BGOegg experiments at LEPS2

χSR and axial U(1) anomaly

H. Shimizu Research Center for Electron Photon Science (ELPH) Tohoku University BGOegg-LEPS2 Collaboration

> Motivation

- mass generation of hadrons
- axial U(1) anomaly
- η' in nuclear matter
- Construction of BGOegg
- Capabilities of BGOegg
- Summary

Mass generation of hadrons (in light quark sectors)

- ➢ QCD in the standard model
 - Non perturbative QCD sectors are still not well understood.

complicated interactions non perturbative QCD gluon with color charges

a hard environment

- Questions to be solved in QCD: confinement and mass generation of hadrons
- Effective theories and lattice QCD have been working well for the subject of hadron mass generation.
- \succ Scenario of hadron mass generation \leftarrow SB χ S
 - $\bar{q}q$ condensation in the vacuum mainly determines hadron masses. $M = m - 2g\langle \bar{q}q \rangle$ for constituent quark masses
 - $\langle \bar{q}q \rangle$ is expected to change in the nuclear medium. \leftarrow experiments

What about experimental evidence for this scenario?

Experimental results

(fixed-target experiments)

Dilepton decay of vector mesons in the nuclear medium

We need more experiments with more statistics!

Pioneering works with this Lagrangian: T. Kunihiro, PLB219(1989)363, NPB351(1991)593, ...

$\eta'(\eta_0)$ meson in nuclear matter

► SB $SU(3)_L \otimes SU(3)_R$ chiral symmetry due to $\langle \bar{\psi}\psi \rangle \neq 0$

 $\begin{array}{ll} SU(3)_L \otimes SU(3)_R \simeq SU(3)_V \otimes \underline{SU(3)_A} \\ \text{not fully broken} & \text{SB in the } \chi \text{ limit} \\ & 8 \text{ PS NG bosons } (3\pi, 4K, \eta) \end{array}$

≻ Partial restoration of χ S expected in the nuclear medium $\Rightarrow |\langle \bar{\psi} \psi \rangle| \downarrow$

 Strong reduction of η' mass predicted by NJL model + KMT interaction

 $\Delta m_{\eta\prime} \approx 150 \; MeV @ \rho_0$

KMT terms contribute to η' mass

 A bound state of η' and a nucleus exists? (search for an η' mesic nucleus)
 U(1)_A symmetry restoration when χSR.

PRC74 (2006) 045203

A simple question

Does χS restoration affect $U_A(1)$ restoration?

- $U_A(1)$ anomaly is originated from quantum effects of gluon fields.
- KMT terms are introduced in effective theories to break $U_A(1)$ symmetry.

topological charge $\stackrel{?}{\Leftrightarrow}$ 6 quark interaction

Jido Daisuki PRC85(2012)032201 [T.D. Cohen, PRD54(1996)1867, SH. Lee, T. Hatsuda, PRD54(1996)1871]

 $\mathcal{L}_{QCD}: SU(3)_L \otimes SU(3)_R \text{ chiral symmetry (no } U(1)_A \text{ symmetry)}$ invariant under octet axial transformations Q_5^a

$$\eta_0 \sim \bar{q} i \gamma_5 q \quad \Rightarrow \quad [iQ_5^a, \eta_0] = \bar{q} \frac{\lambda^a}{\sqrt{6}} q \sim S^a \qquad \text{mixed with } S_8$$

$$S^b \Rightarrow [iQ_5^a, S^b] = d^{abc} \bar{q} i \gamma_5 \frac{\lambda^c}{\sqrt{6}} q \sim d^{abc} P^c$$

- η_0 and η_8 are mixed to each other.
- $R\chi S \implies \eta_0$ and η_8 degenerate

- $\left[\frac{\lambda^a}{2}, \frac{\lambda^b}{2}\right] = i f^{abc} \frac{\lambda^c}{2}, \quad \left\{\frac{\lambda^a}{2}, \frac{\lambda^b}{2}\right\} = d^{abc} \frac{\lambda^c}{2}$
- ► Su Houng Lee IJMP E22(2013)1330008 and talk yesterday
 - $m_{\eta'}^2 \longrightarrow 0$ at high T \longleftarrow pseudo scalar gluonic correlators

As far as the arguments over symmetry effective theories with KMT terms seem to work.

Have to be verified experimentally

General requirements for a meson

in the measurement of character change in the nuclear medium

$$m - i\Gamma/2$$

- Appropriate mesons to be investigated:
- ✓ $\Gamma \ge 10$ MeV to get meson decay inside a nucleus effectively
- ✓ a decay channel including no strong interacting particles

➡ The meson should have an EM decay channel as well as strong decay channels

	π^0	η	σ	$ ho^0$	ω	η'	ϕ
m (MeV)	135	548	500	775	783	958	1019
Γ	$7.8\mathrm{eV}$	$1.3 \mathrm{keV}$	$\sim 500 \mathrm{MeV}$	$149 \mathrm{MeV}$	$8.5 \mathrm{MeV}$	$198 \mathrm{keV}$	$4.3 \mathrm{MeV}$
EM decay	$\gamma\gamma$	$\gamma\gamma$	$\gamma\gamma$	l^+l^-	$l^{+}l^{-}$	$\gamma\gamma$	$l^{+}l^{-}$
BR	99%	39%	$\sim 10^{-5}$	$\sim 5 \times 10^{-5}$	$\sim 7 \times 10^{-5}$	2.2%	$\sim 3 \times 10^{-4}$

 $\Gamma_{EM} \approx O(keV)$

meet the requirements Metag says, "Hopeless!"

Measurements of the spectral function of η' in the nuclear medium $\eta' \rightarrow \gamma\gamma$

 \succ Determination of the η '-nucleus optical potential by CBELSA/TAPS

Construction of BGOegg

BGOegg

- egg-shape assembly of 1320 BGO crystals
- polar angle $24^{\circ} \leq \theta \leq 144^{\circ}$
- good segmentation of ~6°
- sufficient thickness of 220 mm $(20X_0)$
- self-supporting structure to hold the whole crystals of about 2t in weight w/o insensitive area
 - world highest energy-resolution of 1.3% for 1 GeV photons

not the maximum instantaneous value

dummy PMTs (chemical wood)

110

BGOegg under construction

assembly task

BGOegg takes shape!

BGOegg @ LEPS2

D. WEDE

good luck amulet for school work

good luck amulet for safe traveling

BGOegg milestones

The Great East-Japan Earthquake took place Mar.11, 2011

	Construction of the frame started.		Sep. 26,	2011
	1 st BGO crystal was placed.		Oct. 15,	2011
	A trial and error approach was made t	o solve t	he proble	ms
	on supporting structures and light shie	elding		
\succ	All 1320 BGO crystals were installed.		Oct. 09,	2012
	BGOegg moved out of ELPH, Sendai		Dec. 13,	2012
	and arrived at SPring-8.		Dec. 15,	2012
	Installation of 300 PMT was completed.		Jan. 09,	2013
\succ	Beam tests were made.	until	Feb. 07,	2013
	Reassembling all the PMT started.		May 08,	2013
	and finished.		Nov. 13,	2013
\succ	Cabling were completed.		Dec. 13,	2013
\succ	BGOegg-LEPS2 experiments started		Apr. 10,	2014

SPring-8

- 3rd-generation synchrotron radiation facility
- circumference: 1436 m
- 100 mA $(\epsilon_x = 6x10^{-9} \text{ m} \cdot \text{rad})$
- top-up operation (every few minuetes)_{Fukuoka}
- 62 beamlines

Sapporo

Nagoya Osaka

Garden City

Hiroshima

Kyoto

Sendai

okvo

Layout of BGOegg experiments

Charged particle detection

with Inner Plastic Scintillator (IPS) and Cylindrical Drift Chamber (CDC)

specifications

IPS: 30 plastic scintillator 453 mm x 26 mm x 5 mm Multi Pixel Photon Counter(MPPC) are placed only on one edge

CDC: 72 stereo wires, 4 layers inner diameter = 116 mm outer diameter = 196 mm chamber length = 550 mm thickness = 40 mm

BGOegg

Energy calibration of BGOegg

- ▶ Huge amounts of $\pi^0 \rightarrow \gamma \gamma$ events were used.
- > Calibration was made so as to get π^0 mass out of $\gamma\gamma$.
- > Iterations are necessary to reach the final calibration result.

BGOegg calibration updated

▶ Overall calibration with $\pi^0 \rightarrow \gamma \gamma$ events yields

η: 556MeV (PDG 548MeV) and η': 978MeV (PDG 958MeV)

yy invariant mass distribution

BGOegg timing calibration

Summary of data collection

Period	Target	Integrated # of γ's (tagged E _γ region) = tagger counts × dead time corr. × DAQ eff. corr.		
2014A (Apr.~July)	Carbon/CH ₂ [20 mm]	C: 1.31×10 ¹² , CH ₂ : 1.58×10 ¹² with RPC (In total, C: 4.29×10 ¹² , CH ₂ : 2.56×10 ¹²) Test sample for η'-mesic nuclei search		
2014B (Nov.~Feb.)	LH ₂ [40 mm]	Hori: 2.24×10 ¹² , Vert: 2.01×10 ¹² <i>N</i> * <i>physics, etc (with spin observable)</i>		
2015A (Apr.~July)	Carbon [20 mm]	9.77×10 ¹² η'-mesic nuclei search		
2015B (Sep.~Dec.)	LH ₂ [40 mm]	About 1.6 × 2014B (Vert. & hori. half by half) More data for yp reactions		
2016A (Apr.~July)	<mark>Carbon</mark> [20 mm]	η' in nucleii		

Spectrum of $\gamma\gamma$ **invariant mass**

good mass resolutions

Spectrum of $\eta' \rightarrow \gamma \gamma$ in close-up

Summary

- ➢ BGOegg experiments have been conducted at SPring-8/LEPS2.
- Goals of BGOegg experiments:

to measure the spectral function of η' via $\eta' \rightarrow \gamma \gamma$

- in the nuclear medium
- to search for a η' mesic nucleus
- > Data are accumulated for 2 years. (about 1 year for C)
- Precise energy calibration was made for BGOegg. obtained γγ mass resolutions:

 $\sigma(\pi^0) \approx 7 MeV, \quad \sigma(\eta) \approx 16 MeV, \quad \sigma(\eta') \approx 21 MeV \quad \text{(with C)}$ intrinsic energy resolution of BGOegg: $\sigma(\gamma)/E_{\gamma} \approx 1.3\%@1GeV$ > Ready for analyzing data for physics.

What is born from this egg?

X+ 0826