Electrodynamics problems

1. For simplicity, consider (1 + 1)-dimensional spacetime, and an inertial frame K with coordinates (x^0, x^1) .

(a) Draw a spacetime diagram with x^0 being the vertical axis, and draw light cones $s^2 = -(x^0)^2 + (x^1)^2 = 0$. Also, draw a curve $s^2 = -(x^0)^2 + (x^1)^2 = \text{const.}$ in the region $x^0 > 0$ in the case of $s^2 < 0$ and in the region $x^1 > 0$ in the case of $s^2 > 0$. Let each constant be $s^2 = -c^2\tau^2$ for $s^2 < 0$ and $s^2 = \ell^2$ for $s^2 > 0$.

(b) Consider another intertial frame \overline{K} with coordinates $(\overline{x}^0, \overline{x}^1)$ which moves with the velocity v in the positive direction of x^1 -axis of the inertial frame K. By making the origins of spacetime coordinates of these two frames coincide with each other, and putting v = 0.5c, draw the coordinate axises of the frame \overline{K} in the diagram.

(c) The world line $\overline{x}^1 = 0$ corresponds to $x^1 = vt = (v/c)x^0$ in the frame K. Show that, along this world line, a lapse of time τ in the frame \overline{K} is measured in the frame K as a lapse of time,

$$\tau_K = \frac{\tau}{\sqrt{1 - (v/c)^2}}$$

Since $\tau_K > \tau$, this means "a moving clock runs more slowly than a stationary clock", known as the time dilatation effect.

(d) Consider a bar with length ℓ being at rest in the frame \overline{K} . Assuming the left edge of this bar passes through the origin at time $x^0 = 0$, draw the world line of the right edge in the diagram. Show that its length measured in the frame K is given by

$$\ell_K = \ell \sqrt{1 - (v/c)^2} \,,$$

which is known as the Lorentz contraction of a moving body.

2. Consider an inertial frame K with coordinates (x^0, x^1) , and consider a second frame K_1 with (y^0, y^1) moving with velocity v^1 relative to the frame K in the positive direction of the x^1 -axis, and a third frame K_2 moving with velocity v^2 relative to the frame K_1 in the positive direction of the y^1 -axis. Show that the velocity of the frame K_2 relative to K is given by

$$v = \frac{v_1 + v_2}{1 + v_1 v_2/c^2} = c \tanh(\psi_1 + \psi_2)$$

where $v_1 = c \tanh \psi_1$, $v_2 = c \tanh \psi_2$.

3. For a Lorentz transformation $\overline{x}^{\mu} = \Lambda^{\mu}{}_{\alpha}x^{\alpha}$, let its inverse transformation be $x^{\alpha} = (\Lambda^{-1})^{\alpha}{}_{\mu}\overline{x}^{\mu}$. A quantity with *n* lower indices which transforms under the Lorentz transformation as

$$\overline{T}_{\mu_1\mu_2\cdots\mu_n}(\overline{x}) = T_{\alpha_1\alpha_2\cdots\alpha_n}(x)(\Lambda^{-1})^{\alpha_1}{}_{\mu_1}(\Lambda^{-1})^{\alpha_2}{}_{\mu_2}\cdots(\Lambda^{-1})^{\alpha_n}{}_{\mu_n}$$

is called a covariant tensor, and a quantity with n upper indices which transforms as

$$\overline{T}^{\mu_1\mu_2\cdots\mu_n}(\overline{x}) = \Lambda^{\mu_1}{}_{\alpha_1}\Lambda^{\mu_2}{}_{\alpha_2}\cdots\Lambda^{\mu_n}{}_{\alpha_n}T^{\alpha_1\alpha_2\cdots\alpha_n}(x)$$

is called a contravariant tensor. A Lorentz transformation is characterized by the property that the components of the Minkowski metric $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$ remain unchanged, i.e.,

$$\overline{\eta}_{\mu\nu} = \eta_{\alpha\beta} (\Lambda^{-1})^{\alpha}{}_{\mu} (\Lambda^{-1})^{\beta}{}_{\nu} = \eta_{\mu\nu} \,.$$

(a) Let $\eta^{\mu\nu}$ be the components of the inverse matrix of $\eta_{\mu\nu}$, i.e., $\eta^{\mu\rho}\eta_{\rho\nu} = \delta^{\mu}_{\nu}$. Show that

$$\overline{\eta}^{\mu\nu} = \eta^{\mu\nu} = \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}\eta^{\alpha\beta}$$

Thus $\eta^{\mu\nu}$ is a Lorentz invariant contravariant tensor ($\eta^{\mu\nu}$ is called the contravariant metric).

(b) Show that the partial derivative operator $\frac{\partial}{\partial x^{\mu}}$ (often denoted by ∂_{μ}) behaves as a covariant tensor. Then show that $\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}$ is a Lorentz invariant scalar operator. This operator is commonly denoted by \Box and called the d'Alembertian.

4. Let a world line of a point mass be parametrized as $x^{\mu}(\lambda)$ with some parameter λ and let $\dot{x}^{\mu} = \frac{dx^{\mu}(\lambda)}{d\lambda}$. If one regards λ as 'time', the action functional S of a free particle with mass m can be expressed as

$$S = -mc \int L d\lambda$$
; $L \equiv \sqrt{-\eta_{\mu\nu} x^{\mu} x^{\nu}}$.

(a) Show that the action is invariant under a transformation $\lambda \to \overline{\lambda} = f(\lambda)$ where $f(\lambda)$ is an arbitrary monotonically increasing function of λ , i.e., $df(\lambda)/d\lambda > 0$ for $\forall \lambda$.

(b) If one chooses $\lambda = \tau$ where τ is particle's proper time, one has $L = \sqrt{-\eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}} = c$ along any world line of the particle. Using this fact, show that another form of the action,

$$\tilde{S} = -\frac{m}{2} \int L^2 d\tau = \frac{m}{2} \int \eta_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu} d\tau \,,$$

is equivalent to S, i.e., \tilde{S} and S gives the same equations of motion.

5. Using the proper time τ as a time parameter along a world line of a particle with mass m, let us consider a general form of the action with interaction. We assume the mass m to be constant. Let S_0 be the action of a free particle and let the total action be $S = S_0 + \int L_{int} d\tau$.

(a) Let $L_{int} = L_{int}(x^{\mu}, u^{\mu}) \left(u^{\nu} \equiv \frac{dx^{\nu}}{d\tau} \right)$, and let the equations of motion be of the form, $m \frac{du_{\mu}}{d\tau} = F_{\mu}$. Express F_{μ} in terms of L_{int} .

(b) Assuming that the force F_{μ} contains only derivatives of $x^{\mu}(\tau)$ up to first order with respect to τ , show that L_{int} must have the form,

$$L_{int} = \phi(x) + A_{\mu}(x)u^{\mu} .$$

(c) Recalling the normalization condition of the four velocity $\eta_{\mu\nu}u^{\mu}u^{\nu} = -c^2$, show that the term $\phi(x)$ cannot give a physically meaningful force, and hence the only possibility is the form, $L_{int} = A_{\mu}(x)u^{\mu}$.

(d) Show that adding the total time derivative of an arbitrary function f(x) to the Lagrangean is equivalent to the change of A_{μ} as $A_{\mu}(x) \rightarrow \tilde{A}_{\mu} = A_{\mu}(x) + \partial_{\mu}f(x)$. Also show explicitly that the force F_{μ} remains invariant under this transformation of A_{μ} .

- 6. Let $\epsilon_{\mu\nu\rho\sigma}$ be a totally antisymmetric tensor with $\epsilon_{0123} = +1$.
 - (a) Show the following equalities (remember that $\epsilon^{0123} = -1$).

$$\epsilon^{\mu\nu\rho\sigma}\epsilon_{\mu\nu\rho\beta} = -3!\,\delta^{\sigma}_{\beta}\,,\qquad \epsilon^{\mu\nu\rho\sigma}\epsilon_{\mu\nu\alpha\beta} = -2\left(\delta^{\rho}_{\alpha}\delta^{\sigma}_{\beta} - \delta^{\rho}_{\beta}\delta^{\sigma}_{\alpha}\right)$$

(b) Show that $\epsilon_{\mu\nu\alpha\beta}$ remains invariant under an arbitrary Lorentz transformation, i.e., $\overline{\epsilon}_{\mu\nu\alpha\beta} = \epsilon_{\mu\nu\alpha\beta}$ for $x^{\mu} \to \overline{x}^{\mu'} = \Lambda^{\mu'}{}_{\mu}x^{\mu}$.

7. For an anti-symmetric second rank tensor $A_{\mu\nu}$, define $^*A_{\mu\nu}$ by

$$^*A_{\mu\nu} := \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} A^{\alpha\beta} \,.$$

 $^*A_{\mu\nu}$ is called the tensor dual to $A_{\mu\nu}$.

- (a) Show that ${}^{**}A_{\mu\nu} = {}^{*}({}^{*}A_{\mu\nu}) = -A_{\mu\nu}$.
- (b) In terms of ${}^*F^{\mu\nu}$ and $F^{\mu\nu}$, the Maxwell equations in vacuum are expressed as

$$\partial_{\nu}F^{\mu\nu} = 0, \qquad \partial_{\nu}{}^*F^{\mu\nu} = 0.$$

Derive the second set of the equations above.

(c) Regarding $\tilde{F}_{\mu\nu} = {}^*F_{\mu\nu}$ as another electromagnetic field strength tensor, show that its electric field \tilde{E} and magnetic field \tilde{B} are expressed in terms of the original fields as

$$\tilde{E} = -B$$
, $\tilde{B} = E$.

- 8. In the Lorentz gauge, the source-free Maxwell equations expressed in terms of the four potential, $\partial^{\nu}\partial_{\nu}A_{\mu} = \Box A_{\mu} = 0$, contain a residual gauge degree of freedom $A_{\mu} \to \overline{A}_{\mu} = A_{\mu} + \partial_{\mu}f$ where f is an arbitrary function satisfying $\Box f = 0$. By expanding A_{μ} in the Fourier series, $A_{\mu}(x) = \int d^{3}k \,\tilde{a}_{\mu}(\boldsymbol{k}) \,e^{ik_{\mu}x^{\mu}}$, $f(x) = \int d^{3}k \,\tilde{f}(\boldsymbol{k}) \,e^{ik_{\mu}x^{\mu}} \,(-k_{0} = k^{0} = |\boldsymbol{k}|)$, show that the residual gauge freedom can be used to choose a gauge in which $\overline{A}_{0} = 0$ (called the Coulomb gauge).
- 9. An electromagnetic field with its amplitude slowly varying over a scale L sufficiently larger than its characteristic wavelength λ can be approximated by a plane wave. To do so, one chooses the Coulomb gauge $(\Box A^i = 0, \partial_i A^i = 0)$, sets $A^i(x) = a^i(x) e^{iS(x)}$ and assumes

$$\partial_{\mu}a^{i} = O\left(\frac{a^{i}}{L}\right), \quad \partial_{\mu}S = O\left(\frac{S}{\lambda}\right) = \frac{1}{\epsilon}O\left(\frac{S}{L}\right), \quad \partial_{\mu}\partial_{\nu}S = \frac{1}{\epsilon}O\left(\frac{S}{L^{2}}\right)$$

where $\epsilon = \lambda/L \ll 1$. One can then derive equations at each order of ϵ , which is called the geometric optics approximation.

(a) From the equations of $O(\epsilon^{-2})$ and $O(\epsilon^{-1})$, derive

$$\partial_{\mu}S\partial^{\mu}S = 0, \quad a^{i}\partial_{i}S = 0, \tag{1}$$

$$2\partial_{\mu}a^{i}\partial^{\mu}S + a^{i}\Box S = 0.$$
⁽²⁾

Eq. (1) shows that $k_{\mu} := \partial_{\mu}S$ gives a 4-dimensional wavenumber vector on scales much smaller than L, and has the property $a^{i}k_{i} = 0$, i.e., A^{i} is transverse.

(b) Let $|a|^2 = a_i^* a^i$. Show that Eq. (2) then gives

$$\partial_{\mu}(|a|^{2}\partial^{\mu}S) = \partial_{\mu}(N^{\mu}) = 0; \quad N^{\mu} := |a|^{2}k^{\mu}.$$
(3)

Also, define the 4-dimensional Poynting flux by $S^{\mu} := (\rho c, S^i)$. Noting $\mathbf{A} = \operatorname{Re}(\mathbf{a}e^{iS})$ and $\omega = k c$, show that the time average of S^{μ} is given by

$$\langle S^{\mu} \rangle_{\text{timeaverage}} = \frac{\omega k^{\mu}}{8\pi} |a|^2 \propto \omega N^{\mu}$$

Recalling that $\hbar\omega$ gives the energy of a photon in quantum theory, Eq. (3) describes the photon number conservation.

10. Show that the retarded Green function satisfying $-\Box G_R(x-x') = \delta^4(x-x')$ can be concisely expressed as

$$G_R(x) = \int \frac{d^4k}{(2\pi)^4} \frac{e^{ik \cdot x}}{k^2 - i\epsilon k^0},$$

where $k^2 = -(k^0)^2 + k^2$, ϵ is an infinitesimal positive constant, and the integral is over all real values of (k^0, k^1, k^2, k^3) . Similarly, show that the advanced Green function is expressed as

$$G_A(x) = \int \frac{d^4k}{(2\pi)^4} \frac{e^{ik \cdot x}}{k^2 + i\epsilon k^0} \,.$$

11. Solve the equations of motion of a charged particle,

$$\frac{du^{\mu}}{d\tau} = \frac{q}{mc} F^{\mu\nu} u_{\nu}; \qquad u^{\mu} = \frac{dx^{\mu}}{d\tau}$$

under the following situations, with $v^i(0) = \frac{dx^i}{dt}(0) = (v, 0, 0)$ as the initial condition at t = 0.

- (a) Under the presence of a homogeneous magnetic field along the x^3 -axis, $B^i = (0, 0, B)$.
- (b) Under the presence of a homogeneous electric field along the x^1 -axis, $E^i = (E, 0, 0)$.

(c) Calculate the rate of the radiated energy,
$$\frac{dE}{dt} = \frac{2q^2}{3c^3} \dot{u}^{\alpha} \dot{u}_{\alpha} \left(= \frac{d}{d\tau} \right)$$
 for each of the cases (a), (b) above.

12. Under the slow motion approximation, the vector potential A^{μ} of the radiated field in the wave zone is expressed in the Lorentz gauge $(\partial_{\mu} A^{\mu} = 0)$ in the series form as

$$A^{\mu}(x) = \frac{1}{c r} \int J^{\mu} \left(t_R + \frac{\cdot r'}{c}, r' \right) d^3 r' \qquad \left(t_R := t - \frac{r}{c}, \quad n^i = \frac{r^i}{r} \right)$$
$$= \frac{1}{c r} \int \sum_{\ell=0}^{\infty} \frac{1}{\ell!} \left(\frac{n \cdot r'}{c} \right)^{\ell} \frac{\partial^{\ell}}{\partial t^{\ell}} J^{\mu}(t_R, r') d^3 r'.$$

We set

$$Q = \int \rho(t,r) \, d^3r \,, \quad d^i(t) = \int \rho(t,r) \, r^i d^3r$$

where $J^0 = \rho c$. Q is the total charge of the source and d^i is the electric dipole moment.

(a) Express $A^0 = \phi$ to the order $\ell = 1$ in terms of Q and d^i .

(b) Using the charge conservation law $\partial_{\mu} J^{\mu} = 0$, express the order $\ell = 0$ term of A^{i} in terms of d^{i} .

(c) Show that there exists a gauge transformation that eliminates the order $\ell = 1$ term of A^0 , and derive A^i in this gauge, say \overline{A}^i .

13. By emitting radiation, a reaction force acts on the particle. Assuming the effect of the reaction is small, it is known that the equations of motion is modified to be

$$m\frac{du^{\mu}}{d\tau} = qF^{\mu\nu}u_{\nu} + F^{\mu}_{rad}; \qquad F^{\mu}_{rad} = \frac{2q^2}{3c^3}\left(\ddot{u}^{\mu} - \frac{u^{\mu}}{c^2}\dot{u}^{\alpha}\dot{u}_{\alpha}\right).$$

The radiation reaction force F^{μ}_{rad} is known as the Abraham-Lorentz-Dirac force.

(a) Show $F^{\mu}_{rad}u_{\mu} = 0$.

(b) The rate of the energy-momentum radiated by the particle is given by $dP^{\mu} = \frac{2q^2}{3c^5} \dot{u}^{\alpha} \dot{u}_{\alpha} u^{\mu} d\tau$. Assuming the acceleration of the particle vanishes at $\tau = \pm \infty$, show

$$\int_{-\infty}^{\infty} F^{\mu}_{rad} d\tau = -\int_{-\infty}^{\infty} dP^{\mu} \, .$$