Measurement of deeply bound pionic states using the (p,²He) reaction at RCNP

Akane Sakaue Kyoto University

collaborators

- Kyoto University : Akane Sakaue, Sakiko Ashikaga, Hiroyuki Fujioka, Tatsuya Furuno, Kento Inaba, Takahiro Kawabata, Shota Matsumoto, Takahiro Morimoto, Motoki Murata, Yu Takahashi, Miho Tsumura, Ken Watanabe
- University of Tokyo : Ryugo S. Hayano, Yuni N. Watanabe
- RCNP : Satoshi Adachi, Nori Aoi, Gey Guillaume, Kichiji Hatanaka, Azusa Inoue, Chihiro Iwamoto, Shumpei Noji, Hooi Jin Ong, Atsushi Tamii, Tsz Leung Tang
- Tohoku University : Yohei Matsuda
- Konan University : Katsuyoshi Heguri
- RIKEN : Takahiro Nishi, Kenta Itahashi
- GSI : Hans Geissel, Yoshiki K. Tanaka
- Beihang University : Satoru Terashima
- Institute for Basic Science : Takashi Hashimoto

Deeply bound pionic atom

• Binding energy and width of pionic atom

• s-wave pion-nucleus potential

$$U_{s}(r) = -\frac{2\pi}{\mu} \left[\varepsilon_{1} \left\{ b_{0}\rho(r) + b_{1} \left[\rho_{n}(r) - \rho_{p}(r) \right] \right\} + \varepsilon_{2} B_{0}\rho^{2}(r) \right]$$

 $\mu = m_{\pi}M/(m_{\pi} + M), \ \varepsilon_1 = 1 + m_{\pi}/M, \ \varepsilon_2 = 1 + m_{\pi}/2M$ $\rho_n(r)$: neutron density, $\rho_p(r)$: proton density, $\rho(r) = \rho_n(r) + \rho_p(r)$

Gell-Mann-Oakes-Renner relation Tomozawa-Weinberg relation

$$\frac{\langle \bar{q}q \rangle_{\rho}}{\langle \bar{q}q \rangle_{0}} \approx \frac{b_{1}^{\text{free}}}{b_{1}(\rho)}$$

$$U_{s}(r) = -\frac{2\pi}{\mu} \left[\varepsilon_{1} \left\{ b_{0} \rho(r) + b_{1} \left[\rho_{n}(r) - \rho_{p}(r) \right] \right\} + \varepsilon_{2} B_{0} \rho^{2}(r) \right]$$

Density dependence

→ Need to study isotope / isotone dependence

Cs117 8.4 s (9/2+)	Cs118 14 s 2	Cs119 43.0 s 9/2+	Cs120 64 s 2	Cs121 155 s 3/2(+)	Cs122 21.0 s 1+	Cs123 5.94 m 1/2+	Cs124 30.8 s 1+	Cs125 45 m (1/2+)	Cs126 1.64 m 1+	Cs127 6.25 h 1/2+	Cs128 3.66 m 1+	Cs129 32.06 h 1/2+	Cs130 29.21 m 1+	Cs131 9.689 d 5/2+	Cs132 6.479 d 2+	Cs133	Cs134 2.0648 y 4+	Cs135 2.3E+6 y 7/2+	Cs136 13.16 d 5+	Cs137 30.07 y 7/2+
EC *	* ΕСр,ΕСα,	* EC	* EC	EC *	* EC	* EC	* EC	EC	EC	EC	EC	EC	* ΕC,β [.]	EC	EC,β-	100	* ΕC,β [.]	*	* β·	β-
Xe116	Xe117	Xe118 3.8 m	Xe119 5.8 m	Xe120	Xe121 40.1 m	Xe122 20.1 h	Xe123	Xe124	Xe125	Xe126	Xe127 36.4 d	Xe128	Xe129	Xe130	Xe131	Xe132	Xe133 5.243 d	Xe134	Xe135 9.14 h	Xe136 2.36E21 v
0+	5/2(+)	0+	(5/2+)	0+	5/2(+)	0+	(1/2)+	0+ ECEC	(1/2)+ *	0+	1/2+ *	0+	1/2+ *	0+	3/2+ *	0+ *	3/2+ *	0+ *	3/2+ *	0+
EC	ЕСр	EC	EC	EC	EC	EC	EC	0.10	EC	0.09	EC	1.91	26.4	4.1	21.2	26.9	β-	10.4	β-	8.9
I115	I116	I117	I118	I119	I120	I121	I122	I123	I124	I125	I126	I127	I128	I129	I130	I131	I132	I133	I134	I135
(5/2+)	2.91 s 1+	2.22 m (5/2)+	13.7 m 2-	19.1 m 5/2+	81.0 m 2-	2.12 h 5/2+	3.63 m 1+	13.27 h 5/2+	4.1760 d 2-	59.408 d 5/2+	13.11 d 2-	5/2+	24.99 m 1+	1.5/E/ y 7/2+	12.36 h 5+	8.02070 d 7/2+	2.295 h 4+	20.8 h 7/2+	52.5 m (4)+	6.57 h 7/2+
EC	* EC	EC	* EC	EC	EC *	EC	EC *	EC	EC	EC	EC,β-	100	EC,β-	β-	* β·	β-	β- *	* β-	κ β-	β-
Te114	Te115	Te116	Te117	Te118	Te119	Te120	Te121	Te122	Te123	Te124	Te125	Te126	Te127	Te128	Te129	Te130	Te131	Te132	Te133	Te134
15.2 m 0+	5.8 m 7/2+	2.49 h 0+	62 m 1/2+	6.00 d	16.03 h 1/2+	0+	16.78 d 1/2+	0+	1E+13 y 1/2+	0+	1/2+	0+	9.35 h 3/2+	2.2E24 y 0+	69.6 m 3/2+	7.9E20 y 0+	25.0 m 3/2+	3.204 d 0+	12.5 m (3/2+)	41.8 m 0+
FC	* FC	FC	*	FC	*	0.006	* FC	2 602	EC *	1 916	* 7 1 20	19.05	ж В-	β-β-	ж В-	β-	к. К.	в-	к. к.	в.
Sh113	Sb114	Sb115	Sb116	Sb117	Sb118	Sh119	Sb120	2.003 Sh121	Sb122	4.010 Sh123	Sh124	Sh125	P Sb126	Sb127	P Sh128	Sb129	P Sb130	թ ՏԵ131	Sh132	<u>р</u> Sh133
6.67 m	3.49 m	32.1 m	15.8 m	2.80 h	3.6 m	38.19 h	15.89 m	50121	2.7238 d	50125	60.20 d	2.7582 y	12.46 d	3.85 d	9.01 h	4.40 h	39.5 m	23.03 m	2.79 m	2.5 m
5/2+	3+	5/2+	3+ *	5/2+	1+ *	5/2+ *	1+ *	5/2+	2- *	7/2+	3- *	7/2+	(8)-	7/2+	8- *	7/2+	(8-) *	(7/2+)	(4+) *	(7/2+)
EC	EC	EC	EC	EC	EC	EC	EC	57.36	EC,β∙	42.64	β-	β-	β-	β-	β-	β-	β-	β-	β-	β-
Sn112	Sn113	Sn114	Sn115	Sn116	Sn117	Sn118	Sn119	Sn120	Sn121	Sn122	Sn123	Sn124	Sn125	Sn126	Sn127	Sn128	Sn129	Sn130	Sn131	Sn132
0+	1/2+	0+	1/2+	0+	1/2+	0+	1/2+	0+	27.06 h 3/2+	0+	129.2 d 11/2-	0+	9.64 d 11/2-	0+	2.10 n (11/2-)	0+	(3/2+)	0+	(3/2+)	0+
0.97	* EC	0.65	0.34	14.53	* 7.68	24.23	* 8.59	32.59	*	4.63	ж 6-	5.79	ж 6-	β-	ж 6-	ж 6-	в- 8-	ж 6-	* 6-	<u>в-</u>
In11/	I112	T 112	I-114	T 11E	I-116	T. 117	I110	I 110	I 120	I191	I100	L-23	In124	In125	In126	In127	In128	In129	In130	In131
2.8047	14.97 m	0/2 .	/1.9 8	4.41E+14 y	14.10 8	43.2 m	5.0 8	2.4 m	3.00 S	23.1 8	1.5 8	5.0 S	3.11 s	2.36 s	1.60 s	1.09 s	0.84 s	0.61 s	0.32 s	0.282 s
9/2+	1+ *	9/2+	1+ *	β-				9/2+	1+ *	9/2+	1+	9/2+	3+ *	9/2(+) *	3(+) *	(9/2+) *	(3+) *	(9/2+)	*	(9/2+) *
EC	EC,β·	4.3	EC,β-			ואוכ	ENI	β-	β-	β·	β-	β-	P	β-	β-	β n	β n	β n	β n	β n
(Shisotono)															4					
																4				

• Xe : gas target

hard to use at GSI or RIKEN

RCNP (Research Center for Nuclear Physics)

RCNP (Research Center for Nuclear Physics)

- AVF cyclotron + ring cyclotron
- The two-arm spectrometer :

Grand Raiden / LAS (Large Acceptance Spectrometer)

Proton energy : up to 400 MeV

Pionic atom at RCNP : (p,²He)

N. Matsuoka et al., Phys. Lett. B 359 (1995) 39. • 1990s

- Bound states was formed
- Energy level couldn't be determined
 - resolution : 700 keV (FWHM)

Improvement of the resolution

determination of the binding energy and the width

(p,²He) reaction at RCNP

Previous experiment

- LAS :
 - resolution 700 keV (FWHM)
 - acceptance : 2.4 msr
- Beam intensity : 0.5~1 nA

New experiment

- Grand Raiden
 - resolution ~250 keV (FWHM)
 - acceptance : 0.04 msr
- Beam intensity : ~30 nA

Experimental setup

- Grand Raiden → Resolution: 200~250 keV (FWHM)
 - uncertainty of reaction vertex
 - beam resolution
- Intense beam : 30 nA

Schedule / Future plan

Phase 0 (2015 – 2016)

Test experiment – feasibility study

Phase 1

- Pilot experiment
 - target : ¹²⁴Sn
- Proposal was submitted

Phase 2

• Target : Xe

Phase 1 experiment – expected spectrum

- Grand Raiden @4.5°
- ¹²⁴Sn target
 (30 mg/cm²)
- 350 MeV proton beam
- Beam intensity : 30 nA, 10days

Observe 3 peaks

Feasibility study

• Detection of ²He at Grand Raiden

- Observed ¹²C(p,²He)¹¹B

- Test for intense beam
- Background measurement
- How to check the beam stability
- Optics study

Summary

- (d,³He) GSI, RIKEN
- (p,²He) RCNP
 - Possible to use Gas target
 - high precision measurement
 - Grand Raiden high resolution
- Test experiment at RCNP
- Proposal was submitted
- Target : ¹²⁴Sn ---→ Xe isotopes (future plan)