

CADEMY OF

EXOTIC ATOMS: STUDY OF STRONG INTERACTION WITH STRANGENESS FROM DAΦNE TO J-PARC

Johann Zmeskal for the SIDDHARTA and E57 collaboration SMI, Vienna, Austria

MESON IN NUCLEUS - MIN16 Yukawa Institute, Kyoto Aug. 2, 2016

WWW.OEAW.AC.AT/SMI

OUTLINE

- Motivation
- Measuring principle
- Kaonic hydrogen at DAΦNE results
- Kaonic deuterium at J-PARC plans
- Summary

WWW.OEAW.AC.AT/SMI

WHY STRANGE QUARKS

Strange quarks are neither "light" nor "heavy"

interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD

Testing ground: high-precision antikaon-nucleon threshold physics

➤ attractive low-energy KN interaction

Nature and structure of $\Lambda(1405)$ B=1; S=-1, J^P = 1/2⁻

- three-quark valence structure, or "molecular" meson-baryon state
- quest for quasi-bound antikaon-NN systems

Role of strangeness in dense baryonic matter

kaon condensation, strange quark matter, hyperons in neutron stars

LOW-ENERGY KN INTERACTION

FORMING "EXOTIC" ATOMS

X-RAY TRANSITIONS TO THE 1s STATE

SCATTERING LENGTHS

Deser-type relation connects shift ε_{1s} and width Γ_{1s} to the real and imaginary part of a_{K-p}

$$\varepsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^{3}\mu_{c}^{2}a_{K^{-}p}(1 - 2\alpha\mu_{c}(\ln\alpha - 1)a_{K^{-}p})$$

(μ_C reduced mass of the K⁻p system, α fine-structure constant)

U.-G. Meißner, U.Raha, A.Rusetsky, Eur. phys. J. C35 (2004) 349 next-to-leading order, including isospin breaking

$$a_{K^{-}p} = \frac{1}{2} [a_0 + a_1]$$

$$a_{K^{-}n} = a_1$$

$$a_{K^{-}d} = \frac{k}{2} [a_{K^{-}p} + a_{K^{-}n}] + C = \frac{k}{4} [a_0 + 3a_1] + C$$

$$k = \frac{4[m_n + m_K]}{[2m_n + m_K]}$$

KAONIC HYDROGEN ATOMS AT DA ΦNE

DAONE PRINCIPLE

- operates at the centre-of-mass energy of the Φ meson mass m = 1019.413 ± .008 MeV width Γ = 4.43 ± .06 MeV
- Φ produced via e⁺e⁻ collision with $\sigma(e^+e^- \rightarrow \Phi) \sim 5 \ \mu b$

K+

 \rightarrow monochromatic kaon beam (127 MeV/c)

SIDDHARTA TARGET - DETECTOR

LIGHTWEIGHT CRYOGENIC TARGET

DATA TAKING SCHEME

KAONIC HYDROGEN: KpX and DEAR results

KAONIC HYDROGEN

KAONIC HYDROGEN

ANALYSIS OF THE K^-p THRESHOLD PHYSICS

Chiral SU(3) coupled-channels dynamics **Weinberg-Tomozawa** + Born terms +NLO

kaonic hydrogen ϵ_{1s} and Γ_{1s}	theory (NLO)	experiment
Δε [eV] ΔΓ [eV]	306 591	$283 \pm 36 \pm 6$ $541 \pm 89 \pm 22$
threshold branching ratios		
$\frac{\Gamma(K^-p \to \pi^+ \Sigma^-)}{\Gamma(K^-p \to \pi^- \Sigma^+)}$	2.36	2.36 ± 0.04
$\frac{\Gamma(K^-p \rightarrow \pi^+ \Sigma^-, \pi^- \Sigma^+)}{\Gamma(K^-p \rightarrow all \ inelastic \ channels)}$	0.66	0.66 ± 0.01
$\frac{\Gamma(K^-p \to \pi^0 \Lambda)}{\Gamma(K^-p \to neutral \ states)}$	0.19	0.19 ± 0.02

Re $a(K^-p) = (-0.65 \pm 0.10)$ fm Im $a(K^-p) = (0.81 \pm 0.12)$ fm

Improved constraints on chiral SU(3) dynamics from kaonic hydrogen: Y. Ikeda, T. Hyodo and W. Weise, PLB 706 (2011) 63

Real part (left) and imaginary part (right) of the $K^-p \rightarrow K^-p$ forward scattering amplitude extrapolated to the subthreshold region, deduced from the SIDDHARTA kaonic hydrogen measurement.

KAONIC HELIUM RESULTS

RIKEN

British Columbia University of Victoria Canada

K-d at J-PARC 💏 THE UNIVERSITY OF TOKYO **K-d** collaboration

OREA INSTITUTE OF ADIOLOGICAL & MEDICAL SCIENCES

LNF- INFN, Frascati, Italy SMI- ÖAW, Vienna, Austria IFIN - HH, Bucharest, Romania Politecnico, Milano, Italy **RIKEN**, Japan Tokyo Univ., Japan Victoria Univ., Canada KEK, Tsukuba, Japan RCNP, Osaka, Japan Seoul Univ., South Korea Zagreb Univ., Croatia INFN, Torino, Italy Osaka Univ., Japan TUM, Garching, Germany Kyoto Univ., Japan Jagiellonian Univ., Poland RCJ, Juelich, Germany Santiago de Compostela Univ., Spain Tohoku Univ., Japan KIRAMS, Seoul, South Korea

20 Institutes / 10 Countries

K⁻d AT J-PARC

- X-ray detection: large active area
- charge particle tracking
- lightweight cryogenic target
- stopped K⁻

STOPPED KAONS RANGE CURVE MEASURED @ J-PARC – June 2016

KAONIC LITHIUM $3\rightarrow 2$

- ✓ Sum of K⁻ runs
 (0.7 and 0.9 GeV/c)
- ✓ 15.323 ± 0.008 keV
 ~ 1200 counts
 resolution 160 eV

K⁻Li_{Lα} transition: 15.330 keV (pure QED9) J.P.Santos et al. Phys. Rev. A 71 (2005) 032501

Large area Silicon Drift Detector developed by Politech Milano and FBK-Trento, Italy

The new 4x2 SDD array for K⁻d

New SDD technology with CUBE preamplifier

J-PARC K1.8BR spectrometer

beam dump

En

beam sweeping magnet

liquid ³He-target system

CDS

beam line

neutron counter

Combined target and SDD design

target cell: l = 160 mm, d = 65 mmtarget pressure max.: 0.35 MPa target temperature: 23 - 30 KSDD active area: 246 cm^2 density: 5% LHD

(29K/0.35 MPa)

SDD cooling and support

[•] 12 x 4 SDD arrays

• Al reinforced side wall 75 µm Kapton

entrance window 75 μ m Kapton

start counter T0

Geant4 simulated K⁻d X-ray spectrum

30

K⁻d scattering lengths - theory

a_{Kd} [fm]	$\epsilon_{1s} [eV]$	Γ_{1s} [eV]	Reference	
-1.55 + <i>i</i> 1.66	- 969	938	Weise 2015 [2]	
-1.58 + <i>i</i> 1.37	- 887	757	Mizutani 2013 [4]	
-1.48 + <i>i</i> 1.22	- 787	1011	Shevchenko 2012 [5]	for simulation: shift = - 800 eV width = 800 eV
-1.46 + <i>i</i> 1.08	- 779	650	Meißner 2011 [1]	
-1.42 + <i>i</i> 1.09	- 769	674	Gal 2007 [6]	
-1.66 + <i>i</i> 1.28	- 884	665	Meißner 2006 [7]	
-1.62 + <i>i</i> 1.91	- 1080	1024	Oset 2001 [3]	

- [1] M. Döring, U.-G. Meißner, Phys. Lett. B 704 (2011) 663
- [2] W. Weise, arXiv:1412.7838[nucl-theo]2015
- [3] S.S. Kamakov, E. Oset, A. Ramos, Nucl. Phys. A 690 (2001) 494
- [4] T. Mizutani, C. Fayard, B. Saghai, K. Tsushima, Phys. Rev. C 87, 035201 (2013), arXiv:1211.5824[hep-ph]
- [5] N.V. Shevchenko, Nucl. Phys. A 890-891 (2012) 50-61
- [6] A. Gal, Int. J. Mod. Phys. A22 (2007) 226
- [7] U.-G. Meißner, U. Raha, A. Rusetsky, Eur. phys. J. C47 (2006) 473

SUMMARY

SIDDHARTA@ DAΦNE

X-ray spectra measured with several targets:

- K⁻p: provided the most precise values (PLB 704 (2011) 113)
- K⁻d: first exploratory measurement (Nuclear Physics A 907 (2013) 69)
- K⁻³He: first-time measurement (PLB 697 (2011) 199)
- K⁻⁴He: measured in gaseous target (PLB 681 (2009) 310)

K⁻d at J-PARC (E57)

- stage 1 approval
 - new SDDs with cryogenic gas target
 - K1.8 BR spectrometer