1. For simplicity, consider $(1+1)$-dimensional spacetime, and an inertial frame K with coordinates $\left(x^{0}, x^{1}\right)$.
(a) Draw a spacetime diagram with x^{0} being the vertical axis, and draw light cones $s^{2}=-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}=0$. Also, draw a curve $s^{2}=-\left(x^{0}\right)^{2}+\left(x^{1}\right)^{2}=$ const. in the region $x^{0}>0$ in the case of $s^{2}<0$ and in the region $x^{1}>0$ in the case of $s^{2}>0$. Let each constant be $s^{2}=-c^{2} \tau^{2}$ for $s^{2}<0$ and $s^{2}=\ell^{2}$ for $s^{2}>0$.
(b) Consider another intertial frame \bar{K} with coordinates (\bar{x}^{0}, \bar{x}^{1}) which moves with the velocity v in the positive direction of x^{1}-axis of the inertial frame K. By making the origins of spacetime coordinates of these two frames coincide with each other, and putting $v=0.5 c$, draw the coordinate axises of the frame \bar{K} in the diagram.
(c) The world line $\overline{\boldsymbol{x}}^{1}=0$ corresponds to $x^{1}=v t=(v / c) x^{0}$ in the frame K. Show that, along this world line, a lapse of time τ in the frame \bar{K} is measured in the frame K as a lapse of time,

$$
\tau_{K}=\frac{\tau}{\sqrt{1-(v / c)^{2}}}
$$

Since $\tau_{K}>\tau$, this means "a moving clock runs more slowly than a stationary clock", known as the time dilatation effect.
(d) Consider a bar with length ℓ being at rest in the frame \bar{K}. Assuming the left edge of this bar passes through the origin at time $x^{0}=0$, draw the world line of the right edge in the diagram. Show that its length measured in the frame K is given by

$$
\ell_{K}=\ell \sqrt{1-(v / c)^{2}}
$$

which is known as the Lorentz contraction of a moving body.
2. Consider an inertial frame K with coordinates $\left(x^{0}, x^{1}\right)$, and consider a second frame K_{1} with (y^{0}, y^{1}) moving with velocity v^{1} relative to the frame K in the positive direction of the x^{1}-axis, and a third frame K_{2} moving with velocity v^{2} relative to the frame K_{1} in the positive direction of the y^{1}-axis. Show that the velocity of the frame K_{2} relative to K is given by

$$
v=\frac{v_{1}+v_{2}}{1+v_{1} v_{2} / c^{2}}=c \tanh \left(\psi_{1}+\psi_{2}\right)
$$

where $v_{1}=c \tanh \psi_{1}, v_{2}=c \tanh \psi_{2}$.
3. For a Lorentz transformation $\bar{x}^{\mu}=\Lambda^{\mu}{ }_{\alpha} x^{\alpha}$, let its inverse transformation be $x^{\alpha}=\left(\Lambda^{-1}\right)^{\alpha}{ }_{\mu} \bar{x}^{\mu}$. A quantity with n lower indices which transforms under the Lorentz transformation as

$$
\bar{T}_{\mu_{1} \mu_{2} \cdots \mu_{n}}(\bar{x})=T_{\alpha_{1} \alpha_{2} \cdots \alpha_{n}}(x)\left(\Lambda^{-1}\right)_{\mu_{1}}^{\alpha_{1}}\left(\Lambda^{-1}\right)^{\alpha_{2}} \mu_{2} \cdots\left(\Lambda^{-1}\right)^{\alpha_{n}}{ }_{\mu_{n}}
$$

is called a covariant tensor, and a quantity with n upper indices which transforms as

$$
\bar{T}^{\mu_{1} \mu_{2} \cdots \mu_{n}}(\bar{x})=\Lambda_{\alpha_{1}}^{\mu_{1}} \Lambda_{\alpha_{2}}^{\mu_{2}} \cdots \Lambda_{\alpha_{n}}^{\mu_{n}} T^{\alpha_{1} \alpha_{2} \cdots \alpha_{n}}(x)
$$

is called a contravariant tensor. A Lorentz transformation is characterized by the property that the components of the Minkowski metric $\eta_{\mu \nu}=\operatorname{diag}(-1,1,1,1)$ remain unchanged, i.e.,

$$
\bar{\eta}_{\mu \nu}=\eta_{\alpha \beta}\left(\Lambda^{-1}\right)_{\mu}^{\alpha}\left(\Lambda^{-1}\right)_{\nu}^{\beta}=\eta_{\mu \nu} .
$$

(a) Let $\eta^{\mu \nu}$ be the components of the inverse matrix of $\eta_{\mu \nu}$, i.e., $\eta^{\mu \rho} \eta_{\rho \nu}=\delta_{\nu}^{\mu}$. Show that

$$
\bar{\eta}^{\mu \nu}=\eta^{\mu \nu}=\Lambda_{\alpha}^{\mu} \Lambda_{\beta}^{\nu} \eta^{\alpha \beta} .
$$

Thus $\eta^{\mu \nu}$ is a Lorentz invariant contravariant tensor ($\eta^{\mu \nu}$ is called the contravariant metric).
(b) Show that the partial derivative operator $\frac{\partial}{\partial x^{\mu}}$ (often denoted by ∂_{μ}) behaves as a covariant tensor. Then show that $\eta^{\mu \nu} \partial_{\mu} \partial_{\nu}$ is a Lorentz invariant scalar operator. This operator is commonly denoted by \square and called the d'Alembertian.
4. Let a world line of a point mass be parametrized as $x^{\mu}(\lambda)$ with some parameter λ and let $\dot{x}^{\mu}=\frac{d x^{\mu}(\lambda)}{d \lambda}$. If one regards λ as 'time', the action functional S of a free particle with mass m can be expressed as

$$
S=-m c \int L d \lambda ; \quad L \equiv \sqrt{-\eta_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}}
$$

(a) Show that the action is invariant under a transformation $\lambda \rightarrow \bar{\lambda}=f(\lambda)$ where $f(\lambda)$ is an arbitrary monotonically increasing function of λ, i.e., $d f(\lambda) / d \lambda>0$ for ${ }^{\forall} \lambda$.
(b) If one chooses $\lambda=\tau$ where τ is particle's proper time, one has $L=\sqrt{-\eta_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}}=c$ along any world line of the particle. Using this fact, show that another form of the action,

$$
\tilde{S}=-\frac{m}{2} \int L^{2} d \tau=\frac{m}{2} \int \eta_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu} d \tau
$$

is equivalent to S, i.e., \tilde{S} and S gives the same equations of motion.
5. Using the proper time τ as a time parameter along a world line of a particle with mass m, let us consider a general form of the action with interaction. We assume the mass m to be constant. Let S_{0} be the action of a free particle and let the total action be $S=S_{0}+\int L_{\text {int }} d \tau$.
(a) Let $L_{i n t}=L_{i n t}\left(x^{\mu}, u^{\mu}\right)\left(u^{\nu} \equiv \frac{d x^{\nu}}{d \tau}\right)$, and let the equations of motion be of the form, $m \frac{d u_{\mu}}{d \tau}=F_{\mu}$. Express F_{μ} in terms of $L_{i n t}$.
(b) Assuming that the force F_{μ} contains only derivatives of $x^{\mu}(\tau)$ up to first order with respect to τ, show that $L_{\text {int }}$ must have the form,

$$
L_{i n t}=\phi(x)+A_{\mu}(x) u^{\mu}
$$

(c) Recalling the normalization condition of the four velocity $\eta_{\mu \nu} u^{\mu} u^{\nu}=-c^{2}$, show that the term $\phi(x)$ cannot give a physically meaningful force, and hence the only possibility is the form, $L_{\text {int }}=A_{\mu}(x) u^{\mu}$.
(d) Show that adding the total time derivative of an arbitrary function $f(x)$ to the Lagrangean is equivalent to the change of A_{μ} as $A_{\mu}(x) \rightarrow \tilde{A}_{\mu}=A_{\mu}(x)+\partial_{\mu} f(x)$. Also show explicitly that the force F_{μ} remains invariant under this transformation of A_{μ}.
6. Let $\epsilon_{\mu \nu \rho \sigma}$ be a totally antisymmetric tensor with $\epsilon_{0123}=+1$.
(a) Show the following equalities (remember that $\epsilon^{0123}=-1$).

$$
\epsilon^{\mu \nu \rho \sigma} \epsilon_{\mu \nu \rho \beta}=-3!\delta_{\beta}^{\sigma}, \quad \epsilon^{\mu \nu \rho \sigma} \epsilon_{\mu \nu \alpha \beta}=-2\left(\delta_{\alpha}^{\rho} \delta_{\beta}^{\sigma}-\delta_{\beta}^{\rho} \delta_{\alpha}^{\sigma}\right)
$$

(b) Show that $\epsilon_{\mu \nu \alpha \beta}$ remains invariant under an arbitrary Lorentz transformation, i.e., $\bar{\epsilon}_{\mu \nu \alpha \beta}=\epsilon_{\mu \nu \alpha \beta}$ for $x^{\mu} \rightarrow \bar{x}^{\mu^{\prime}}=\Lambda^{\mu^{\prime}}{ }_{\mu} x^{\mu}$.
7. For an anti-symmetric second rank tensor $A_{\mu \nu}$, define ${ }^{*} A_{\mu \nu}$ by

$$
{ }^{*} A_{\mu \nu}:=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} A^{\alpha \beta} .
$$

* $A_{\mu \nu}$ is called the tensor dual to $A_{\mu \nu}$.
(a) Show that ${ }^{* *} A_{\mu \nu}={ }^{*}\left({ }^{*} A_{\mu \nu}\right)=-A_{\mu \nu}$.
(b) In terms of * $F^{\mu \nu}$ and $F^{\mu \nu}$, the Maxwell equations in vacuum are expressed as

$$
\partial_{\nu} F^{\mu \nu}=0, \quad \partial_{\nu}{ }^{*} F^{\mu \nu}=0
$$

Derive the second set of the equations above.
(c) Regarding $\tilde{F}_{\mu \nu}={ }^{*} F_{\mu \nu}$ as another electromagnetic field strength tensor, show that its electric field $\tilde{\boldsymbol{E}}$ and magnetic field $\hat{\boldsymbol{B}}$ are expressed in terms of the original fields as

$$
\tilde{\boldsymbol{E}}=-\boldsymbol{B}, \quad \tilde{\boldsymbol{B}}=\boldsymbol{E}
$$

8. In the Lorentz gauge, the source-free Maxwell equations expressed in terms of the four potential, $\partial^{\nu} \partial_{\nu} A_{\mu}=\square A_{\mu}=0$, contain a residual gauge degree of freedom $A_{\mu} \rightarrow \bar{A}_{\mu}=A_{\mu}+\partial_{\mu} f$ where f is an arbitrary function satisfying $\square f=0$. By expanding A_{μ} in the Fourier series, $A_{\mu}(x)=\int d^{3} k \tilde{a}_{\mu}(\boldsymbol{k}) e^{i k_{\mu} x^{\mu}}$, $f(x)=\int d^{3} k \tilde{f}(\boldsymbol{k}) e^{i k_{\mu} x^{\mu}}\left(-k_{0}=k^{0}=|\boldsymbol{k}|\right)$, show that the residual gauge freedom can be used to choose a gauge in which $\bar{A}_{0}=0$ (called the Coulomb gauge).
9. An electromagnetic field with its amplitude slowly varying over a scale L sufficiently larger than its characteristic wavelength λ can be approximated by a plane wave. To do so, one chooses the Coulomb gauge $\left(\square A^{i}=0, \partial_{i} A^{i}=0\right)$, sets $A^{i}(x)=a^{i}(x) e^{i S(x)}$ and assumes

$$
\partial_{\mu} a^{i}=O\left(\frac{a^{i}}{L}\right), \quad \partial_{\mu} S=O\left(\frac{S}{\lambda}\right)=\frac{1}{\epsilon} O\left(\frac{S}{L}\right), \quad \partial_{\mu} \partial_{\nu} S=\frac{1}{\epsilon} O\left(\frac{S}{L^{2}}\right)
$$

where $\epsilon=\lambda / L \ll 1$. One can then derive equations at each order of ϵ, which is called the geometric optics approximation.
(a) From the equations of $O\left(\epsilon^{-2}\right)$ and $O\left(\epsilon^{-1}\right)$, derive

$$
\begin{align*}
& \partial_{\mu} S \partial^{\mu} S=0, \quad a^{i} \partial_{i} S=0, \tag{1}\\
& 2 \partial_{\mu} a^{i} \partial^{\mu} S+a^{i} \square S=0 . \tag{2}
\end{align*}
$$

Eq. (1) shows that $k_{\mu}:=\partial_{\mu} S$ gives a 4-dimensional wavenumber vector on scales much smaller than L, and has the property $a^{i} k_{i}=0$, i.e., A^{i} is transverse.
(b) Let $|a|^{2}=a_{i}^{*} a^{i}$. Show that Eq. (2) then gives

$$
\begin{equation*}
\partial_{\mu}\left(|a|^{2} \partial^{\mu} S\right)=\partial_{\mu}\left(N^{\mu}\right)=0 ; \quad N^{\mu}:=|a|^{2} k^{\mu} \tag{3}
\end{equation*}
$$

Also, define the 4-dimensional Poynting flux by $S^{\mu}:=\left(\rho c, S^{i}\right)$. Noting $\boldsymbol{A}=\operatorname{Re}\left(\boldsymbol{a} e^{i S}\right)$ and $\omega=k c$, show that the time average of S^{μ} is given by

$$
\left\langle S^{\mu}\right\rangle_{\text {timeaverage }}=\frac{\omega k^{\mu}}{8 \pi}|a|^{2} \propto \omega N^{\mu}
$$

Recalling that $\hbar \omega$ gives the energy of a photon in quantum theory, Eq. (3) describes the photon number conservation.
10. Show that the retarded Green function satisfying $-\square G_{R}\left(x-x^{\prime}\right)=\delta^{4}\left(x-x^{\prime}\right)$ can be concisely expressed as

$$
G_{R}(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k x}}{k^{2}-i \epsilon k^{0}}
$$

where $k^{2}=-\left(k^{0}\right)^{2}+\boldsymbol{k}^{2}, \epsilon$ is an infinitesimal positive constant, and the integral is over all real values of ($k^{0}, k^{1}, k^{2}, k^{3}$). Similarly, show that the advanced Green function is expressed as

$$
G_{A}(x)=\int \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k \cdot x}}{k^{2}+i \epsilon k^{0}}
$$

11. Solve the equations of motion of a charged particle,

$$
\frac{d u^{\mu}}{d \tau}=\frac{q}{m c} F^{\mu \nu} u_{\nu} ; \quad u^{\mu}=\frac{d x^{\mu}}{d \tau}
$$

under the following situations, with $v^{i}(0)=\frac{d x^{i}}{d t}(0)=(v, 0,0)$ as the initial condition at $t=0$.
(a) Under the presence of a homogeneous magnetic field along the x^{3}-axis, $B^{i}=(0,0, B)$.
(b) Under the presence of a homogeneous electric field along the \boldsymbol{x}^{1}-axis, $E^{i}=(E, 0,0)$.
(c) Calculate the rate of the radiated energy, $\frac{d E}{d t}=\frac{2 q^{2}}{3 c^{3}} \dot{u}^{\alpha} \dot{u}_{\alpha}\left(\cdot=\frac{d}{d \tau}\right)$ for each of the cases (a), (b) above.
12. Under the slow motion approximation, the vector potential A^{μ} of the radiated field in the wave zone is expressed in the Lorentz gauge $\left(\partial_{\mu} A^{\mu}=0\right)$ in the series form as

$$
\begin{aligned}
A^{\mu}(x) & =\frac{1}{c r} \int J^{\mu}\left(t_{R}+\frac{\cdot r^{\prime}}{c}, r^{\prime}\right) d^{3} r^{\prime} \quad\left(t_{R}:=t-\frac{r}{c}, \quad n^{i}=\frac{r^{i}}{r}\right) \\
& =\frac{1}{c r} \int \sum_{\ell=0}^{\infty} \frac{1}{\ell!}\left(\frac{n \cdot r^{\prime}}{c}\right)^{\ell} \frac{\partial^{\ell}}{\partial t^{\ell}} J^{\mu}\left(t_{R}, r^{\prime}\right) d^{3} r^{\prime}
\end{aligned}
$$

We set

$$
Q=\int \rho(t, r) d^{3} r, \quad d^{i}(t)=\int \rho(t, r) r^{i} d^{3} r
$$

where $J^{0}=\rho c . Q$ is the total charge of the source and d^{i} is the electric dipole moment.
(a) Express $A^{0}=\phi$ to the order $\ell=1$ in terms of Q and d^{i}.
(b) Using the charge conservation law $\partial_{\mu} J^{\mu}=0$, express the order $\ell=0$ term of A^{i} in terms of d^{i}.
(c) Show that there exists a gauge transformation that eliminates the order $\ell=1$ term of A^{0}, and derive A^{i} in this gauge, say \bar{A}^{i}.
13. By emitting radiation, a reaction force acts on the particle. Assuming the effect of the reaction is small, it is known that the equations of motion is modified to be

$$
m \frac{d u^{\mu}}{d \tau}=q F^{\mu \nu} u_{\nu}+F_{r a d}^{\mu} ; \quad F_{r a d}^{\mu}=\frac{2 q^{2}}{3 c^{3}}\left(\ddot{u}^{\mu}-\frac{u^{\mu}}{c^{2}} \dot{u}^{\alpha} \dot{u}_{\alpha}\right)
$$

The radiation reaction force $F_{\text {rad }}^{\mu}$ is known as the Abraham-Lorentz-Dirac force.
(a) Show $F_{\text {rad }}^{\mu} u_{\mu}=0$.
(b) The rate of the energy-momentum radiated by the particle is given by $d P^{\mu}=\frac{2 q^{2}}{3 c^{5}} \dot{u}^{\alpha} \dot{u}_{\alpha} u^{\mu} d \tau$. Assuming the acceleration of the particle vanishes at $\tau= \pm \infty$, show

$$
\int_{-\infty}^{\infty} F_{r a d}^{\mu} d \tau=-\int_{-\infty}^{\infty} d P^{\mu}
$$

