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3. Non-Gaussian Curvature Perturbation

e self-interactions of inflaton/non-trivial “vacuum”

quantum physics, subhorizon scale during inflation

e multi-field

classical physics, nonlinear coupling to gravity
superhorizon scale during and after inflation

e nonlinearity in gravity

classical general relativistic effect,
subhorizon scale after inflation



Origin of NG and cosmic scales
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Origin1 : self-interaction/non-trivial vacuum

Non-Gaussianity generated on subhorizon scales
(quantum field theoretical)

e conventional self-interaction by potential is ineffective

o _ Maldacena ('03)
ex. chaotic inflation

1
V = 5m2¢2 - free field!
(grav. interaction is Planck-suppressed)

~0(1/M;)
V=1¢" > 1~107"
extremely small!

e need unconventional self-interaction
— non-canonical kinetic term can generate large NG



ex a: Non-canonical kinetic term (~DBI inflation)
Silverstein & Tong (2004),...

kinetic term: K ~ f ‘1(¢)[\/ 1— f(@)d ] =fy"

~ (Lorenz factor)1

perturbation expansion (57/:%735)(; X = f¢52j

K=K,+0,K+0,K+0,K+---
u g

= 5p~ S, @qﬁo

large NG for large »



Bi-spectrum (3pt function) in DBI inflation

<Rc (pl)RC (p, )RC (p3)> Alishahiha et al. ('04)
~ 5(ij)fNL(p1apz,p3)(RC(pl)RC(p2) +CyC|iC)
ﬂ fNL ~ 72

fy large for equilateral
configuration

‘131‘ N‘pz‘ N‘ps‘

equil

fNL — NL

WMAP 7yr:  -241< fe" <266 (95% CL)



ex b: Non-trivial vacuum

e de Sitter spacetime = maximally symmetric SO(4,1)
(same degrees of sym as Poincare (Minkowski) sym)

= gravitational interaction (GI) is negligible in vacuum
(except for graviton/tensor-mode loops)

e slow-roll inflation : dS symmetry is slightly broken
GI induces NG but suppressed by ¢=-H /H”

But large NG is possible if the initial state (or state at
horizon crossing) does NOT respect dS symmetry

(ie initial state # Bunch-Davies vacuum)
—) various types of NG :

scale-dependent, oscillating, featured, folded ...
Chen et al. ('08), Flauger et al. ('10), Arroja et al. ('11),...



templates for primordial bispectra
(figs from Senatore, Smith & Zaldarriaga '11)

P, (k)=P/K’, B, (ki k. k) =(6/5) fur (KK, ke, ) (P(k ) P(k,) + P(k,)P(k,) + P(k,)P(k,))

- . @ squeezed type (KomatsuSpergel 2001) 17
o local in real space (f,, =constant) |>
o max for squeezed triangles: k<<k’ k" k

k”

oca 1
Bg(kl,kz,k3)=(6/5)fz'\m'Pz(k3k3 o k3k3

"_'_ ! 'I I.fl:-l“-il ::—1‘2‘:‘-‘_"‘:?;;': i g.—;: |
T "".II ":f "Ir r- | r‘-}' =t _x;;-\_*x '
1a i
Fprp ™ Fore
- o equﬂateral type (Creminelli et al 2005)
| - o,
| . | ~._" ;\_\M m
EI R = N
T D | i |II
—

o peaks for k,~k,~K;

(K, +k, =k, ) (k, + K, — k) (K, + K, - k)
kK

B, (ky,k,,k,)=(6/5) foi"" P (

o orthogonal type (Senatore et al 2009)

81
B, (k k,,k.)=(6/5)foms p>
¢ (kioks ) M kJe,k, (K, +k, +k, )’
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Origin 2:Generation on superhorizon scales

e NG may appear if T* depends nonlinearly on 6¢,
even if o¢ itself is Gaussian.

This effect is small in single-field slow-roll model

(& linear approximation is valid to high accuracy)
Salopek & Bond ("90)

e For multi-field models, contribution to 7" from each field

can be highly nonlinear. /L .
NG is always of local type: Pa (<€ Py
fNL(plapzap3) —> ]I\c])[(jal = const. > X

WMAP 7yr:  —10< fo* <74 (95% CL)

[BN formalism for this type of NG]




Origin 3:Nonlinearity in gravity

ex. post-Newtonian metric in asymptotically flat space

ds’ =—(1+2¥ )dt® +(1-2% )dr? +---
g e

Newton NL (post-Newton) terms
potential (in both local and nonlocal forms)

e important when scales have re-entered Hubble horizon
distinguishable from NL matter dynamics?

o effect on CMB bispectrum may not be negligible
Sar ~O(5) ? Pitrou et al. (2010)
(for both squeezed and equilateral types)

11



oN formalism
What is 6N?

* 3N is the perturbation in # of e-folds counted backward
in time from a fixed final time t;

therefore it is nonlocal in time by definition

» t- should be chosen such that the evolution of the universe
has become unique by that time: “adiabatic limit”

isocurvature perturbation that persists until today
must be dealt separately

* N is equal to conserved NL comoving curvature
perturbation on superhorizon scales at t>t;

« 3N formalism is valid independent of gravity theory

12
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3 types of aN

end of/after
" inflation

o e o - -

original

y adiabatic
entropy/isocurvature — adiabatic
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Separate Universe approach
(~ spatial gradient expansion)
« On superhorizon scales, spatial gradient expansion is valid:

a.Q < EQ ~HQ; H~.\Gp
ox' ot

Belinski et al. 70, Tomita 72, Salopek & Bond 90, ...
This is a consequence of causality:

g L »H1

o = %
e e
light cone MH*

* At lowest order, no signal propagates in spatial directions.

[Field equations reduce to ODE'S}
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metric on superhorizon scales

» gradient expansion:
0. —>¢&0;,, &=expansion parameter

 metric:

ds® = - N?dt* ;71.]. (dxi + ,Bidt)(dxj + ,Bjdt)
det y,; =1, [ :O(g)

L] = the only non-trivial assumption
contains GW (~ tensor) modes

a(t,xi) R(t,xi)

e =a(t)e - R ~ NL curvature perturbation

|

fiducial “background’



Local Friedmann equation & 8N formula

) | Lyth, Malik & MS (05)
H%t,xﬂ—%p(t )+ 0(£%)

v_ 0 _ 0
[ :8ra_N8t[lna+R] ]

- geometrical def of “"Hubble”

x' : comoving (Lagrangean) coordinates.

dr=N dt : proper time along fluid flow

exactly the same as the homogeneous background

[N(t2,t1) = ijdr =N, (t,,t,)+ R(t2,xi)—72(t1,xi)]

N,(t,,t,)=In|a(t,)/a(t)]

16
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Nonlinear 6N - formula

Choose flat slice at t =t, [ Z-(t;) ] and
comoving (=uniform density) att=t, [ (%) ] :

( ‘flat’ slice: X (t) on which R =0 < e*=qa(t) )

A
>(t,) : comoving .
A o (t,)=const.
I _"“@_“\____ﬁ R(t2)=0
I S A(t,) : flat = 2
Vo Y (t;) : flat R(t,)=0

N (t,,t,)

29

N, (t,,t,)+ SN, (t,,t,;x")




How do we relate 6N to matter evolution?
need egn relating ‘expansion” with matter ‘evolution’

energy conservation!

d - ~ 1 0

—p+3H(p+p)=0 H =-

drp (p+p) = [ 3(p+ p) (%p]

:> [N(t2,tl) _ _J»tz dt 1 ap]
" 3lp+p)ot
(- 5 5 )
) C(2) c(2)
5Np(t2,lz;9c‘)=—l ) 0P | g LW 9P | gy

L 3J2p(t) p—I-Pxi 32 (1) ,O-I—PO )

x*=0 : fiducial background trajectory
o (x,t,) = p(0,t,) = uniform on X (t,)
matter fluctuates only on the initial flat slice



* Nonlinear sN for multi-component inflation :

SN =N(p"+5¢")-N(4")

:Z 1 _ @AN _ 5¢A15¢A2”.5¢An
— 21 DM Op™ - D™

where 6¢ =06¢, is fluctuation on initial flat slice at or after

horizon-crossing.

ogr-may contain non-Gaussianity from
subhorizon (quantum) interactions

eg, in DBI inflation

19
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NG generation on superhorizon scales

two efficient mechanisms to convert
isocurvature to curvature perturbations:

e curvaton-type Lyth & Wands ('01), Moroi & Takahashi (‘01),...
Peurv<<piot — highly nonlinear dep on 8¢,

e multi-brid inflation MS (‘08), Naruko & MS ('08),...

1

l P sudden change/transition in the trajectory
<>
ON =0,N o¢* +§afle5¢a5¢b e

ycurvature of this surface determines sign of fy,
Huang ('09)

tensor-scalar ratio » may be large in multi-brid models,
while it is always small in curvaton-type if NG is large.
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Lyth & Wands ('01)

Curvaton model Moroi & Takahashi ('01)

Inflation driven by inflaton = ¢
Final curvature perturbation dominated by curvaton = y

|
Ve =V(@)+-m 7 { m < H* ~ S”G;’(@ }

during inflation: V(¢) > %mizz

curvature perturbation is still dominated by ¢

H H .
Sp~—, Sy~— = |V'(Pog|>m’
2 2

2

(x+6x) —x




after inf
(py=p,ca’

—> < ;
p,ca

.

Assume oy C
2
A

P,

+

ominates the final curvature perturbation:

Pyt Py
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ation, ¢ thermalizes. y undergoes damped oscillation

N 4p, R, +3p,R,
4p,+3p,

=

c S~ 1/q

- density fraction when y decays

t:tdecay

[Iarge NG if g <<1 ] Enqgvist & Nurmi (‘05)

tensor-scalar ratio will be strongly suppressed:

_ Pk _

P.(k) P (k) Bl

(k)

Py ;(k) P (k) (k)
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Multi-brid inflation
“multi”-field hy"brid” inflation

L¢ = _%ggwaﬂ@xav@x - V(¢)

e slow-roll eom (8zG=M, =1)
dg, 1 oV

= — 2 —
dt 3Hod¢, =V
N as a time variable: dN =—-Hdt
dg, 1 oV
= dN 3V 8¢,

:> ¢A :¢A(N’¢§)

MS (2008)

_

- slow-roll ends at F (¢,)=0.

J

N=0 inflation




2-dim case:

24

coord trans (4,4,) —(q, g,)

1> s.t. orbits are radial in space (q, g,)
p )
df (q) de
Y1, =2 =0 N(q,0)= - 0
=l —5=0 ) N(4.0)=f(9)- f(g,(0)
N J
N = N(q,6’) = N(¢13¢2)
\9 q
/'
oq - adiabatic pertn
06 - 1socurvature pertn
=0 ~
\ > g
l N=const. :

q; =q,(6)
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analytical multi-brid model
> Exponential potential: vV =V, exp[m¢, + m,4, ]

2

b Inflation ends at g* (4 +¢; )=
/ realized by a waterfall field y :

(/7/% {Vo=%92(¢12+¢22)Z2+%£12_%2T}

¢1f ——cosy, ¢2f ——smy
g g

trajectory specified by “y

13 b

e 5N to 2" order in &¢ :

§N_5¢lcosy+5¢zsmy g (m,04 -m:4,)
m,cosy +m,siny 2o (m,cosy+m,siny)’




Vo .
3 ocal » linear entropy perturbation
j} 5N:5LN+§fNL (5LN +@) contributes at 29 order

_ 0¢,cosy +0¢,siny g O@, Siny — 0@, coS y

5

5 N

m, cosy +m,siny m,cosy —m,siny

o .
“true” entropy perturbation

e curvature perturbation spectrum
1 HY
B

(m, cosy +m,siny)’\ 2z

k=Ha
spectral index: n, =1-(m’+m?)

P, (k)
P (k)

S 4 5g (m,cosy—m,siny)’
non-Gaussianity: fy;" = g (im, cosy —m, siny)

tensor/scalar: r= =8(m, cosy + m, siny)’

6c m,cosy+m,siny

26



just for fun ...

model parameters:

outputs:

=

1=M, =(872G)"? =2.43x10"°GeV

assume m, cosy2m,siny (< y<1)

4 ., B
n,.=1-(m; +m;)~0.96

~ 2 [~
Ui sm; ~0.04 )

3H? =0*/44~1.5x10" (& Py(k) ~2.5x107)

—> o> ~A"?x10™*

m? ~0.005, m> ~0.035

~ indep. of waterfall field

@ 2
local ngz ~4O g

N/

NE bom, Al

J
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WMAP Syr constrainton r & ng . ot 41 08

. —— WMAP+BAO+SN

0.6 [ -
. —— WMAP .

0.2

example —|
0

.u L 1y I
(.92 (.96 1.00 1.04

and fy,'°@ can be ~ 50 as well.



5. Summary

e inflation explains observed structure of the universe

flatness: ©,=1 to good accuracy

curvature perturbation spectrum

almost scale-invariant
almost Gaussian

e inflation also predicts scale-invariant tensor spectrum

will be detected soon if tensor-scalar ratio r>0.1

[any new/additional features?]

29



non-Gaussianities
e 3 origins of NG in curvature perturbation

4 . . . N
1. subhorizon -- quantum origin NG from

2. superhorizon - classical (local) origin inflation
N~ Y

3. NL gravity - late time classical dynamics

e DBI-type model: origin 1.

equil

may be large % need to be quantified
NL

e non BD vacuum: origin 1.
any type of f,, may be large
could be spatially localized: "NG bubbles in the sky”

30

Sugimura, Yamauchi & MS in prep.

e multi-field model: origin 2.

local

v Mmay be large: In curvaton-type models r<1.
Multi-brid model may give r~0.1.



\_

/- . . .
Identifying properties of non-Gaussianit
is extremely important for understanding

physics of the early universe

N
Y

/

not only bispectrum(3-pt function) but also
trispectrum or higher order n-pt functions
may become important.

[Confirmation of primordial NG?]

PLANCK (February 20137) ...
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