order corrections to (4.1.7) were studied recently in [5]. See Ref. [112] for related issues.
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The energy (4.2.1) is bounded below by a surface integral as follows?:

1 ~ o ~ N N o N ~
B = oo Tt [da[Fen (B« Db+ Dy s By) + (Fy & i De) + (B % i)
20ym
1 ~ ~
> _ Tr/d3a:8 e (Fi + @)]. 4.2.2
. i [Feian (P + ®)] (42:2)

Thus the notion of the BPS bound exists also in the non-commutative theory.

Now, by definition, a magnetic monopole solution should have the property that

- U

at large r, so the bound on the energy can be made to take the form

U A
Tr [ dSy€7%Fy0. (4.2.4)

29\2(1\/1 S2

E

Furthermore, in order for the action to be finite, F}; should decay according to

rko?

N 1 .. -
k __ LN n
Bl =gk = 2r3

5 Q (4.2.5)

at sufficiently large r where the system looks spherically symmetric. Therefore, the bounded

energy (4.2.4) is evaluated as
47 Q)

~2
9ym

E =

U. (4.2.6)

In commutative theories, () takes on integer values due to the Dirac quantization condition.
It is an important question whether there are corrections to @ in powers of (AU) for the
non-commutative theory. Even in the non-commutative theory, however, the fields are slowly
varying for large enough r, so we expect the standard commutative gauge invariance argument
to hold. Therefore, we are lead to conclude that the magnetic monopoles of NCSYM have the

same masses and charges as their commutative counterparts.

Here we have argued in general terms that a self-dual magnetic monopole solution will
saturate the BPS bound and has the same mass and the charge as in the commutative theory,
provided that they exist. Unfortunately, the field equations of the non-commutative theory
contain an infinite series of higher derivative interactions, making the task of proving the
existence, as well as studying the detailed structure of these solutions, a serious challenge.

However, even without the detailed understanding of magnetic monopole solutions in NCSYM,

3In deriving the inequality (4.2.2), we assumed that ﬁ'ij + ei]-kai) decay sufficiently fast at the infinity so
that we can apply the formula [d®z (f * g)(z) = [d®zf(z)g(z) for these quantities.
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the equivalence between (I) and (IT) can be exploited to establish some basic properties of
these objects. For example, the existence, the stability, the mass, and the supersymmetry of
these states can be understood in the language of brane construction in (IT). In this formalism,
it is also easy to establish similar properties of (p, ¢)-dyons and string junctions. These brane

constructions provide a strong evidence that the corresponding objects exist in (I).

4.3 Brane construction of NCSYM solitons

In this section, we will study a variety of dyonic states in the NCSYM. It will however be
convenient to first study the case of the BPS monopole as a prototype. The analysis for other

cases will follow a similar pattern.

4.3.1 Monopoles in NCSYM

In the formalism of the field theory brane constructions, magnetic monopoles in Higgsed SYM
have a natural realization as D-strings suspended between a pair of parallel but separated
D3-branes as seen in Sec. 2.4. Similar configuration exists in (II) and is a natural candidate
for a state which gets mapped to the magnetic monopole of (I) under the relation (4.1.7).
One important difference between (II) and the usual situation is the fact that the background
NS-NS 2-form Bys also induces a background R-R, 2-form Ay = %@ which couples to the
world volume of the suspended D-string [99, 121]. This effect can also be interpreted as the

force felt by the magnetic charge at the endpoint of the suspended D-string in the background
of constant magnetic field in the 1-direction. The overall effect is to tilt the suspended D-
string in the 1-direction and to change the overall energy of the configuration (see Fig. 4.1).
The extent of the tilt and the change in the energy can be found by obtaining the minimal
energy configuration of the D-string DBI action in the R-R 2-form background at weak string

coupling

1 2ra’U 1 dxl 2 dlUl
= d ! — App— | . 4.3.1
2ra’ /0 g Js + (dm) + Ao dxgy ( )

It is an elementary exercise to show that this expression is minimized for dz;/dzy = B, and

that the minimum mass is

v <\/1+BQ B ) iy (4.3.2)
m = — — = - 3.
Js V1+ B? 932(M

83



Tg 21U

= _

J

Figure 4.1: Brane configuration of a D-
string suspended between a pair of par-
allel D3-branes in the background of the
constant NS-NS 2-form (II). The induced

magnetic field on the D3-brane world vol- Figure 4.2: Magnetic monopole solution
ume gives rise to a tilt in the D-string ori-  in the tilted D3-brane picture (III) where
entation. the world volume fields are single-valued.

where we used Eq. (4.1.6) to express the result in terms of the parameters of the NCSYM (I).
Despite the fact that the suspended D-string was tilted in the 1-direction in response to the

background fields, the mass remained exactly the same as in the ordinary SYM.

It is also interesting to compute the “non-locality” of the suspended D-string indicated by
“0” in Fig. 4.1:
dl‘l

_ M, i 2
J= s 2ma’U = 2w A*U. (4.3.3)

This length therefore remains constant in the decoupling limit o/ — 0 in spite of the fact that

the slope dx;/dxy diverges in this limit.

It is straightforward to count the number of supersymmetries preserved by this configu-
ration. Let us denote the spinors representing 32 supercharges of the type IIB superstring
theory by

€. = €1, — €R, €, = €1, + €. (4.3.4)

As we mentioned earlier, D3-branes in the background of B3 can be thought of as a bound

state of ny D-strings and ng D3-branes. Such a configuration places a constraint
e =TT (sin(¢)e_ + T cos(d)e, ) (4.3.5)

on the supercharges, where tan(¢) = B. This result can be easily obtained by following the

supersymmetry of (p,q) = (ny,n3) string through a chain of duality transformations. On the
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other hand, a D-string tilted in the 19-plane by the angle ¢ = tan™!(B) preserves
. =IT%_, e, =-TT%, (4.3.6)

where

I'? = I sin(¢) + 'Y cos(e). (4.3.7)

The two constraints in Eq. (4.3.6) reduces the number of preserved supersymmetries from 32
to 16. It turns out that Eq. (4.3.5) closes among spinors satisfying Eq. (4.3.6), and reduce
the number of independent supersymmetries from 16 to 8. Therefore, this brane configuration

preserves the same number of supersymmetries as the magnetic monopole of N/ =4 SYM.

We are interested in the supersymmetry of these states in the field theory limit where we
scale B = A?/a’ — oo keeping A fixed. In this limit linear combinations of (4.3.5) and (4.3.6)

can be assembled into the following independent set of conditions

e. =IT'e_, e, = —IT e, (4.3.8)
e =TT, . (4.3.9)

These conditions are satisfied by 8 spinor components, indicating that the magnetic monopole

preserves 8 out of 16 supercharges in the field theory limit.

The brane configuration described in this section is precisely the S-dual of the configuration
considered in Ref. [70], except for the fact that in Ref. [70], it was the D3-brane that was tilted
instead of the D-string. The two description can be mapped from one to the other by simply
rotating the entire system. Although rotating the branes seem like a trivial operation, it
amounts to changing the static gauge condition in the language of DBI action. The fact
that this makes implicit reference to the gravitational sector of the theory means that this is
not a symmetry in the field theory limit. It is more like a duality transformation mapping
equivalent physical system between two descriptions. Let us therefore refer to the tilted D3-

brane description as (III).

One particular advantage of (III) is the fact that the field configuration corresponding to
this brane configuration is easily understood. Thinking of the pair of D3-branes as giving rise
to U(2) = U(1)xSU(2) gauge theory, the configuration of Fig. 4.2 is simply the Fyp3 = 0%y = B
embedded into the U(1) sector and an ordinary Prasad-Sommerfield monopole embedded into
the SU(2) sector [64].

The equivalence between (ITI) and (IIT) also sheds light on the nature of (II) when ex-
panded in . When (III) is interpreted as a Blon, the fields are well defined as a single valued
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function. When (III) is rotated to (II), this single-valuedness is lost. The field configuration
must now contain branch cuts to account for multi-valuedness in some region of the D3-brane
world volume. Since such a field configuration is non-analytic, expansion in @ is likely not to
yield a uniformly converging series, and this may have profound implication for the map be-
tween (I) and (IT). Especially in light of the fact that (IT) seem pathological from many points
of view, having a more conventional alternative description (IIT) may prove to be extremely

useful in future investigations.

Before concluding this section, let us pause for a moment and briefly describe what happens
to the magnetic monopoles in the NCSYM with large 'tHooft coupling and large N. Consider
SU(N + 1) broken to SU(N) x U(1). At large coupling, this SU(N) sector is described by
the supergravity background [67, 99] and the U(1) sector appears as a D3-brane probe in this
background. The supergravity background describing the near horizon of the N D3-branes in
the background of Bsjs is given by

A\U? )
ds* = {( > (—dt® + da? <%>(dw§+dm)+%dﬁ+\/—d92}

27r o/ A2U* o/ A2U*
v — gYM - Boy = 22~ 4.3.10
¢ P +A4U4’ Py A 2= AT (4.3.10)

where A = 47y /N. We wish to find the minimal configuration for the probe D-string action

s=_1 [, <e‘¢\/—G00(GH - Goo(0U())?) — A01> | (4.3.11)

2T

Near the probe D3-brane, magnetic charge of the D-string will feel the same force as in the
case of the flat space, so we impose the boundary condition that o/0U = o//A? at U where
we place the probe D3-brane. Rather remarkably, the configuration

1

U(xl) AQ

(4.3.12)

1. e. a tilted straight line, is a solution to this problem, and when the solution and the back-
ground is substituted into Eq. (4.3.11) we find

2w 1 _ 2
S = /dx T -y (4.3.13)
gYM

gYM

which, as expected for a BPS state, is the same mass that we found in the weakly coupled

limit.
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4.3.2 (p,q)-Dyons in NCSYM

In the previous section, we described the interpretation of magnetic monopoles of the NCSYM
in the language of (II) and found that they have the same mass as the ordinary SYM. It is
extremely straightforward to repeat the analysis of the previous section to the case of (p, q)-
dyons. There will be some qualitative difference in the pattern of supersymmetry breaking
which we will discuss below. Once the basic properties of the (p,q)-dyons are understood,
it is natural to consider the possibility of forming a state corresponding to a pronged string
[1, 42, 133, 20]. We will examine the existence, the stability, and the supersymmetry of these

junction states.

It is extremely straightforward to generalize the discussion of the previous section to the

(p, q)-dyon. The expression for the action (4.3.1) is generalized to

1 2m U q dxl dxl
S = R A ) 4.3.14
27ra 52 \ dxg ta o day ( )

which is minimized by setting

d B
- d . (4.3.15)
diy \J(1+ B?)g2p? + ¢
The minimum mass is
(14 B2)g2p? + ¢ 167242
= s U=/p*+—"U 4.3.16
. \} (1+ B?)g? T ( )

which is precisely identical to the result one would expect from the ordinary SYM.

Let us now investigate the number of preserved supersymmetries for these dyons. For the
sake of concreteness, we will first consider (p,q) = (1,0), which is a W-boson. As in the
previous section, the D3-brane puts the constraint (4.3.5). The (1,0)-string, on the other
hand, preserves

e =TT%,. (4.3.17)

For spinors satisfying Eq. (4.3.17), the supersymmetry constraint (4.3.5) simplifies to
(1 =TT sin(¢) — I'T°T*T° cos() ) e = 0. (4.3.18)

Conditions (4.3.17) and (4.3.18) are satisfied by 8 independent spinor components for arbitrary
values! of ¢. Therefore, we learn that the W-boson in the field theory limit tan(¢) = B =

A?/a’ — oo also preserves 8 supercharges.

“We thank M. Krogh for pointing out an error regarding this point in the earlier version of our paper [66].
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It is straight forward to extend this analysis to the case of (p,q) dyons. Taking the (p, q)-
string to be oriented in the direction given by (4.3.15), it is easy to obtain a set of independent
constraints in a manner similar to the monopole in the last section. The number of the
unbroken supersymmetries is 8, and in the decoupling limit, the surviving supersymmetries

are specified by Eq. (4.3.8) in addition to the constraint

drq\” 4
P+ <A2ﬂ> Me_ =T <p + AQEFZF?’) €4, (4.3.19)
(%Y (%Y

which reduces to (4.3.9) when (p,q) = (0,1). We conclude that in the field theory limit, the
(p, q)-dyons are 1/2 BPS objects, precisely analogous to the situation in the ordinary N = 4
SYM.

Just as in the magnetic monopole case, one can consider the analogue of (IIT) where one
tilts the D3-brane in such a way to make the (p,¢)-string point upward. This will simply
correspond to embedding the Julia-Zee dyon in the SU(2) sector and turning on the U(1)
part independently. From this standpoint, it is easy to see that the number of preserved

supersymmetries is 8.

The large N and large 'tHooft coupling limit of the (p, ¢)-dyon is also straightforward to
analyze. One simply generalizes Eq. (4.3.11) to

1
5= S /dml <\/p2 + g% 20\/~Goo(G1 + G (9U(21))?) — qu1> . (4.3.20)

The minimal action configuration satisfying the appropriate boundary condition is simply

ﬁ%{MPz

U(x) 167(]2’

1+ (4.3.21)

T A?

and we find the mass of the (p, ¢)-dyon to be

16 2.2
m=U,[p* + ——L (4.3.22)
Iym

in agreement with the earlier result from weak coupling (4.3.16).

4.3.3 1/4 BPS dyons in NCSYM

Having established the existence and some basic properties of (p,q)-dyons, it is natural to
consider the status of the 1/4 BPS dyons discussed in Chap. 3. In the absence of the back-
ground NS-NS 2-form, the existence of pronged string relied on the property of (p, ¢)-strings,
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that their tension can be balanced
Y Ty =0 (4.3.23)

where

Ty = (p, 5) (4.3.24)

for > p; = > ¢; = 0. The components of T can be, say, in the 8 and the 9 directions.

When the effect of the B-field is taken in to account, these vectors are rotated out of the
89-plane into the 1-direction. Now one needs to make sure that the tension balance condition
is satisfied in the 1, 8, and 9 directions simultaneously. It turns out, however, that the entire
effect of the B-field can be accounted for by rotating the tension vector in the 19-plane so that
the (1,8,9) components read

T, = (gi sin(g), p, gicos(qs)), tan(¢) = B. (4.3.25)

It is straightforward to verify that this vector is oriented relative to the D3-brane world volume

with the appropriate slope (4.3.15) by rotating 7, , in the 89-plane to point in the 19-directions.

Since we can just as easily tilt the D3-branes instead of tilting the (p, ¢)-strings, there is a
version of (IIT) for the string junction. The fact that the field configuration for such a state is
known (as seen in Chap. 3 and Refs. [72, 73, 82, 91]) might prove useful in the same way that
the Prasad-Sommerfield solution in (IIT) is related to the magnetic monopole in the NCSYM
(I).

Clearly, the condition for sum of T’p,q to vanish for conserved (p, q)-charges in a pronged
string is still valid, so the pronged string exists as a stable state in the presence of the B
field. Though different supersymmetries are preserved by the respective component (p,q)-
strings in the string network, in view of this stability the whole configuration is expected to
preserve some of the supersymmetries. Let us therefore investigate the field theory limit of

these configurations more closely.

Consider a junction of strings (p;,¢;), ¢ = 1,2,3, supported by D3-branes localized in
the 89-plane with strings meeting at the origin. In order to take the field theory limit of
such a configuration, we should scale the distance of the D3-brane to the origin as o/U; with
o' — 0 and oriented in the (p, ﬁ) direction in the 89-plane. In other words, the Higgs

expectation value of the (®g, @g) field should be chosen to scale according to

Ui = (s, By); = 5 (pi, 1q = ) : (4.3.26)
9;
7+ iy BVIEEEY
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Figure 4.3: Configuration of three string junction in a NS-NS 2-form background. The dots
denote the D3-branes perpendicular to the 89-plane. The orientation of the branes resembles
the conventional junction in the 89-plane. The components of the pronged string is tilted in
the 19-plane in response to the NS-NS 2-form background.

To take the field theory limit, we scale g5 and B according to Eq. (4.1.6). Expressed in terms
of gym and A, (4.3.26) reads

= Uz 47T
Ui == (¢87 ¢9)l — Ton? (pza ~9 %) (4327)
PP+ gsg N

and has a trivial o' — 0 limit. These 1/4 BPS states therefore appear to exist in the field
theory limit and orient itself in the usual way in the 89-plane as we illustrate in Fig. 4.3.
Fig. 4.3 does not represent the orientation of the strings outside the 89-plane but it should
be remembered that they are tilted in the 19-plane. The mass of the 1/4 BPS dyon takes the

same form as in the commutative case

2
m= 3 o+ e (4.3.28)
pl ~4 qZ Diyqi
i=1,2,3 gym

The unbroken supersymmetries of the junction in the field theory limit corresponds to the

spinor components of the supercharges satisfying the constraints of both the monopoles and
W-bosons, Eqs. (4.3.8), (4.3.9), and (4.3.17). This can be seen easily from the fact that, since
the (p;, ¢;)-string is now oriented in the direction (4.3.27) in the 89-plane in the decoupling

limit, the constraint for the component (p;, ¢;)-string becomes

(pirs + f;—qrﬁ’) e =T <p,~ + 24 r2r3> €1, (4.3.29)
9ym gym
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as a generalization of Eq. (4.3.19). We conclude, therefore, that objects in the NCSYM
corresponding to the field theory limit of the pronged strings preserves 4 supercharges, just

like their commutative counterparts.

4.4 Explicit configuration of NCSYM monopole

Having established some basic properties of the monopoles, dyons and 1/4 BPS dyons in the
NCSYM in the language of brane construction (II), it is natural to wonder how much of
this can be understood strictly in the framework of the Lagrangian formalism of (I). One
fascinating prediction from this brane technique (II) is that the monopole in the NCSYM has
non-locality § (4.3.3) due to the tilt of the D-string suspended between two D3-branes (see
Fig. 4.1). Believing that the brane configuration of this figure precisely captures the field-
theoretical properties, the configuration of the monopole in the NCSYM should reproduce
the tilted line, as the eigenvalues of the Higgs field. The ends of the D-string appear to be

magnetic charges, hence the field theoretical solution should contain dipole structure.

In this section, we explicitly solve the BPS equation for the monopole of the NCSYM to
the first non-trivial order in 6,; which specifies the non-commutativity. This 1/2 BPS solution
has the same mass as the ordinary SYM monopole, in agreement with the prediction in the
previous section. Solving the non-commutative eigenvalue equation in Sec. 4.4.2, we show in
Sec. 4.4.3 that the solution actually reproduces the tilt of the suspended D-string. Examining

the magnetic field, the dipole structure is also found.

4.4.1 Non-commutative BPS equation and its solution

The Bogomol’nyi-Prasad-Sommerfield (BPS) monopole solution [23, 118] of the ordinary SYM
is saturating a particular energy bound which is usually called the BPS bound. Since this
bound is topologically sensible, the state saturating the bound is stable. Now in the case of
the NCSYM, unfortunately the topological argument seems not to be valid due to the high
complexity of the x-product. However, even with this complexity, we can argue a similar mass
bound as in Sec. 4.2. If the solution of the non-commutative BPS (NCBPS) equation®,

1

5For simplicity, we have put the Yang-Mills coupling constant §yy equal to unity, and abbreviate A to A
in the following.
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has the same asymptotic behavior as the ordinary BPS solution, then the energy remains the
same. This fact will be confirmed to the first non-trivial order in € by explicitly solving the
NCBPS equation (4.4.1).

We shall solve the NCBPS equation (4.4.1) to O(#) in the small f expansion. Let us express
the gauge field as

A = (A 4 a%) 2o, + (49 +af) o1, (4.4.2)

2

DN | =

where the upper (lower) case component fields are of O(0°) (O(6')). The scalar ® is expressed
in a similar manner. First, the O(6°) part of the NCBPS equation (4.4.1) is nothing but the
ordinary BPS equation, and we adopt the well-known BPS monopole solution as the O(6°)
part of the solution:

P = x_F(T)a A;L = GaijﬁW(r)a 0 = A? =0, (4'4'3)
r r

where the the functions appearing in the solution are

F(r) = C coth(Cr) — % W(r) = % _ % (4.4.4)

The dimensionful parameter C' determines the mass scale of the monopole. For later conve-

nience, we present the asymptotic behavior of these functions:

Fr)=C— % L0y, W) = % + 00", (4.4.5)

Next let us proceed to the O(f) part of the NCBPS equation (4.4.1). Plugging (4.4.2) into
the NCBPS equation (4.4.1) and taking the O(#) part, the U(1) component reads

1 1
8Z~<,00 + 5{14;1, q)a} + €ijk <8ja2 + Z{A?, AZ}) = 0, (446)

and does not contain the SU(2) fields (af, ¢*). On the other hand, the SU(2) component of the
O(#) part of the NCBPS equation decouples from the U(1) fields, and is in fact the linearized
equation for the fluctuation (af, ") obtained from the ordinary BPS equation. Since any
solution for (af, ¢") corresponds to a #-dependent gauge transformation on the BPS solution
(4.4.3), we take a? = ¢® = 0 hereafter.

Now our task is to solve the equation (4.4.6). The ansatz for the BPS monopole solution
(4.4.3) was the covariance under the rotation of the diagonal SO(3) subgroup of SO(3)gauge X
SO(3)space- In order to solve Eq. (4.4.6), we put the following ansatz for the U(1) fields
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(a?, ©°) respecting the covariance under the generalized rotation®, in which we rotate also the

parameter 6;;:
a; = 0 A(r), @ = OyegpaeB(r), (4.4.7)

where A(r) and B(r) are functions of r to be determined. Putting these ansatz (4.4.7) and
the explicit forms of the BPS solution (4.4.3) into the differential equation (4.4.6), we obtain

the following two equations as the coefficients of different tensor structures:

1
drq1l
A'+2B — — |— 2F)| = 0. 4.4.
+ VW 2F) | =0 (4.4.9)

The solution to Eqgs. (4.4.8) and (4.4.9) is given by

1 C1 &
with two arbitrary constant parameters, ¢; and c¢;. The parts in (4.4.10) containing these

constant parameters are actually solution to the homogeneous part of Eq. (4.4.6):
8Z-<p0 + eijkajag =0. (4411)

Since the ¢, part of the scalar ¢° diverges at the infinity, we put ¢, = 0. As for the ¢; part, a
careful substitution into the left hand side of Eq. (4.4.11) gives in fact a term proportional to
0;0;(1/r) = —4md®(r). Hence the ¢; part is not a solution at the origin, and we shall also put
c1 = 0. Finally the desired solution of the equation (4.4.6) is
1

W (W + 2F), o’ =0. (4.4.12)

0 _— .. - —
a; = 015 Ar2

Note in particular that the scalar field receives no correction to this order. Since the whole
solution has the same leading asymptotic behavior as the BPS solution (4.4.3), we find that

the non-commutativity does not change the mass of the monopole.

4.4.2 Non-commutative eigenvalue equation

The configuration of the D-string suspended between two parallel D3-branes is described by
the deformation of the surface of the D3-branes in the spirit of the Blon (BI soliton) physics

6The generalized rotational covariance for a? allows two other terms with different structures, €;;,6;1 and
g i jkYj
zi€jrbrz. However, Eq. (4.4.6) implies the vanishing of these two terms.
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studied in Sec. 2.2.1. The extent of this deformation of the D3-brane surface is given by the
eigenvalues of the scalar field on the D3-branes. We saw in the previous section that there is
no additional contribution of O(f) in the scalar field configuration. However, since we are now
dealing with the theory with the x-product, the eigenvalue problem should be different from
that in the usual commutative case. In this section, we see that the O(f) terms are actually

generated in the eigenvalues of the scalar field.

We propose that the eigenvalue equation for a hermitian matrix valued function M to be

considered in the non-commutative case is
Mxv=Axwv, (4.4.13)

where v and A\ are the eigenvector and the eigenvalue, respectively. Though there are other
candidates for the non-commutative eigenvalue equation, the present one (4.4.13) has advan-

tages over the others in various respects as we shall see in this and the final sections.

For solving (4.4.13) to O(#), let us make the expansion
M:M0+M1, vV = v + vy, )\:)\0+)\17 (4414)

where the subscript number specifies the order of §. Then, the O(6°) part of (4.4.13) is
Myvy = \vy, and the O(f) part reads

Mo’vl + Ml’v() + %{Mo, ’vo} = )\0’01 + )\1’00 + %{)\0, ’00}. (4415)

Multiplying 'vJ{) from the left, we obtain the formula which gives the O(@) part of the eigenvalue:

1 .
)\1 = 5 <ZU${MO — )\()JI, ’UU} + ’U;r)Ml’Uo> . (4416)
vivy \2

In view of the application to the present NCBPS solution, let us consider the particular case

with
M() = mg(’f‘) faaa (il'\l = l‘i/T'), M1 = 0, (4417)

and hence \g = £my(r) and Z,0,v9 = £vy. Then, Eq. (4.4.16) is calculated to give

i mo(r) 0;; (vgaiaj’vo + fi'v;r)aj’vo) = —mO(T)Hi@, (4.4.18)

)\ _
! 2r2

B 2'08'00 r

with 6; = (1/2)€;,0,,. Note that A\, (4.4.18) is independent of the sign of A\g. We obtained

T

the last expression of (4.4.18) using the explicit form vy = (7 — izy, £r — z3)". However,
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the general formula for A;, Eq. (4.4.16), is in fact invariant under the local phase and scale
transformation of vy due to the identity 'vJ{){Mg — oL, fl}wg = 0 valid for any f(7). This corre-
sponds to the fact that the eigenvalue A of (4.4.13) is invariant under the right multiplication
v — v x h for an arbitrary h(r). We shall discuss the gauge transformation property of the

eigenvalues in the final section.

Let us evaluate various eigenvalues of the system using the formula (4.4.18). First, the

scalar eigenvalues are obtained by substituting mg(r) = F(r)/2 as

1 0;7;
Ao = £-F(r) — -
® 2 (r) 4r2?

Next, we shall consider the eigenvalues of the magnetic field B; = (1/2)¢;;xFj; near the infinity

F(r) + O(6%). (4.4.19)

r — oo. The magnetic field itself is given from the solution (4.4.12) as’

Bz' = —Qx—rgfaah + 22’[“3 ((5” - 3£lf]) HJJI + O (%) . (4420)
We would like to evaluate the O(#) contribution to the eigenvalues by putting mg(r) = —%;/2r?
and M, (r,0) = C (6;; — 3%;2;) 0;1/2r3. Since mg(r) in this case is O(1/r?), using the formula
(4.4.18), the order of the correction to the eigenvalues from this part is found as O(1/r%).
Thus near the infinity, the O(1/r3) part of the eigenvalues of the magnetic field is saturated

by m;.

4.4.3 Interpretation of the eigenvalues

In this section, we shall see how the eigenvalues (4.4.19) and (4.4.20) reproduce the brane
configuration depicted in Fig. 4.1. In the brane picture, the end of the D-string is seen as
a magnetic charge in a single D3-brane worldvolume theory. The prediction from the brane
configuration is that the magnetic charge on each end of the D-string is actually moved in
different directions between the upper and lower D3-branes, as shown in Fig. 4.1. This shift

is specified by the spatial vector 9;.

Now, the eigenvalues of the magnetic field (4.4.20) indicate that the U(1) part of the
magnetic field exhibits a dipole structure. This structure is exactly the one expected from the
brane picture above. Noting that the zero-th order solution (4.4.3) represents —1/2 charge on

the upper D3-brane and 1/2 charge on the lower, it is easy to derive the non-locality J; as

"Since the definition of the magnetic field contains the *-product in itself, we should calculate also the
Poisson bracket term. However, this term contributes only to the O(1/r*) part in (4.4.20).
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This result verifies the prediction of the previous section with the identification C' = U.

Figure 4.4: The eigenvalues of the solution for the scalar field. We choose
C =2 and 3 = 1/2, and other 0’s are set to zero.

Although the magnetic charges are expected to indicate only the locations of the ends of
the D-string, the eigenvalues of the scalar field must reproduce not only the locations of the
ends but also the slope of the D-string. In fact, the asymptotic behavior of the eigenvalues
(4.4.19) is given using (4.4.5) as

1 1
)\q;. = j:g F— + <_£ + —> gzi'\z + O(Q_CT)

2 2r 4r2  4p3
C 1 c 1 -1

=+— F — |z ———)e —Ory. 4.4.22
2$2$3F<2 2r> +0(E™) ( )

Eq. (4.4.22) implies first that in the upper and the lower D3-brane the end of the D-string
sits at x; = C0;/2 and x; = —C¥6; /2, respectively. Hence the non-locality is precisely given by
§; = Cb;, in agreement with the result (4.4.21) from the magnetic field. Secondly, in order to
read off the slope of the D-string from (4.4.22), we rewrite it as

C 1
Ao =£o F 5w — Aabi| "4 O(e7T). (4.4.23)
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This equation means that, for a given value of \g, the corresponding worldvolume coordinate
is located on a sphere with its center at x; = A\gp#;. Interpreting the trajectory of the center

as the D-string, our analysis reproduces precisely the tilt of the suspended D-string.

In Fig. 4.4 we present the curves of the eigenvalues of the scalar field. The thin straight
lines represent the brane configuration of Fig. 4.1. The dashed curves denote the eigenvalues of
the scalar field with § = 0. Comparing these with the bold curves representing the eigenvalues
(4.4.19) with # # 0, we can read off the simple brane configuration of the previous section.
(The reason why the bold curves are cutoff for small |z;| in Fig. 4.4 is that the O(¢) term of
the scalar eigenvalues (4.4.19) are actually divergent at the origin » = 0. We shall discuss this

problem in the next section.)

4.4.4 Generalization to dyon

It is straightforward to apply the analysis carried out above to the dyons. In this section, we
see the non-commutative dyon exhibits the similar non-locality which was predicted by the

brane configuration technique in the previous section.

The NCBPS equations for the dyons are given by
B; + D;®cosa = 0, E;+ D;®sina =0, (4.4.24)

where the parameter o specifies the electric charge of the soliton. Note that the form of the
non-commutative BPS equation is the same as the ordinary one, except for the fact that the
multiplication of fields are now defined with the x-product. For static solutions, the second

equation in Eq. (4.4.24) can be easily solved by putting
Ay = Psina. (4.4.25)

Hence the non-commutative dyon solution can be easily obtained from the non-commutative

monopole solution.

Let us evaluate the solution to the O(6). Explicitly, the zero-th order solution is [23, 118]

xa
AL = ZF(r)t ' ="F
o = F(r)tana, —E(r) .

(4.4.26)

and A¢ is given by Eq. (4.4.3). However, without explicit use of this zero-th order solution,
we can deduce the properties of the non-commutative dyons. One has only to multiply the

resultant quantities of the non-commutative monopole by the factor 1/cosa. For example,
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the two D3-branes are separated by the length C'/ cos . The non-locality derived from the
eigenvalues of the non-commutative dyon solution is §; = Cf;. This non-locality is unchanged

since the multiplication is only for the direction perpendicular to the D3-branes.

On the other hand, the prediction from the brane configuration technique is given by Eq.
(4.3.15) as

qB
V(L + B2)(pg) + ¢

Using the following identification between the two pictures

§ = 27d'U

. (4.4.27)

C

cosa’

U =

2 2
pg = tan a, 270’ By = 03, (14 B*g* = (gZ—M> ,  (4.4.28)
T

we obtain § = Cf in precise agreement with our field theoretical analysis.

The brane configuration has predicted that the locations of the electric charges are also
shifted as the magnetic charges. From the NCBPS equation (4.4.24), we have

E; = B; tan a. (4.4.29)

Then the non-commutative analysis for the magnetic charge of the monopole is also applicable
to the electric part. The electric charges of the non-commutative dyon are located at the point
where the magnetic charges sit, and form dyon charges. The ratio tan a describes the correct

electric charges.

It would be interesting to apply our formulation to the case of the non-commutative 1/4
BPS dyons. The solution in (I) is expected to exhibit the non-locality studied in Sec. 4.3.3.

4.5 Summary and discussion

Our analysis presented in this chapter is one of the intriguing examples of the predictive power
of brane techniques: first, naive brane configurations are provided in which some supersym-
metries are preserved and forces balance, then those configurations have the counterparts in

field theories which inherited the properties of the brane configurations.

In Sec. 4.3, instead of working with the Lagrangian formulation of NCSYM (I), we took
advantage of the equivalence between NCSYM (I) and the decoupling limit of D3-branes
in a background NS-NS 2-form potential (IT) to study the stable brane configurations cor-

responding to these states. Using this approach, it is easy to show that there are stable
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brane configurations corresponding to magnetic monopoles, (p, ¢)-dyons, and 1/4 BPS dyons
in the NCSYM, and that they survive in the field theory limit. From this analysis, the non-
commutative version of the monopoles, dyons and 1/4 BPS dyons were shown to have the

same masses and supersymmetry properties as the ordinary SYM counterparts.

In Sec. 4.4, we solved the BPS equation for the non-commutative monopole to the first
non-trivial order in §. Evaluating the eigenvalues of the solution, we explicitly showed that the
solution exhibits the brane configuration of the tilted D-string given in Sec. 4.3. Magnetic field
has the dipole structure, and the scalar field is also shifted to reproduce the tilted trajectory
of the D-string. For the non-commutative dyons, similar properties are verified in the same

manner.

Some comments are in order. Our first comment is on the gauge transformation property
of the eigenvalue A in our non-commutative eigenvalue equation (4.4.13). Of course, the
eigenvalue A in Eq. (4.4.13) is never strictly invariant under the local gauge transformation of
M,

M — U« Mx*U, (4.5.1)
where U~ ! is the inverse of U with respect to the x-product, U x U ' = U '« U = L
However, we can show that the eigenvalue has a fairly nice property under (4.5.1). Consider

an infinitesimal gauge transformation d, on M with U = [+ ic (ef = ¢),
M = i(M xe—ex M). (4.5.2)

Letting &, act on (4.4.13) and *multiplying the resultant equation by v’ from the left, we

obtain
vix 0 kv =ivl x(Axe—ex))xv. (4.5.3)
Taking the O(0) part of (4.5.3) and using 6. \g = 0, d.A; is given as
5. A1 = vi{e, Ao}, (4.5.4)

for a normalized vy. Eq. (4.5.4) implies that, at least to O(6), the gauge transformation cor-
responds to a coordinate transformation on the eigenvalue A(r). In the U(2) case with ¢(r) =

€q(r)o, +€(r)L, the form of the coordinate transformation is d.x; = —6;; (8]-60 + vgaavg 8jea).

Therefore, we have shown that the eigenvalue of Eq. (4.4.13) for M and the one for U x

M % U are related by a coordinate transformation on the D3-branes and hence are physically
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equivalent, at least to the first non-trivial order in #. Recalling also that the eigenvalue of
(4.4.13) is independent of the choice of the eigenvector and that the scalar eigenvalue (4.4.19)
has an invariance under the simultaneous rotation of z; and 0;;, the eigenvalue equation
(4.4.13) we have adopted is a satisfactory one. These good properties, in particular, the gauge

transformation property of A, are expected to persist to higher orders in 6.

Our second comment is on another type of non-commutative eigenvalue equation,
Msxv=1vx), (4.5.5)

where, compared with Eq. (4.4.13), v and A are interchanged on the right hand side. Eq. (4.5.5)
has a property that the eigenvalue \ is invariant under the gauge transformation (4.5.1) of M.
However, for a given M the eigenvalues are not unique and do depend on the choice of the
eigenvectors v. What is worse, in the analysis similar to those in Sec. 3 by adopting (4.5.5),
we can show that it is impossible to obtain the the scalar eigenvalues possessing an invariance

under the simultaneous rotation of z; and 6;;. These are the reasons why we did not adopt
(4.5.5).

Our third comment is concerning the singular nature of the scalar eigenvalues (4.4.19) at
the origin 7 = 0. Since we have adopted the eigenvalue equation (4.4.13), the matrix whose
diagonal entries are these eigenvalues is no longer a solution of the BPS equation. Hence
although the eigenvalues (4.4.22) diverge at the origin, the energy of the configuration is
still finite. We would need a technique beyond the expansion in powers of # to dissolve the

singularity at the origin.

Our final comment is for the analysis of all order in . In fact, the straightforward general-
ization of our analysis of Sec. 4.4 to the higher order in § seems to be difficult. However, it is
very encouraging that the construction of instanton solutions via the ADHM method admits
a natural non-commutative generalization [109]. Indeed, Nahm’s construction of the magnetic
monopole [106, 107, 40] also admits a simple non-commutative generalization. One simply

solves for the normalized zero modes of the operator

A d
0=AMx¥ = id—ff(z, ) —xxV(z,1) — TV(z, ), (4.5.6)
2
and computes
- U/2 . U/2
A; = / dzvi(z,2) * Ov(z, ), ¢ = / dz 2vi(z, 1) * v(z, 1). (4.5.7)
~U/2 ~U/2
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The non-commutativity is reflected in the *-product in (4.5.6), and as long as AT x A satisfies
the usual requirement that it be invertible and that it commutes with the quarternions, all
the steps in the argument leading to the self-duality of Eq. (4.5.7) follow immediately from
the same argument in the commutative case [39, 108]. Note that in Eq. (4.5.6) the *-product
appears only in the product x * ¥, and thus the expansion in # ends up with no higher order
terms. The O(f) approximation of Eq. (4.5.6) is exact. Hence it might be possible to obtain
the result without small # perturbation in this ADHMN formalism. Since our result in (I) in
Sec. 4.4 verifies perfectly the prediction of (IT), hence there must not be any higher corrections

concerning the dipole structure. This will be checked in the future study?®.

8While writing the paper [71], we became aware of the paper [11] which has an overlap concerning the
solution of Sec. 4.4. The author of Ref. [11] used non-commutative ADHMN construction presented in Ref.
[66).
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Chapter 5

Conclusion

¥ 1 this thesis, we argued the brane realization of solitonic objects in field theories.

> Taking the 1/4 BPS dyons and non-commutative monopoles as examples, we have
proved that the brane technique is so powerful that we can make even predictions on the
existence of new solitons and their properties without constructing explicit configurations of

the solitons in the field theories.

In Chap. 2, we presented a review of the brane realization of the conventional solitons such
as the monopoles and dyons in the 4-dimensional SU(2) SYM. The correspondence between
the soliton configurations in the field theory and the corresponding brane configurations is

based on the the following facts:

e The eigenvalues of the scalar fields on the D-brane describes the location of the D-brane.
When the scalar field depends on the worldvolume coordinates, then it tells that the

surface of the D-brane is deformed.

e So as to preserve some of the supersymmetries of the worldvolume theory, we must turn
on also the electro-magnetic fields on the brane if one deforms the D-brane by turning on
the scalar fields. The scalar charge and electro-magnetic charge on the D-brane indicates
that there is a string stuck to the D-brane. This is lead from the charge conservation of
the stuck string. Thus the deformed part of the D-brane corresponds to the string stuck
to it.

Using these, we have shown that the monopoles and (p, ¢)-dyons in N =4 SU(2) SYM is
realized by (p, ¢)-strings suspended between two D3-branes in the type IIB superstring theory.
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The Nahm equation for the construction of the monopoles has been shown to be the BPS

equations of the 2-dimensional gauge theory on the D-string worldsheet.

In Chap. 3, we have constructed explicit configurations of the 1/4 BPS dyons, by following
the prediction from the brane configuration in Ref. [20]. This exotic dyon corresponds to
the string network suspended among many D3-branes. The constructed configurations of the
dyons in N'=4 SU(N) SYM reproduce the brane configurations of the string network at the
infinity of the worldvolume. We found, however, that the behavior near the core of the soliton

does not resemble to the string network in the type IIB picture.

In Chap. 4, using the equivalence between the worldvolume non-commutativity and the
background B-field in string theory, we investigate solitons in NCSYM. From the analysis of
the brane technique, it was predicted that the monopoles and such have the same masses and
preserve the same supersymmetries as in the ordinary SYM. Furthermore, the prediction of
the new phenomena in the NCSYM from the brane technique was that the solitons such as
monopoles possess a certain non-locality. We have examined these predictions explicitly in
the Lagrangian formalism of the NCSYM. We have performed the analysis up to the first
non-trivial order in the perturbation of the non-commutativity parameter #, and the result

confirms all of the predictions concerning the monopoles in the NCSYM.

The main theme of this thesis is to show the powerfulness of the brane techniques. As
seen in the analysis presented in this thesis, it is obvious that the brane technique especially
against the solitons in SYM is really an useful method. Therefore there is no doubt that the

brane technique will contribute to study of solitons in various field theories.

Let us comment on the future directions. What should be done and can be done first
is to check the non-locality of the 1/4 BPS dyon of the NCSYM by explicitly constructing
the configuration. This is expected to give further confirmation of the validity of the brane
techniques. Then, it would be possible to apply the brane technique to solitons in other field
theories. For example, in lower dimensional field theories, the vortex solutions may have its
generalizations to the non-commutative case. The properties of this vortex solutions would

be predicted simply from the brane techniques.

Investigation of the solitons gives information of the spectrum of the theory. It would
be interesting to study the symmetry of the theory in terms of the brane configurations or in
general string theory. For example, from the brane configurations the NCSYM monopoles have
the same mass as in ordinary SYM, thus there may be S-duality symmetry in the spectrum
of the NCSYM. This may be examined from the string theory realization of the NCSYM.
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Appendix A

Verification of the formulas

In this appendix, we verify the formulas used in this thesis.

A.1 Solution for the fluctuation of the Born-Infeld sys-
tem

In this section, we present a way to solve the equation (2.3.12) using the expansion (2.3.13).

Making an abbreviation

n2g? 10 0
O=[1+FE*+ —= |+ = All
(+ +r4>w+r28r<rar ’ ( )
the equation (2.3.12) is decomposed due to the orthogonality of the Legendre functions as
follows:
2€
Ony + —m =0,
r
2 2¢ 2
0 - )+ (m+2m) =0, AL2
< 2 771+T2 770+5772 ( )
6 2¢ (2 3
<O - _2> 2+ = <§771 + ?773> =0,
where we put € = TEg,w?. Due to the structure of these equations, it is possible to expand 1,
further as
m = én® & 2D 4 (A.1.3)

where, in particular, 77(()0) is the zero mode of the operator O. Then easily one can deduce that

the leading terms of 7, in each angular momentum [ satisfy relations

2
i = 5 77§2>:§77§>, (A.1.4)
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therefore intrinsically all nl(l) are identical with 7780). The next-to-leading terms nl(HZ) are

determined by evaluating the next-to-leading terms in the decomposed equations (A.1.2). As

an example, let us consider the first one:
2
on? + ﬁngl) = 0. (A.1.5)

At r ~ 0 (y ~ o0), the region which represents the place where the effect of the end point of
the attached string is not expected to appear, the operator O is approximated by

o L i1+ & (A.1.6)
7r2952w2y a7 1.
Therefore, using the asymptotic (r ~ 0) behavior of the solution 7751) = 77((]0) ~ exp(+iy) at the

weak coupling limit, we obtain a solution of Eq. (A.1.5) as

1
2 ~ ;exp(j:iy). (A.1.7)
This does not contribute when we discuss the phase shift of the boundary, since the magnitude
of this mode is dumping fast enough at r ~ 0. Owing to similar argument, the following

relations can be derived:
)~y F exp(diy)  at v~ 0. (A.1.8)

These modes (k > 1) are collectively represented in Eq. (2.3.14) as “higher order terms”.

A.2 String networks in the IIB picture

In this section, we present a proof of the properties (A) and (B) of Sec. 3.2.4 concerning the
presence of the “generalized” string networks for arbitrary N. The following proof is based
on a substitution rule which allows us to reduce the number N of the strings emerging from

the D3-branes (we call these strings “external string” hereafter) by one.

For any two among the N external strings, say the strings 1 and 2, let us consider a new
string 12 carrying the charge (e12, g12) = (€1 + €2, g1 +¢g2). The transverse coordinate (12, y12)
from which the new string 12 emerges is determined by the conditions that the BPS bound
Egps (3.2.5) of the energy and the angle 6 of Eq. (3.2.10) are common in both the original
system of N external strings (1,2,3,...,N) and the new system of N — 1 external strings

(12,3,...,N). Then, this new string 12 satisfies the two properties:
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(I) The junction point of the strings 1 and 2 lies on the string 12.

(IT) Taking this junction point as the common end of the three strings 1, 2 and 12, the mass

of the string 12 is equal to the sum of the masses of the strings 1 and 2.

To show the properties (I) and (II), note first that the condition determining (x12, y12) is

Cmcm>:q<“>+@(“>, (A.2.1)

Y12 hn Y2
where C (a = 1,2,12) is the 2 x 2 matrix given by

expressed as

C, = (9“ _6“> . (A.2.2)

€a Ya

Then, the property (I) claims that, for ¢; and ¢, determined by the first equality of

1o Uy T2 Uz T12 U2
+t< ):( >+t( ):( >+t< ), A23
(yl ) ! U1 Yo 2 U2 Y12 2 V12 ( )

there exits ¢;2 which satisfies the second equality. Such ¢y, is easily found by eliminating
(%4, Ya) (@ =1,2) from Eq. (A.2.1) using Eq. (A.2.3) to get

MCHCT>ZHQ(E>+@@<?>, (A.2.4)

12 2

which is equivalent to
12D (e%z + ng) =t (ef + gf) +to (63 + gg) : (A.2.5)

This equation (A.2.5) also implies the property (II) since the tension and the length of the

strings are given by T, = 2w sgn(t,)\/€2 + g2 and ¢, = |t,]|\/e2 + g2, respectively:

Tialy = Thl + Tols. (A.2.6)

Now, the properties (I) and (II) implies that we can reduce the problem of proving (A)
and (B) for N external strings to that for N — 1 external strings. Since we know that (A) and
(B) hold for N = 3, we conclude that they are valid for an arbitrary N.

A.3 Solving the eigenvalue problem (3.3.31)

In this section, we shall solve the eigenvalue problem (3.3.31), namely, we obtain the eigen-

values p(p + 1) and the corresponding eigenvector v®). For this purpose let us introduce a
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polynomial V()(2) of a variable z as
VP(z) = p®P)m, (A.3.1)

Then, Eq. (3.3.31) is expressed as a second order differential equation for V®)(z):

Az = 12VO" 4 (z = 1[N +1— (N = 3)z] V@
N+1
+|=——-
Ve

(N=1)z—pp+1)| VP =0, (A.3.2)

where the prime denotes the differentiation with respect to z. In order to transform the
differential equation (A.3.2) into a more familiar one, we rewrite it in terms of V®)(z) defined
by

VP (2) = 2(1 — 2)P7 VP (2). (A.3.3)

The differential equation for V®) reads

2(1—2)V®r 4 [—N +1-(2p—-N+ 3)2]‘7(”)'
~(p-N+1)(p+1)V® =0, (A.3.4)

This hypergeometric differential equation has a polynomial solution when p takes integer values

p=1,2,...,N —1, and we have

VP (2) = 2(1 — 2)P7! N_Xp:_l ( i ) ( kp) 2. (A.3.5)

= (W)

The eigenvector v® can be read off from (A.3.1) and (A.3.5). For example, v{!

m

) and v?) are

given (up to the normalization constant) by

oD = mim, (A.3.6)
v? = mim (m —m), (A.3.7)

withm =N —m.

A.4 The coefficient ¢,

In this section we derive the solution of Eq. (3.3.34) in an infinite Taylor series at y = 1 and

obtain the coefficient ¢, in (3.3.38) by an analytic continuation to the expression (3.3.35).
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We should find the solutions @) of Eq. (3.3.34) which damps faster than (1 —y)? at y ~ 1.
Although the solution of the hypergeometric differential equation (3.3.34) which is regular at
y = 1 may be expressed formally by the hypergeometric series F'(—p, —p, —2p; 1 —y), this does
not make sense because of a zero in the denominators. Thus the real solution may be obtained
by taking an appropriate limit of ¢; — 0 in the expression F(—p+ €1, —p+ €2, —2p+e€3;1 —y).
The higher terms from order (1 — y)**! of this series have a 1/e3 singularity at e3 = 0,
and the series of these singular terms' can be shown to satisfy by itself a hypergeometric
differential equation which converges to Eq. (3.3.34) in the limit ¢; — 0. Since this partial
series lim, ,0 €3F(—p + €1, —p + €2, —2p + €3;1 — y) behaves like €1e; at €2 — 0, we cancel
this factor and obtain a solution

P = lim lim 2 F(—p+ e, —p+ e, —2p+ e 1 — 1), (A.4.1)

61,2%0 63%0 6162
where we wrote explicitly that the limit e3 — 0 should be taken first.

A well-known formula for an analytic continuation of the hypergeometric function reads

Flofril=y) = EE?E({Z);(? - g;F(%ﬁ,Wr B—7+Ly)

va sl (a+B—7)
T ()T (5)

We also use a well-known expansion formula for the gamma function:

F(y—a,y=B8,7y—a—[+1y). (A42)

n!

e —n) = Y (% +i%+¢(1) +O(e)>, (A.43)

where (1) is the Euler constant. Taking the limit in Eq. (A.4.1) by using Eqgs. (A.4.2) and
(A.4.3), we obtain

B p! 2 p 1 .
g = _E2p))’ (2 (Z; F(=p,=p,1;y) + F*(=p, =p, 1;y) + n(y) F(=p, —p, 1;¥) | ,
: 1=1
(A.4.4)
where we have used the definition F*(a, 8,7;2) = (% + % + 26%) F(a, 8,7;2). This is the
solution (3.3.35) with ¢, = 1/(2%)_; 7).

'Hence this series damps faster than (1 — y)P as desired.
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Appendix B

Non-Abelian Born-Infeld action

We shall show in this appendix that the BPS saturated solutions obtained in Sec. 3.2 and Sec.
2.4.3 are also solutions of the non-Abelian BI action proposed in Ref. [146]. This property
for the conventional solitons are summarized in Ref. [25], and here we will present solutions
of the BPS equations other than the ones considered in that reference: 1/4 BPS dyon in
4-dimensional SYM (Sec. 3.2) and 1/4 BPS state in 2-dimensional SYM (Sec. 2.4.3). We
will follow the discussions given in Ref. [64], where the usual monopole and dyon solutions in
SU(2) SYM theory were shown to satisfy the equations of motion from the non-Abelian BI

action.

The ordinary D3-brane effective action is given by the Abelian BI action

S = /d4 — det(gp + ), (B.0.1)

where we have ignored the overall numerical factor, which is irrelevant in the discussions here,
and have appropriately normalized the gauge fields to be consistent with Eq. (3.2.2). In our
solutions, the D3-branes fluctuate in the transverse two dimensional plane with coordinates

X and Y. Hence the induced metric g, on the D3-branes is given by
G = Ny + 0,X0,X +0,Y0,Y, (B.0.2)

where 7, denotes the flat Minkowski metric. The action (B.0.1) with the metric (B.0.2) can
be simply deduced [56] by the dimensional reduction from the 6-dimensional BI action with a

flat metric:

S = / % \/— det(a + Fap)- (B.0.3)
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Here the fluctuations of the four-dimensional induced metric (B.0.2) are incorporated in the
six-dimensional gauge fields in (B.0.3) by identifying X and Y with some components through
T-duality: X = A, Y = As.

A non-Abelian version of the BI action suffers from the ordering ambiguities of the matrix-
valued field components. This ambiguity is fixed in the proposal of Ref. [146] by taking the

symmetrized trace operation STr. The action is defined by

S = /d% STr\/— det(nap + Fup), (B.0.4)

where the 6-dimensional field strengths are given by

0 & & &3 Dy X DY
—& 0 By -B, DX DY
| —e& -0 Bl DX DY
Fo=1""e B, B 0 DX Dy (8.05)
“DoX DX -DoX -D3X 0 —i[X,Y]
DY DY DY -DY iX,Y] 0

Since the part inside the symmetrized trace in Eq. (B.0.4) can be expanded in a polynomial
form in F,;, we can treat this part as if F,, were an Abelian variable before symmetrization.

The variation of the action gives

55 = % ST {W— det(nea + Fog) (0 + F);,}} 5Fba] | (B.0.6)

In evaluating (B.0.6) for our configurations, we are allowed to substitute Eqs. (3.2.8), (3.2.9),
(3.3.1) and (3.3.2) into the curly bracket part {---} before the symmetrizing operation. This
is because these four equations are linear relations among the components of Fy,. Therefore,
after a little algebra, the quantity inside the curly bracket of (B.0.6) is simply replaced by — Fy,.
Hence we find a similar situation as in Ref. [64], that is, there is no need to distinguish the
symmetrized trace operation from the ordinary one, since we have only two non-commutative
elements in the symmetrized trace of (B.0.6). Noticing that §F,, = D04, and performing

an integration by parts, the equations of motion are reduced to
D*F,, =0, (B.0.7)

which are just the ones from the SYM action. The BPS conditions (3.2.8), (3.2.9), (3.3.1) and
(3.3.2) satisfy Eq. (B.0.7). Therefore we have shown that our BPS saturated configuration is

also a solution of the equations of motion from the non-Abelian BI action.
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Precisely in the same manner, it is possible to show that the solutions satisfying the BPS
equations (2.4.27), (2.4.37) and (2.4.38) from the 2-dimensional SYM are also solutions of the

2-dimensional non-Abelian BI equations of motion.

Now we have four scalars, S and X* Thus the low energy effective action is deduced in the
same way by the dimensional reduction from the 6-dimensional BI action with a flat metric,
Eq. (B.0.3). We have have appropriately normalized the gauge fields to be consistent with Eq.
(2.4.24). Here the fields representing the fluctuations of the D-string are identified with some
components of the six-dimensional gauge fields in Eq. (B.0.3) through T-duality as S = A,,
Xt = Ao (i = 1,2,3). This identification results in the 6-dimensional field strength as

follows:
0 £ DyS Do X! DyX? DoX?
—£ 0 DS D X! D, X? D, X?
» _| —DsS  =DiS 0 i[S, XY i[S,X?]  i[S, X3 (B.08)
@7 —DeX' —Di X' —i[S, X] 0 iX', X% QXY X7 o
—DyX? —D; X% —i[S,X?] —i[X', X7 0 i[X2, X7

—DoX? —DyX3 —i[S, X3] —i[X!, X% —i[X2, X% 0

Using the explicit expression (B.0.8) and the BPS equations (2.4.27), (2.4.37) and (2.4.38),
it is possible to reduce the equations of motion from the action (B.0.4) to the ordinary Yang-
Mills equations of motion (B.0.7). Since the BPS equations (2.4.27), (2.4.37) and (2.4.38)
satisfy the Yang-Mills equations of motion (B.0.7), we have shown that our BPS saturated

configuration is also a solution of the equations of motion from the non-Abelian BI action.
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