# Structure and Formation of deeply bound pionic atoms

#### Natsumi Ikeno (Tottori University)

#### **Collaboration with**

Theoretical side: J. Yamagata-Sekihara, H. Nagahiro, D. Jido, S. Hirenzaki Experimental side: K. Itahashi, T. Nishi, H. Fujioka

- N. Ikeno, R. Kimura, J. Yamagata-Sekihara, H. Nagahiro, D. Jido, K. Itahashi, L. S. Geng, S. Hirenzaki, PTP126, 483 (2011)
- N. Ikeno, H. Nagahiro, S. Hirenzaki, EPJA47, 161 (2011)
- N. Ikeno, J. Yamagata-Sekihara, H. Nagahiro, S. Hirenzaki, PTEP2013, 063D01 (2013)
- N. Ikeno, J. Yamagata-Sekihara, H. Nagahiro, S. Hirenzaki, PTEP2015, 033D01 (2015)

Meson in Nucleus (MIN2016),

July 31- August 2, 2016, Panasonic Hall, Yukawa Institute for Theoretical Physics, Kyoto University

# Deeply bound pionic atom

#### $\pi^{-}$ meson-Nucleus system: Coulomb + Strong Interaction



Pion-Nucleus optical potential

$$2\mu V_{\text{opt}}^s = -4\pi [\varepsilon_1 \{b_0 \rho(r) + b_1 \delta \rho(r)\} + \varepsilon_2 B_0 \rho^2(r)]$$

➢GOR relation + Tomozawa-Weinberg relation

$$\frac{\langle \bar{q}q \rangle_{\rho}}{\langle \bar{q}q \rangle_{0}} \simeq \frac{f_{\pi}^{*2}}{f_{\pi}^{2}} \simeq \underbrace{b_{1}^{\text{free}}}_{b_{1}^{*}(\rho)} = 0.78 \pm 0.05 \ @ \rho \simeq 0.6\rho_{0}$$
$$\sim 0.67 \ @ \rho = \rho_{0}$$

#### **Theoretical basis**

E.E. Kolomeitsev, N. Kaiser, W. Weise, PRL90(03)092501 D. Jido, T. Hatsuda, T. Kunihiro, PLB670(08)109

#### Useful system to study pion properties at finite density and partial restoration of chiral symmetry



# What's next?

#### Interests

 $\bar{q}q$  condensate: More accurate determination

- Beyond the linear density approximation
- In asymmetric (n or p rich) nuclear matter
- ➔ Aspects of symmetry and pion properties in ``various conditions (densities)"



# Our studies

#### **Theoretical Formation spectra**

#### Various targets: Even + Odd neutron nuclear

- Systematic 'precise' observation for various nucleus



#### ➤ Reaction angle:

-Several atomic states in the same nuclei => possible reduction of systematic errors

➤ Various formation reaction:

- (d,<sup>3</sup>He) reaction @RIBF/RIKEN
- (p,2p) reaction @RCNP



Some thoughts of pionic atoms in proton rich nuclei

### Formulation: Effective Number Approach

#### Formation cross section (Bound state + Quasi-free production)

$$\left(rac{d^2\sigma}{dE_{
m He}d\Omega_{
m He}}
ight)_A^{
m lab} = \left(rac{d\sigma}{d\Omega_{
m He}}
ight)_{
m ele}^{
m lab} \sum_{ph} K\left(rac{\Gamma}{2\pi}rac{1}{\Delta E^2 + \Gamma^2/4}N_{
m eff} + rac{2p_{\pi}E_{\pi}}{\pi}N_{
m eff}
ight)$$

- Elementary cross section  $\left(\frac{d\sigma}{d\Omega_{\text{He}}}\right)_{\text{ele}}^{\text{lab}}$ : Experimental data (d+n $\rightarrow$ <sup>3</sup>He + $\pi$ <sup>-</sup>) M. Betigeri *et al.*, NPA690(01)473

- $\Delta E = Q + m_{\pi} BE + Sn 6.787 MeV$
- Kinematical correction factor:  $K = \left[\frac{|\vec{p}_{\text{He}}^{A}|}{|\vec{p}_{\text{He}}|} \frac{E_{n}E_{\pi}}{E_{n}^{A}E_{\pi}^{A}} \left(1 + \frac{E_{\text{He}}}{E_{\pi}} \frac{|\vec{p}_{\text{He}}| - |\vec{p}_{d}|\cos\theta_{d\text{He}}}{|\vec{p}_{\text{He}}|}\right)\right]^{\text{lab}}$

Difference of kinematics between

 $d+n \rightarrow ^{3}He + \pi^{-}$  and  $A(d, ^{3}He)(A-1) \otimes \pi^{-}$ 

- Effective Number:

$$N_{\text{eff}} = \sum_{JMm} \left| \int d\vec{r} e^{i\vec{q}\cdot\vec{r}} D(\vec{r}) \xi^{\dagger}_{\frac{1}{2}m} [\phi^*_{\ell_{\pi}}(\vec{r}) \otimes \psi_{j_n}(\vec{r})]_{JM} \right|^2$$

Different formulation for Even- and Odd- neutron nuclear targets

# > Klein Gordon equation $[-\nabla^2 + \mu^2 + 2\mu V_{opt}(r)]\phi(\mathbf{r}) = [E - V_{coul}(r)]^2\phi(\mathbf{r})$



### Formulation: Effective Number



### (d,<sup>3</sup>He) spectra at Finite angles



- Both spectra have strong angular dependence.
  - Sharpe structure Overall strength

# (d,<sup>3</sup>He) spectra: Odd target

#### > <sup>117</sup>Sn(d,<sup>3</sup>He) spectra at 0 degrees



Neutron wave function: H. Koura *et al.*, NPA671(00)96

Energy resolution  $\Delta E=300 \text{keV}$ 

Dominant Subcomponent:  $[(n\ell)_{\pi}\otimes J^{P}]$ 

- We can see clear peak structure of  $[(1s)_{\pi} \otimes {}^{116}Sn(0^{+})]$ .
  - No residual interaction effect

# (d,<sup>3</sup>He) spectra: Even vs. Odd target





- Pionic 1s state formation with neutron s-hole state is large in both spectra.
- Bound pionic state formation spectra in <sup>117</sup>Sn(d,<sup>3</sup>He) are spread over wider energy range.
- Absolute value of cross section in <sup>117</sup>Sn(d,<sup>3</sup>He) is smaller.

### (d,<sup>3</sup>He) spectra: Even vs. Odd target



**Even target:** 

Simultaneous observation of several pionic 1s, 2s and 2p states at forward and finite angles

# (d,<sup>3</sup>He) spectra: Even vs. Odd target



#### **Odd target:**

Isolated peak and single subcomponent (No residual interaction effect)

→ This pionic 1s state is preferable for extracting accurate information on pion properties

# (p,2p) spectra vs. (d,<sup>3</sup>He) spectra: Odd target



(p,2p) reaction:

- Subcomponent of 2p state is large due to larger momentum transfer
- Absolute value is smaller

### Pionic atoms in Proton rich nuclei

- Possible one-body decay by  $\pi^- + p \rightarrow \pi^0 + n$
- Decay mode of pionic Hydrogen (This process is possible because  $m_{\pi^-} + m_p > m_{\pi^0} + m_n$ )
- Possible Enhancement in Proton-rich nuclei



Different  $E_F$   $\rightarrow$  Larger phase space for  $\pi^- + p \rightarrow \pi^0 + n$  process

Isobar Energy level



 $\beta$  decay Q-value from Isotope table = 1 ~ 10 MeV

### Pionic atoms in Proton rich nuclei

- Interests
  - Additional decay mode (Imaginary potential)
  - → Different atomic structure? Different effective density?
  - Nuclear dependence of <u>1 body</u> vs. <u>2 body</u>?

$$-\pi^{-} + p \rightarrow \underline{\pi^{0}} + n, \quad \pi^{0} \rightarrow 2\gamma \text{ at finite density?}$$

– Exclusive information by the selection rules of  $\pi$  atom formation reaction and Nuclear matrix elements (Matching condition)  $M_{fi} = < f |\hat{O}|i >$ 

## **Preliminary Calculation**

- Evaluation of the one body decay potential
- Imaginary part of  $\pi^-$  p scattering length from  $\Delta E$  and  $\Gamma$  of pionic hydrogen
- Enhancement of imaginary part by phase space factor f(E)



### Preliminary Calculation ( $\pi$ atom structure)

• pion-nucleus optical potential  $2\mu V_{\text{opt}}^{s}(r) = -4\pi [\varepsilon_{1} \{b_{0}\rho(r) + b_{1}\delta\rho(r)\} + \varepsilon_{2}B_{0}\rho^{2}(r)] - 4\pi \varepsilon_{1}b_{1b}f(E)\rho_{p}(r)$ 



#### $\pi^{-100}$ Sn (EXTREMELY proton rich case)

### Summary Theoretical Formation Spectra of pionic atoms

#### Finite angles: <sup>122</sup>Sn(d,<sup>3</sup>He) spectra

✓ Different subcomponents dominate at different angles.

 $(1s)_{\pi}$ ,  $(2s)_{\pi}$ : 0 degrees,  $(2p)_{\pi}$ : 2 degrees

→ Simultaneous observation of various states in one nuclide (Good feature)

#### <sup>117</sup>Sn(d,<sup>3</sup>He) spectra: Odd-neutron nuclear target

- ✓ We can see clear peak structure of  $[(1s)_{\pi} \otimes {}^{116}Sn(0^+)]$ .
  - No residual interaction effect
- → More precise information than that of even target case can be expected.

#### Pionic atoms in Proton rich nuclei

- ✓ Possible one-body decay channel
- ✓ Preliminary Results
- ✓ New Information?

By comparing theory with the high resolution future experimental data for various targets and reaction angles, we expect to know pion properties at various densities.