Cosmic Inversion

– reconstructing the primordial spectrum from CMB -

Misao Sasaki

YITP, Kyoto University

based on

M. Matsumiya, MS & J. Yokoyama, PRD65, 083007 (2002).

M. Matsumiya, MS & J. Yokoyama, JCAP02, 003 (2003).

N. Kogo, M. Matsumiya, MS & J. Yokoyama, in preparation.

§1. Introduction

CMB observations:

- \star COBE confirmed the existence of super-horizon primordial perturbations.
- \star BOOMERanG and MAXIMA detected 1st and 2nd accoustic peaks.
 - \Rightarrow strong support for the gravitational instability scenario.
- * MAP and PLANCK will accurately determine C_{ℓ} to $\ell \sim 1500$.
 - \Rightarrow bringing up cosmology to precision physics.

What can we do? Or what should we do now? So far,

- \cdot No truly realistic model of the early universe.
- \cdot No precise prediction on the primordial perturbation spectrum P(k)

↓

• Testing various models of P(k) by "likelihood analysis"

Can't we determine (or contrain) P(k) directly from CMB data?

Formulate the inverse problem of reconstructing P(k) from C_{ℓ}

 \star The angular correlation function:

$$C(heta) = \langle \Theta(ec{\gamma_1}) \Theta(ec{\gamma_2})
angle = \sum_l rac{2l+1}{4\pi} oldsymbol{C_l} P_l(\cos heta) \, ;$$

***** Inverse problem:

$$C_\ell = \int dk \, K(\ell,k) P(k) \quad \Rightarrow \quad P(k) = \sum_\ell K^{-1}(k,\ell) C_\ell \quad ?$$

§2. CMB anisotropy and cosmic inversion

* Multipole moment decomposition of $\Theta(\eta, k, \mu)$:

$$\Theta(\eta,k,\mu) = \sum_l (-i)^l \Theta_l(\eta,k) P_l(\mu)\,; \quad \mu = rac{ec{k}\cdotec{\gamma}}{k} \quad ext{(we focus on a flat universe)}$$

* Boltzmann equation for $\Theta(\eta, \vec{k})$: (in Newton gauge)

$$\dot{\Theta}+ik\mu(\Theta+\Psi)=-\dot{\Phi}+an_e\sigma_T[\Theta_0-\Theta-i\mu V_b-rac{1}{10}\Theta_2P_2(\mu)]\,;\quad \dot{=}rac{\partial}{\partial\eta}$$

 Ψ : Newton potential (lapse function) perturbation

 Φ : Spatial curvature perturbation on Newton slice

 \star Integral expression for $\Theta(\eta, k, \mu)$: $(\eta_0: \text{ conformal time today})$

$$egin{aligned} &(\Theta+\Psi)(\eta_0,k,\mu)\ &=\int_0^{\eta_0}\left\{[\Theta_0+\Psi-i\mu V_b-rac{1}{10}\Theta_2 P_2(\mu)]\mathcal{V}(\eta)+(\dot{\Psi}-\dot{\Phi})e^{- au(\eta)}
ight\}e^{ik\mu(\eta-\eta_0)}d\eta\,, \end{aligned}$$

where $\mathcal{V}(\eta)$ is called the visibility function:

$$\mathcal{V}(\eta) = a n_e \sigma_T e^{- au(\eta)}\,; \quad au(\eta) = \int_\eta^{\eta_0} a n_e \sigma_T \, d\eta'.$$

 \star Approximation for the last scattering surface (LSS) with a thin but non-zero width:

$$(\Theta + \Psi)(\eta_0, k, \mu) \approx \int_0^{\eta_0} d\eta \left((\Theta_0 + \Psi) \mathcal{V}(\eta) + (\dot{\Psi} - \dot{\Phi}) e^{-\tau(\eta)} - i\mu V_b \mathcal{V}(\eta) \right) e^{ik\mu(\eta_* - \eta_0)}$$

where η_* is the center of LSS, and the Θ_2 term is neglected. This gives

 $\Theta_l(\eta_0,k)pprox (2l+1)\left[egin{array}{c} f(k)\, j_l(kd) + g(k)\, j_l'(kd)
ight] ; \quad d=\eta_0-\eta_*(pprox \eta_0)$

If the approximate formula were exact, we obtain

$$egin{aligned} ilde{C}(r) &\equiv 3rC(r) + r^2C'(r) \ &= rac{1}{2\pi^2} \int_0^\infty dk \, P(k) \, ig\{ f^2(k) k^2 r \cos kr + (2f^2(k) + g^2(k)) k \sin kr ig\}; \end{aligned}$$

 $P(k): ext{ primordial spectrum of } \Psi ext{ (Newton potential)}, \quad r \equiv 2d \sin rac{ heta}{2} pprox d heta$

This leads to a first-order differential equation for P(k):

$$-k^2 f^2 P'(k) + (-2kff'+g^2)kP(k) = 4\pi \int_0^\infty ilde{C}(r) \sin kr dr \equiv S(k) \, .$$

- * The equation is singular at f = 0. Let $k = k_a \ (a = 1, 2, \cdots)$ be the singularities.
- * At $k = k_a, \ P(k_a)$ is readily obtained as $P(k_a) = \frac{S(k_a)}{g^2(k_a)k_a}$
- * P(k) between the singularities can be easily solved as a boundary value problem.

In reality, however, the above equation holds only approximately.

ANY WAY-OUT?

Fortunately, we find empirically

 $f_\ell \equiv rac{C_\ell^{
m exact}}{C_\ell^{
m appx}} ~\sim~~ {
m approximately independent of the shape of } P(k).$

Comparisons of C_{ℓ} and f_{ℓ} for two very different spectra.

§3. Method

***** Procedure of inversion:

- 1. Pick up a fiducial spectrum $P^{(0)}(k)$, e.g., a scale-invariant spectrum.
- 2. Calculate C_{ℓ} and C_{ℓ}^{appx} for $P^{(0)}(k)$. Denote them by $C_{\ell}^{(0)}$ and $C_{\ell}^{\text{appx}(0)}$, respectively.
- 3. Estimate C_ℓ^{appx} of $C_\ell^{\mathrm{obs}},$ assuming $f_\ell = f_\ell^{(0)}$:

$$f_\ell^{(0)} = rac{C_\ell}{C_\ell^{ ext{appx}}} \quad \Rightarrow \quad C_\ell^{ ext{appx}(1)} = rac{C_\ell^{ ext{obs}}}{f_\ell^{(0)}}$$

4. Reconstruct $P^{(1)}(k)$ from $C^{\text{appx}(1)}$. Calculate $C_{\ell}^{(1)}$ for $P^{(1)}(k)$, and repeat the procedure until it converges.

Schematically,

$$P^{(n)}(k) \; \Rightarrow \; f_\ell^{(n)} = rac{C_\ell^{(n)}}{C_\ell^{\mathrm{app}(n)}} \; \Rightarrow \; C_\ell^{\mathrm{app}(n+1)} = rac{C_\ell^{\mathrm{obs}}}{f_\ell^{(n)}} \; \Rightarrow \; P^{(n+1)}(k) \Rightarrow \; \cdots$$

\star Test of the method

Example:

P(k) with a peak and a dip superimposed on a scale-invariant spectrum

If the correct cosmological parameters are chosen the convergence turns out to be very fast.

§4. Constraints on cosmological parameters

Assume the spectrum is scale-invariant and the cosmological parameters are

$$h_0 = 0.7\,, \quad \Omega_0 = \Omega_{CDM} = 1\,, \quad \Omega_b = 0.03\,.$$

- * Spiky features appear at the singularities for different parameters. They do not disappear after iteration.
- * For H_0 smaller than the 'real' value, the spectrum becomes negative near the singularities.
- * In the case of Ω_b , P(k) becomes negative in either direction of deviations.

§5. Application to WMAP data

• Reconstruction of P(k) from binned (averaged) C_{ℓ} data

(We assume the cosmological parameters suggested by the WMAP team)

 $\begin{array}{l} {\rm WMAP\ data:\ red\ dots\ }(\cdot)\\ {\rm scattered\ because\ of}\\ {\rm cosmic\ variance}\\ \Delta\ell={\rm binning\ size}\\ (\sim {\rm best-fit})\ {\rm model:}\\ {\rm scale-invariant\ spectrum\ with}\\ h=0.72,\ \Omega_{tot}=1,\\ \Omega_b=0.047,\ \Omega_{\Lambda}=0.71 \end{array}$

• Reconstructed spectra

Oscillatory behavior appears for data with Δ = 10 and 20.
Is this real or acccidental (due to cosmic variance)?

	model	$\Delta \ell = 10$	$\Delta \ell = 20$	$\Delta \ell = 50$
χ^2	975	950	972	986
$\chi^2/{ m d.o.f}$	1.090	1.091	1.104	1.110
Probability	3.05%	3.10%	1.69%	1.20%

• χ^2 -test of reconstructed spectra against WMAP data

• χ^2 -test against simulated data from scale-invariant spectrum

	model	$\Delta \ell = 10$	$\Delta \ell = 20$	$\Delta \ell = 50$
χ^2	987	967	973	1002
$\chi^2/{ m d.o.f}$	1.104	1.111	1.105	1.129
Probability	1.63%	1.22%	1.61%	0.437%

	model	$\Delta \ell = 10$	$\Delta \ell = 20$	$\Delta\ell=50$
χ^2	930	912	921	970
$\chi^2/{ m d.o.f}$	1.040	1.049	1.046	1.093
Probability	19.5%	15.5%	16.9%	2.74%

	model	$\Delta \ell = 10$	$\Delta \ell = 20$	$\Delta \ell = 50$
χ^2	918	905	923	944
$\chi^2/{ m d.o.f}$	1.026	1.040	1.048	1.063
Probability	28.5%	19.8%	15.9%	9.31%

• Another test \cdots Reconstruction without binning C_{ℓ}

Construct a statistical set of P(k) by

add cosmic variance by Monte Carlo

 $\overline{P(k)}$ and $\Delta P(k)$ for WMAP data

Do the same for $C_{\ell}^{\text{Simulated}}$ from scale-invariant $P^{\text{model}}(k)$

 \cdot Oscillations in WMAP case look a bit more prominent.

 \cdot But probably consistent with oscillations due to cosmic variance.

Need more systematic statistical analysis

§6. Summary

- Cosmic inverse problem is formulated based on an approximate formula C_{ℓ}^{appx} and an approximate independence of $C_{\ell}/C_{\ell}^{\mathrm{appx}}$ on P(k).
 - For $\Omega_{tot} = 1$ universe, P(k) can be reconstructed with good accuracy.
 - Our formalism is applicable also to ΛCDM models, with $h_0^2 \rightarrow h_0^2 \Omega_{CDM}$.
- Our formalism provides an entirely new way to constrain cosmological parameters.
 - Models with smaller values of $h_0^2 \Omega_{CDM}$ may be excluded with a high confidence level.
 - The baryon density parameter $h_0^2\Omega_b$ is severely constrained.
 - -When applied to WMAP data, our method suggests an oscillatory P(k).

***** Future issues:

- Extension to spatially curved cosmological models.
- Inclusion of the CMB polarization spectrum.
 - may be able to determine the tensor spectrum at the same time.
- Need to develop a more systematic method of statistical analysis.