Cosmological Perturbations from Inflation

Misao Sasaki

Kyoto University

§1. Introduction

• Horizon problem

$$ds^2 = -dt^2 + a^2(t)d\vec{x}^2 + ext{Einstein eqs.}$$

 $\Rightarrow \quad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(
ho + 3p
ight) \quad \boxed{
ho + 3p > 0 \quad \Leftrightarrow \quad ext{decelerated expansion}}$

If $a \propto t^n$, then $n(n-1) < 0 \implies 0 < n < 1$

$$ds^2=a^2(\eta)\left(-d\eta^2+dec x^2
ight), \quad d\eta=rac{dt}{a}$$

(η : conformal time · · · maintains causality)

3

• Solution to the horizon problem

Existence of a stage $a \propto t^n$ n > 1 in the early universe

$$egin{array}{lll} \Leftrightarrow &
ho+3p < 0 \ \Rightarrow & \int_0^t rac{dt}{a} = \int d\eta = \infty \; !! \end{array}$$

• Entropy problem (= flatness problem)

Entropy within the curvature radius: $N_{\gamma} \sim \text{conserved}$ $N_{\gamma} = n_{\gamma} \left(rac{a}{\sqrt{|K|}}
ight)^3 \sim \left(rac{T_0}{H_0}
ight)^3 |1 - \Omega_0|^{-3/2} > \left(rac{T_0}{H_0}
ight)^3 \sim 10^{87}$ $T_0 \sim 10^{-4} \text{eV} \quad H_0 \sim 10^{-33} \text{eV}$

> Where does this big number come from? "Huge entropy production in the early universe"

§2. Single-field slow-roll inflation

Universe dominated by a scalar field:

$$\begin{cases} \rho = \frac{1}{2}\dot{\phi}^2 + V(\phi) \\ \Rightarrow \quad \rho + 3p = 2(\dot{\phi}^2 - V(\phi)) \\ \text{if} \quad \dot{\phi}^2 < V(\phi) \implies \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) > 0 \\ \hline \text{accelerated expansion} \end{cases}$$

* Chaotic inflation (or Creation of Universe from nothing)

(Linde, Vilenkin, Hartle-Hawking, \cdots)

$$egin{aligned} &
ho_{ ext{initial}} &\lesssim m_{pl}^4 pprox ig(10^{19}\, ext{GeV}ig)^4 \ & \cdots ext{ quantum gravitational} \end{aligned}$$

 $ext{ if } V''(\phi) \ll m_{pl}^2, ext{ then } \phi \gg m_{pl}$

• Equations of motion:

$$\ddot{\phi} + rac{3H\dot{\phi}}{ ext{friction}} + V'(\phi) = 0 \quad (H \lesssim m_{pl} ext{ initially in chaotic inflation}) \ ext{friction}$$

$$\Rightarrow \qquad \dot{\phi} \approx -\frac{V'}{3H} \quad (\text{slow roll } (1)) \quad \Leftrightarrow \quad \left| \frac{\ddot{\phi}}{3H\dot{\phi}} \right| \ll 1 \\ \begin{cases} \dot{H} = -4\pi G(\rho + p) = -4\pi G\dot{\phi}^2 \\ H^2 = \frac{8\pi G}{3} \left(\frac{1}{2} \dot{\phi}^2 + V(\phi) \right) \\ \Rightarrow \qquad H^2 \approx \frac{8\pi G}{3} V(\phi) \quad (\text{potential dominated } (2)) \quad \Leftrightarrow \quad \left| \frac{\dot{H}}{H^2} \right| \approx \frac{3\dot{\phi}^2}{2V(\phi)} \ll 1 \end{cases}$$

The slow-roll condition (1) is satisfied, provided that

$$rac{V''}{9H^2}pprox rac{V''}{24\pi GV}\ll 1\,, \quad rac{\dot{H}}{3H^2}pprox rac{V'^2}{48\pi GV^2}\ll 1$$

- Slow-roll inflation assumes that the above two are fulfilled. (Note that these are not necessary but sufficient conditions.)
- \cdot There are models that violate either or both of the above two conditions. (Need special care in the calculation of perturbations)

• *e*-folding number of inflation $a \propto e^{-N}$

For $V(\phi) \sim (10^{15} {\rm GeV})^4$, $N(\phi) \gtrsim 60$ solves horizon & flatness problems

$$N(\phi) \gtrsim 60 \quad ext{at} \quad \phi \gtrsim 3m_{pl} \quad ext{for} \quad V = rac{1}{2}m^2\phi^2$$

Slow roll ends at $\phi \lesssim 0.2m_{pl} \quad \Rightarrow \quad ext{Reheating} \quad (ext{entropy generation})$

§3. Generation of cosmological perturbations

$$ext{Action:} \quad S = \int\! d^4x\,\sqrt{-g}\left(rac{1}{16\pi G}R - rac{1}{2}g^{\mu
u}\phi_{,\mu}\phi_{,
u} - V(\phi)
ight).$$

Cosmological perturbations are generated from quantum (vacuum) fluctuations of the inflaton ϕ and the metric $g_{\mu\nu}$.

• Scalar-type (density) perturbations

 $\cdot g_{\mu\nu}$ and ϕ :

$$egin{aligned} ds^2 &= a^2 \Big[-(1+2oldsymbol{A}) d\eta^2 - 2 \partial_i oldsymbol{B} \, d\eta dx^j + \Big((1+2oldsymbol{\mathcal{R}}) \delta_{ij} + 2 \partial_i \partial_j oldsymbol{H}_T \Big) dx^i dx^j \Big], \ \phi(t,x^i) &= \phi(t) + oldsymbol{\chi}(t,x^i) \end{aligned}$$

- A: Lapse function (~ time coordinate) perturbation
- B : Shift vector (~ space coordinate) perturbation

Scalar perturbation has 2 degrees of coordinate gauge freedom.

 \mathcal{R} : Spatial curvature (potential) perturbation

$$\left(egin{array}{c} \delta \, {}^{(3)}_{m{R}} = - rac{4}{a^2} \, {}^{(3)}_{m{\Delta}} \, {\cal R} \end{array}
ight)$$

 H_T : Shear of the metric (~ traceless part of the extrinsic curvature) No dynamical degree of freedom in the metric itself.

* Action expanded to 2nd order (in the Hamiltonian form)

cf. Garriga, Montes, MS & Tanaka (1998)

$$S_2 = \int d\eta\, d^3x \left(\sum_a P_a\, Q_a^\prime - \mathcal{H}_s - A\, C_A - B\, C_B
ight)$$

$$egin{aligned} \mathcal{H}_s &= rac{1}{2a^2} P_\chi^2 - 4\pi G \phi' P_\mathcal{R} \chi + \cdots, \quad ' = d/d\eta\,, \ C_A &= \phi' \, P_\chi + \cdots \quad (ext{Hamiltonian constraint})\,, \ C_B &= P_{H_T} \quad (ext{Momentum constraint})\,, \ Q_a &= \{\mathcal{R}, H_T, \chi\}, \quad P_a = \{ ext{Momentum conjugate to } Q_a\}\,. \end{aligned}$$

• Gauge transformation $[\xi^{\mu} = (T, \partial_i L)]$ is generated by C_A and C_B :

$$\delta_g Q = \left\{Q, \int \left(oldsymbol{T} C_A + oldsymbol{L} C_B
ight) d^3 x
ight\}_{P.B.} \qquad (\,Q = \left\{Q_a\,,P_a
ight\}\,)$$

- Reduction to unconstrained variables a lá Faddeev-Jackiw (1988)
- 1. Solve $C_A = \phi' P_{\chi} + \cdots = 0$ with respect to P_{χ} and insert it into S_2 . Also, insert $C_B = P_{H_T} = 0$ into S_2 .
- 2. The resulting S_2 is a functional of $\{P_{\mathcal{R}}, \mathcal{R}, \chi\}$: $S_2^* = S_2^* \left[P_{\mathcal{R}}, \mathcal{R}, \chi\right]$
- 3. Since S_2 is gauge-invariant, S_2^* must be written solely in terms of gauge-invariant variables. Indeed, we find

$$S_2^* = S_2^* \left[P_c, \mathcal{R}_c
ight] \; ; \quad P_c \equiv P_\mathcal{R} + rac{a^2}{4\pi G \phi'} {}^{(3)}_\Delta \chi \, , \quad \mathcal{R}_c \equiv \mathcal{R} - rac{\mathcal{H}}{\phi'} \chi$$

This is in fact the same as choosing $\chi = 0$ gauge (called 'comoving' slicing). i.e., \mathcal{R}_c is the curvature perturbation on the comoving hypersurface.

• Useful geometrical gauge-invariant variables:

$$oldsymbol{\zeta} := \mathcal{R} + rac{\delta
ho}{3(
ho+P)} \hspace{1.5cm} ext{curvature perturbation on uniform density slices} \ (
ho = ext{const.}) \ \mathcal{R}_c := \mathcal{R} + \mathcal{H}(v+B) \hspace{1.5cm} ext{curvature perturbation on comoving slices} \ (ext{hypersurface normal } n^\mu = u^\mu) \ oldsymbol{\zeta} = \mathcal{R}_c + O(k^2/H^2a^2) \ oldsymbol{\zeta}$$

 ${\cal H}\equiv {a'\over -}=aH$

 $egin{aligned} \Phi &:= \mathcal{R} + \mathcal{H}(B - H_T') & ext{curvature perturbation on Newtonian slices} \ & ext{(hypersurface shear} = 0) \ \Psi &:= A + rac{1}{a} \left[a(B - H_T')
ight]' & ext{Newton potential in Newtonian slices} \end{aligned}$

* ζ expressed in terms of Φ and Ψ :

$$\zeta = \Phi - rac{3H\dot{\Phi} - 3H^2\Psi - a^{-2}
abla^2\Phi}{3\dot{H}}$$

$$\zeta \approx \mathcal{R}_c \approx \Phi - \frac{3H\dot{\Phi} - 3H^2\Psi}{3\dot{H}}$$
 on superhorizon scales

 \star S_2^* in the Lagrangean form:

$$S_2^* = \int d\eta\, d^3x\, rac{a^2 {\phi'}^2}{2 {\cal H}^2} \left({{\cal R}_c^\prime}^2 - (
abla {\cal R}_c)^2
ight); \quad {\cal H} \equiv rac{a'}{a} = a\, H$$

Equation of motion (for Fourier modes: $\stackrel{(3)}{\Delta} \rightarrow -k^2$)

$${\cal R}_c''+2rac{z'}{z}{\cal R}_c'+k^2{\cal R}_c=0\,;\quad z\equivrac{a\phi'}{{\cal H}}=rac{a\dot{\phi}}{H}\,(\propto a\,\,{
m for\,\, slow-roll\,\, inflation})\,.$$

$$egin{array}{lll} ext{For} \; k < \mathcal{H} \; (\Leftrightarrow \; k/a < H), \ & \mathcal{R}_c' \propto egin{cases} z^{-1} \sim ext{decaying mode} \ 0 & \sim ext{growing mode} \end{cases}$$

• Growing mode of \mathcal{R}_c stays constant on super-horizon scales.

 \cdot This holds for adiabatic perturbations in general cosmological models. (i.e., the existence of a constant mode)

But this does not mean that \mathcal{R}_c is constant on super-horizon scales.

• Inflaton perturbation on flat slicing

Alternatively, in terms of χ on $\mathcal{R} = 0$ hypersurface (flat slicing),

$$\chi_F\equiv \chi-rac{\phi'}{\mathcal{H}}\mathcal{R}=-rac{\phi'}{\mathcal{H}}\mathcal{R}_c$$

$$S_2^* = S_2^*[\chi_F] = \int d\eta \, d^3x \, rac{a^2}{2} \left(\chi_F^{\prime \ 2} - (
abla \chi_F)^2 - a^2 m_{eff}^2 \, \chi_F^2
ight);
onumber \ m_{eff}^2 = -rac{\left\{ a^2 \left(\phi^{\prime} / \mathcal{H}
ight)^{\prime}
ight\}^{\prime}}{a^4 \left(\phi^{\prime} / \mathcal{H}
ight)} = \partial_{\phi}^2 V + 16 \pi G rac{d}{dt} \left(rac{V}{H}
ight)$$

 $\chi_F \sim \text{minimally coupled almost massless scalar in de Sitter space}$ $(\because \partial_{\phi}^2 V \ll H^2, 16\pi G(V/H) \approx 6\dot{H} \ll H^2 \text{ for slow-roll inflation.})$

N.B. the sufficient conditions for slow roll were $\partial_{\phi}^2 V \ll 3H^2$ and $\dot{H} \ll 3H^2$.

 \cdot de Sitter approximation for the background:

$$H = ext{const.}, \quad a(\eta) = rac{1}{-H\eta} \quad (-\infty < \eta < 0)$$

This is a good approximation for $k > \mathcal{H}$ (sub-horizon scale) modes.

• Canonical quantization

$$egin{aligned} &\pi(\eta,ec x) = rac{\delta S_2^*[\chi_F]}{\delta\chi'_F(\eta,ec x)}, \quad [\chi_F(\eta,ec x),\pi(\eta,ec x')] = i\delta(ec x-ec x') \ &\Rightarrow \quad \hat{\chi}_F = \int rac{d^3k}{(2\pi)^{3/2}} \left(\hat{a}_{ec k} \,\chi_k(\eta) \, e^{iec k\cdotec x} + \ ext{h.c.}
ight); \quad [\hat{a}_{ec k},\, \hat{a}_{ec k'}^\dagger] = \delta(ec k-ec k') \ &\chi_k'' + 2\mathcal{H}\chi_k' + \left(k^2 + m_{eff}^2a^2
ight)\chi_k = 0; \quad \chi_{ec k} \,ec \chi_k' - \chi_k' \,ec \chi_{ec k} = rac{i}{a^2} \ &\Leftrightarrow \quad \ddot{\chi}_k + 3H\dot{\chi}_k + \left(rac{k^2}{a^2} + m_{eff}^2
ight)\chi_k = 0; \quad \chi_{ec k} \,ec \chi_{ec k} - ec \chi_{ec k} \,ec \chi_{ec k} = rac{i}{a^3} \ &(ext{in terms of the cosmic proper time } t) \ & ext{slow roll} \quad \Rightarrow \quad m_{eff}^2 \ll H^2 \quad \sim \ & ext{massless} \end{aligned}$$

de Sitter approximation:

$$\Rightarrow \quad \chi_k \approx \frac{H}{(2k)^{3/2}} \left(i - k\eta \right) e^{-i\eta} \quad \begin{cases} \overrightarrow{\mathcal{H}} \rightarrow \infty \quad \frac{1}{\sqrt{2ka}} e^{-ik\eta} \\ \\ \overrightarrow{\mathcal{H}} \rightarrow \infty \quad \frac{H}{\sqrt{2k^3}} e^{-i\alpha_k} \end{cases}$$

$$ig\langle \delta \phi^2
angle_k igert_{ ext{on flat slice}} = ig\langle \chi_F^2
angle_k \equiv rac{4\pi\kappa}{(2\pi)^3} |\chi_k|^2 o igg(rac{11}{2\pi}igg) \qquad ext{for} \quad k \lesssim \mathcal{H}$$

- de Sitter approximation breaks down at $k \ll \mathcal{H}$. i.e., the time-variation of χ_k on super-horizon scales cannot be neglected.
- However, the corresponding k-mode of \mathcal{R}_c becomes constant on superhorizon scales.

$$\Rightarrow \mathcal{R}_{c,k}(\eta) \approx \mathcal{R}_{c,k}(\eta_k) = -\frac{\mathcal{H}}{\phi'} \chi_k(\eta_k) \approx \frac{H^2(t_k)}{\sqrt{2k^3} \dot{\phi}(t_k)} e^{-i\alpha_k}.$$

$$\log L$$

$$k = const.$$

$$(L = a/k)$$

$$L = \frac{1}{H}$$

$$\log a$$

 $t=t_k \quad \Leftrightarrow \quad \eta=\eta_k \quad \Leftrightarrow \quad k=\mathcal{H}(\eta_k) \quad \cdots ext{ horizon crossing time}$

• Curvature perturbation spectrum (say, at $\eta = \eta_f$)

$$ig\langle \mathcal{R}_c^2 ig
angle_k \equiv rac{4\pi k^3}{(2\pi)^3} P_{\mathcal{R}_c}(k;\eta) = rac{4\pi k^3}{(2\pi)^3} \left| \mathcal{R}_{c,k}(\eta)
ight|^2 = \left(rac{H^2}{2\pi \dot{\phi}}
ight)^2
ight|_{t=t_k}$$

Since dN = -Hdt,

$$rac{\partial N}{\partial \phi} = -rac{H}{\dot{\phi}} \quad \Rightarrow \quad ig\langle \mathcal{R}_c^2 ig
angle_k = \left(rac{\partial N}{\partial \phi} rac{H}{2\pi}
ight)^2 igert_{t=t_k} = \left(rac{\partial N}{\partial \phi} \,\delta \phi
ight)^2 igert_{t=t_k} ext{ on flat slice}$$

That is, for single-field slow-roll inflation,

$$\left. \mathcal{R}_c = \delta N
ight|_{t=t_k} = rac{\partial N}{\partial \phi} \delta \phi
ight|_{t=t_k} \quad (\delta \phi = rac{H}{2\pi}) \quad ext{on flat slice}$$

Only the knowledge of the homogeneous background is sufficient to predict the perturbation spectrum. " δN -formula"

If $\langle \mathcal{R}_c^2
angle_k \propto k^{n-1}$

- n = 1: scale-invariant (Harrison-Zeldovich) spectrum
- $n = 1 \epsilon \ (\epsilon \ll 1)$ for chaotic inflation $(V(\phi) \propto \phi^p)$.

• Large angle CMB anisotropy

$$egin{split} \left(rac{\delta T}{T}
ight)(ec{\gamma},\eta_0) &= \left(egin{split} \zeta_{
m r}+\Theta
ight)(\eta_{
m dec},ec{x}(\eta_{
m dec})) + \int_{\eta_{
m dec}}^{\eta_0}d\eta\,\partial_\eta\Theta(\eta,ec{x}(\eta)) \ & (ext{Sachs-Wolfe}) & (ext{Integrated Sachs-Wolfe}) \end{split}$$

 $\zeta_{\rm r} \sim {
m curvature perturbation on }
ho_{
m photon} = {
m const. surfaces}$ $\Theta \equiv \Psi - \Phi$

For a dust-dominated universe at decoupling,

SW:
$$\zeta_{\rm r} + \Theta \approx -\frac{1}{5}\zeta_* - \frac{2}{5}S_{\rm dr}$$

$$egin{aligned} & egin{aligned} & egi$$

For standard adiabatic perturbations,

$${\cal R}_c(=\zeta_*)pprox -rac{5
ho+3p}{3(
ho+p)}\Psi
ightarrow -rac{5}{3}\Psi\,,\quad \therefore\quad \zeta_{
m r}+\Thetapproxrac{1}{3}\Psi$$

• CMB Observation vs Inflation Model COBE-DMR: ApJ Lett. <u>464</u> (1996); WMAP: astro-ph/0306132

$$\begin{split} \left\langle \left(\frac{\delta T}{T}\right)^2 \right\rangle \sim 10^{-10} \quad \text{at } \theta \sim 10^{\circ} \\ & \downarrow \\ \left\langle \Psi^2 \right\rangle_k \sim 10^{-10} \quad \text{at} \quad \frac{k_0}{a_0} = H_0 \; \sim \frac{1}{3000 \,\text{Mpc}} \sim \frac{1}{10^{28} \text{cm}} \\ \text{For } V = \frac{1}{2} m^2 \phi^2, \\ \left\langle \Psi^2 \right\rangle_{k_0} \approx \left(\frac{3}{5}\right)^2 \left\langle \mathcal{R}_c^2 \right\rangle_{k_0} = \left(\frac{3}{5}\right)^2 \left(\frac{H^2}{2\pi \dot{\phi}}\right)^2 \Big|_{\frac{k_0}{a} = H} \approx \frac{m^2}{m_{pl}^2} N^2(\phi) \Big|_{\frac{k_0}{a} = H} \\ \Rightarrow \quad \begin{cases} m \sim 10^{13} \text{GeV} \\ V \sim (10^{16} \text{GeV})^4 \end{cases}$$

• power-law index: $n_{\rm WMAP} = 0.93 \pm 0.03$ (for scalar perturbations) Slight deviation from scale invariant spectrum (n = 1) • Tensor type perturbation

$$ds^2 = -dt^2 \!\!+ \, a^2(t) \left(\delta_{ij} + h_{ij}
ight) dx^i dx^j \ h_{ij} \, \cdots \, {
m Transverse-Traceless}$$

$$egin{aligned} \delta^2 S_G &= rac{1}{64\pi G} \int d^4x \, a^3 \left(\dot{h}_{ij} - rac{1}{a^2} (
abla h_{ij})^2
ight) \ &= rac{1}{2} \int d^4x \, a^3 \left(\dot{arphi}_{ij}^2 - rac{1}{a^2} (
abla arphi_{ij})^2
ight) \,; \quad arphi_{ij} := rac{1}{\sqrt{32\pi G}} h_{ij} \end{aligned}$$

 $\varphi_{ij} \sim \text{massless scalar} (2 \text{ degrees of freedom})$

$$arphi_{ij}^2
angle_k = 2 imes \left(rac{H}{2\pi}
ight)^2 \ \Rightarrow \ \langle h_{ij}^2
angle_k = 2 imes 32\pi G imes \left(rac{H}{2\pi}
ight)^2 = rac{8}{\pi} rac{H^2}{m_{pl}^2} \ imes ext{contribute to CMB anisotropy}$$

contribute to CMB anisotropy

$$egin{aligned} rac{T}{S} = rac{ ext{tensor}}{ ext{scalar}} &\sim rac{\langle h_{ij}^2
angle}{\langle \mathcal{R}_c^2
angle} = 24 \left. rac{\dot{\phi}^2}{V}
ight|_{k_0 = aH} & ext{slow roll} &\Rightarrow \quad rac{T}{S} \ll 1 \,. \ &rac{T}{S} \sim 0.13 & ext{for} & V = rac{1}{2}m^2\phi^2 & ext{(small but non-negligible)} \end{aligned}$$

• Model dependence

* power-law inflation

 $egin{aligned} V(\phi) \propto \exp[\lambda \phi/m_{pl}] &\leftarrow ext{ dilaton in string theories }? \ &a \propto t^lpha & (lpha = rac{16\pi}{\lambda^2}) \ \Rightarrow &n < 1\,, \qquad rac{T}{S} \gtrsim 0.1 \end{aligned}$

* hybrid inflation \leftarrow supergravity-motivated ?

e.g.,
$$V(\phi,\psi) = rac{1}{4\lambda} \left(M^2 - \lambda \psi^2
ight)^2 + rac{1}{2} m^2 \phi^2 + rac{1}{2} g^2 \phi^2 \psi^2$$

$$egin{array}{ll} a\propto e^{Ht}\,, & H^2pprox rac{8\pi G}{3}V_0 & ext{when} & \psi=0, \ \phi>M/g. \ & \Rightarrow & n>1\,, & rac{T}{S} & ext{can be large or small.} \end{array}$$

§4. Perturbation spectrum in non-slow-roll inflation

Leach, MS, Wands & Liddle (2001)

Curvature perturbation on comoving slice:

$$|\mathcal{R}_c|_{final} pprox \mathcal{R}_c(t_k) pprox \left(\frac{H^2}{2\pi\dot{\phi}}\right)_{k=aH}$$
 for slow-roll inflation

What if slow-roll condition is violated?

• Reconsideration of EOM for \mathcal{R}_c :

$$\mathcal{R}_c''+2rac{m{z}'}{m{z}}\mathcal{R}_c'+k^2\mathcal{R}_c=0\,;\quad '=rac{d}{d\eta}\,,\quad m{z}=rac{m{a}\phi}{m{H}}=rac{m{a}\phi'}{m{\mathcal{H}}}\,,\quad \mathcal{H}=rac{a'}{a}\,.$$

Two independent solutions for $k^2 \rightarrow 0$:

 $u(\eta) \approx \text{const.}$... "growing mode" $v(\eta) \approx \int_{\eta}^{\eta_*} \frac{d\eta'}{z^2(\eta')}$... "decaying mode" (η_* ... end of inflation)

• $v \to 0$ as $\eta \to \eta_*$ by definition, but u is arbitrary.

- In slow-roll inflation, $v(\eta) \ll v(\eta_k)$ for $\eta > \eta_k$ $(|k\eta| \sim k/\mathcal{H} \ll 1)$
- v may not decay right after horizon crossing in general.

• Long-wavelength approximation

$$u(\eta) = \sum_{n=0}^\infty u_n(\eta) \; k^{2n} \,, \quad u_{n+1}'' + 2rac{z'}{z} u_{n+1}' = -u_n \,, \quad u_0 = {
m const.}$$

To $O(k^2)$,

$$egin{aligned} &upprox u_0+[C_1+C_2D_0(\eta)+F(\eta)]\,u_0\,;\ &D_0(\eta)=3\mathcal{H}(\eta_k)\int_{\eta}^{\eta_*}d\eta'rac{z^2(\eta_k)}{z^2(\eta')}&\cdots ext{ lowest order decaying mode}\ &F(\eta)=k^2\int_{\eta}^{\eta_*}rac{d\eta'}{z^2(\eta')}\int_{\eta_k}^{\eta'}z^2(\eta'')d\eta''\,. \end{aligned}$$

 $F
ightarrow 0 ~~~{
m as}~~~\eta
ightarrow \eta_* ~~(F {
m \ behaves \ also \ like \ decaying \ mode})$

***** Convenient choice for the "growing mode":

$$C_1 = 0\,, \quad C_2 = -rac{F_k}{D_k}; \quad F_k = F(\eta_k)\,, \quad D_k = D_0(\eta_k)$$

$$egin{aligned} \Rightarrow & u(\eta) pprox \left[1-F_k rac{D_0(\eta)}{D_k}+F(\eta)
ight] u_0\,; \ & u(\eta_k)=u(\eta_*)\,, \; u'(\eta_k)=3\mathcal{H}_k rac{F_k}{D_k}\,u(\eta_k) \quad \left(\mathcal{H}_k=\mathcal{H}(\eta_k)
ight) \end{aligned}$$

\star Decaying mode accurate to $O(k^2)$:

$$v(\eta)=u(\eta)rac{ ilde{D}(\eta)}{ ilde{D}(\eta_k)}; \quad ilde{D}(\eta)\equiv 3\mathcal{H}_k\int_\eta^{-\eta_*}d\eta'rac{z^2(\eta_k)u^2(\eta_k)}{z^2(\eta')u^2(\eta')}.$$

***** General solution for \mathcal{R}_c :

 $\mathcal{R}_c(\eta) \,=\, lpha u(\eta) + eta v(\eta)\,; \quad lpha + eta = 1\,, \quad \mathcal{R}_c(\eta_k) = u(\eta_k)\,.$

$$\Rightarrow \mathcal{R}_c(\eta_*) = lpha \, u(\eta_*) = lpha \, u(\eta_k) = lpha \, \mathcal{R}_c(\eta_k)$$

$$egin{aligned} \mathcal{R}_c'(\eta_k) &= u'(\eta_k) - rac{3(1-lpha)\mathcal{H}_k u(\eta_k)}{ ilde{D}(\eta_k)} \ &\Rightarrow & lpha pprox 1 + rac{D_k}{3\mathcal{H}_k} \left[rac{\mathcal{R}_c'}{\mathcal{R}_c} - rac{u'}{u}
ight]_{\eta = \eta_k} \, . \ &\Rightarrow \mathcal{R}_c(\eta_*) pprox (1-F_k) \, \mathcal{R}_c(\eta_k) + rac{D_k}{3\mathcal{H}_k} \mathcal{R}_c'(\eta_k) \ &ert \left|\mathcal{R}_c(\eta_*)
ight| \gg \left|\mathcal{R}_c(\eta_k)
ight| & ext{if} \quad F_k \gg 1 ext{ and/or } D_k \gg 1 \end{aligned}$$

★ Leach-Liddle model

Leach & Liddle (2000)

Quartic potential with vacuum energy:

$$V(\phi) = rac{M^4}{4} \left[1 + B rac{64 \pi^2}{m_{pl}^4} \phi^4
ight] \; ; \quad B = 0.55$$

To summarize,

• Spectral formula for non-slow-roll inflation:

$$egin{aligned} \mathcal{R}_c(\eta_*) &= (1-F_k)\,\mathcal{R}_c(\eta_k) + D_k rac{k}{3\mathcal{H}_k} \left(rac{d}{kd\eta}\mathcal{R}_c(\eta_k)
ight) \ D_k &= & 3\mathcal{H}_k \int_{\eta_k}^{\eta_*} d\eta' rac{z^2(\eta_k)}{z^2(\eta')}\,, \ F_k &= & k^2 \int_{\eta_k}^{\eta_*} rac{d\eta'}{z^2(\eta')} \int_{\eta_k}^{\eta'} z^2(\eta'') d\eta''\,, \quad z^2 = \left(rac{a\dot{\phi}}{H}
ight)^2 \end{aligned}$$

• $\mathcal{R}_c(\eta_*)$ in linear combination of $\mathcal{R}'_c(\eta_k)$ and $\mathcal{R}_c(\eta_k)$ with coefficients expressed in terms of background quantities.

- $\star ext{ For slow-roll case, we have } D_k \sim 1, \ F_k \sim 0 ext{ for } k/\mathcal{H}_k \lesssim 0.1 \ \Rightarrow \ \mathcal{R}_c(\eta_*) pprox \mathcal{R}_c(\eta_k).$
- **\star** For non-slow-roll case, an enhancement of \mathcal{R}_c can occur:
 - A sharp dip appears in the spectrum at $F_k \sim 1$.
 - $\cdot \ {
 m A} \ {
 m kink} \ {
 m appears} \ {
 m at} \ D_k \gtrsim 1.$

§5. Extension to multi-field inflation

• *n*-component scalar field:

$$egin{aligned} S_{\phi} &= -\int\!d^4x\,rac{\sqrt{-g}}{2}\left(g^{\mu
u}
abla_{\mu}ec{\phi}\cdot
abla_{
u}ec{\phi}+V(ec{\phi})
ight),\ ec{\phi}\cdotec{\phi} &= \delta_{pq}\,\phi^p\phi^q \quad (p,q=1,2,\cdots,n). \end{aligned}$$

• Homogeneous background solutions:

٠

 $(N \text{ as a time coordinate; } a = e^{+N})$

$$egin{aligned} G^0{}_0 &= T^0{}_0: & (ext{units}:8\pi G = 1) \ H^2\left(1 - rac{1}{6}ec{\phi}_N^2
ight) &= rac{1}{3}V\,; & ec{\phi}_N \equiv rac{dec{\phi}}{dN} \end{aligned}$$

• Scalar field equation :

$$\left[Hrac{d}{dN}Hrac{d}{dN}+3H^2rac{d}{dN}
ight]\phi^p+V^{|p}=0\,.$$

MS & Tanaka (1998)

General solution is parametrized by 2n parameters:

$$egin{aligned} &\left\{ec{\phi}=ec{\phi}(\lambda^{lpha}), \ ec{\pi}=ec{\pi}(\lambda^{lpha})
ight\} & \left(ec{\pi}=He^{3N}ec{\phi}_N
ight)\ &\lambda^{lpha}=\{N,\lambda^a\} & (lpha=1\sim 2n\,, \ a=2\sim 2n) \end{aligned}$$

 λ^{α} can be regarded as a new set of phase space coordinates for the homogeneous solutions.

solution is labeled by
$$\lambda^a \; (a=2,3,\cdots,2n)$$

• Metric perturbation: (expanded in spherical harmonics)

$$egin{aligned} ds^2 &= a^2(\eta) \Big[-(1+2oldsymbol{A}oldsymbol{Y}) d\eta^2 - 2oldsymbol{B}oldsymbol{Y}_j \,d\eta dx^j \ &+ \Big((1+2oldsymbol{H_L}oldsymbol{Y}) \delta_{ij} + 2oldsymbol{H_T}oldsymbol{Y}_{ij} \Big) dx^i dx^j \Big], \end{aligned}$$

• Scalar field perturbation: $\vec{\phi} \rightarrow \vec{\phi}(\eta) + \delta \vec{\phi} Y$

$$(\stackrel{(3)}{\Delta}+k^2)Y=0, \,\, Y_j=-k^{-1}
abla_jY,\,\, Y_{ij}=k^{-2}
abla_i
abla_jY+rac{1}{3}\delta_{ij}Y.$$

• Perturbed e-folding number N:

$$ilde{N} = N + \int_{\eta_0}^{\eta} \left(\mathcal{R}' - rac{1}{3} k \sigma_g
ight) Y \, d\eta \,, \qquad \left(' = rac{d}{d\eta}
ight)$$

 $egin{aligned} \mathcal{R} &= H_L + rac{H_T}{3} \;:\; ext{curvature perturbation on } \Sigma(\eta) \ k\sigma_g &= H_T' - kB \;:\; ext{shear of } \Sigma(\eta) \end{aligned}$

$$\delta N=0 ext{ for } \mathcal{R}'-rac{1}{3}k\sigma_g=0 \ (H_L'=B=0)$$

"Constant *e*-fold gauge"

• Super-horizon scale perturbation on $\mathcal{R}' - \frac{1}{3}k\sigma_g = 0$ slices (constant *e*-fold ($\delta N = 0$) gauge at $k^2/a^2 \ll H^2$)

$$A \ \& \ \delta ar \phi$$

$$egin{aligned} rac{\delta H}{H} &= -A = rac{H^2 ec \phi_N \cdot \delta ec \phi_N + V_{|p} \delta \phi^p}{2V} &\Leftarrow A ext{ is subject to } \delta ec \phi \,. \ &\left[H rac{d}{dN} \left(H rac{d}{dN}
ight) + 3 H^2 rac{d}{dN}
ight] \delta \phi^p + V^{|p}{}_{|q} \delta \phi^q + 2 V^{|p} A - H^2 \phi^p_N (ec \phi_N \cdot \delta ec \phi_N) = 0 \,. \end{aligned}$$

This turns out to be the same as the equation for $\partial \vec{\phi} / \partial \lambda^{\alpha}$. Hence,

$$\deltaec{\phi} = \ c^lpha rac{\partialec{\phi}}{\partial\lambda^lpha}, \ \ \lambda^lpha = \{N,\lambda^a\}; \ \ \ rac{\partialec{\phi}}{\partial\lambda^1} \equiv rac{\partialec{\phi}}{\partial N} \ : \ ext{time-translation mode}$$

 $\delta \vec{\phi}$ in this gauge is completely decsribed by the knowledge of (a congruence of) background solutions.

${\cal R}$ & $k\sigma_g$

From $\delta G^{0}{}_{j} = \delta T^{0}{}_{j}$ and traceless part of $\delta G^{i}{}_{j} = \delta T^{i}{}_{j}$,

$$egin{aligned} \mathcal{R} &= \ oldsymbol{c}^{lpha} W_{(lpha)} \int_{oldsymbol{N_b}}^{N} rac{dN}{a^3 H}, & k\sigma_g = rac{3 oldsymbol{c}^{lpha} W_{(lpha)}}{a^2}; \ W_{(lpha)} &= rac{a^3 H^3}{2V} \left(rac{dec{\phi}_N}{dN} \cdot ec{\chi}_{(lpha)} - ec{\phi}_N \cdot rac{dec{\chi}_{(lpha)}}{dN}
ight) = ext{const.}, \ ec{\chi}_{(lpha)} &\equiv rac{\partialec{\phi}}{\partial\lambda^{lpha}} \end{aligned}$$

where $W_{(1)} = 0$ and N_b is an arbitrary constant.

(One can always choose λ^a such that $W_{(2)} \neq 0$ and $W_{(a)} = 0$ for $a = 3 \sim 2n$.)

* Perturbation in the constant *e*-fold gauge is parametrized by 2n + 1 parameters $\{N_b, c^{\alpha}\}$:

• Gauge mode

An infinitesimal change of time slicing:

$$egin{array}{rcl} N & o & N - \delta_g N \,, \ \mathcal{R} & o & \mathcal{R} + \delta_g N \,, & k \sigma_g \ o & k \sigma_g + O(k^2) \,, \ \delta ec \phi \ o & \delta ec \phi + ec \phi_N \delta_g N \,. \end{array}$$

The condition $\mathcal{R}' - \frac{1}{3}k\sigma_g = 0$ is maintained for $\delta_g N = \text{const.}$ in the limit $k^2/a^2 \ll H^2$. $\Rightarrow (\delta \vec{\phi}, \mathcal{R}, k\sigma_g) = (c \vec{\phi}_N, c, 0)$ is pure gauge.

Time-Translation Mode

Necessary to construct gauge-invariant quantities such as \mathcal{R}_c .

∜

• Construction of \mathcal{R}_c

Comoving slice condition $\vec{\phi}_N \cdot (\delta \vec{\phi})_c = 0$ defines a surface in the phase space as

$$egin{aligned} ec{\phi}_N(N,0) \cdot \left(ec{\phi}(N+\Delta N,\lambda^a) - ec{\phi}(N,0)
ight) &= ec{\phi}_N(N,0) \cdot \left(\deltaec{\phi} + ec{\phi}_N\Delta N
ight) = 0. \ \ &\Rightarrow \quad \Delta N(\lambda^lpha) = -rac{ec{\phi}_N \cdot \deltaec{\phi}}{ec{\phi}_N^2} \end{aligned}$$

 ΔN depends on x^{μ} only through its dependence on λ^{lpha} .

• Gauge transformation to the comoving slice:

$$egin{aligned} \mathcal{R}_c(\lambda^lpha) &= \ \mathcal{R}(\lambda^lpha) + \Delta N(\lambda^lpha)\,; & \lambda^lpha &= \lambda^lpha(x^\mu) \ &= \ \mathcal{R} - rac{ec{\phi}_N\cdot\deltaec{\phi}}{ec{\phi}_N^2} &= -rac{ec{\phi}_N\cdotec{\chi}_F}{ec{\phi}_N^2}\,; \ &ec{\chi}_F := \ \deltaec{\phi} - ec{\phi}_N\mathcal{R} \ &= \ egin{aligned} eta^1\,ec{\phi}_N + eta^a\left(rac{\partialec{\phi}}{\partial\lambda^a} - W_{(a)}\,ec{\phi}_N\,\int_{N_b}^N rac{dN}{a^3H}
ight) \end{aligned}$$

 $\vec{\chi}_F \sim \delta \vec{\phi}$ on flat slice (contains all the information) \cdots convenient quantity for evaluating quantum fluctuations

* Change of N_b is absorbed by the redefinition of c^1 .

- $\cdot \ c^1 \sim ext{ adiabatic growing mode amplitude}$
- $\cdot \ \ c^a W_{(a)} \ (= c^2 W_{(2)} \ {
 m with} \ W_{(a)} = 0 \ {
 m for} \ a \geq 3)$
 - $\sim~$ adiabatic decaying mode amplitude
- The rest $(c^a; a \ge 3)$ are entropy perturbations

Generally \mathcal{R}_c varies in time even on super-horizon scales

• Slow roll limit:

$$ec{\phi}_N^2 \ll 1, \qquad \left|rac{Dec{\phi}_N}{dN}
ight| \ll ec{\phi}_Nec{} \Rightarrow \quad \phi_N^p = -rac{V^{ec{}p}}{3H^2} = -(\ln V)^{ec{}p}\,, \quad H^2 = rac{1}{3}V\,.$$

2n-d phase space \Rightarrow n-d configuration space

 \star Slow roll kills all the decaying modes:

 $egin{aligned} \deltaec{\phi} &= ec{\chi}_F \,, \; \mathcal{R} = k\sigma_g = 0 \quad ext{on } \delta N = 0 ext{ slice } \ \delta N = 0 ext{ slice becomes equivalent to flat } (\mathcal{R} = 0) ext{ slice in slow-roll limit.} \ &\Rightarrow \quad \mathcal{R}_c = \Delta N = -rac{ec{\phi}_N \cdot ec{\chi}_F}{ec{\phi}_N^2} \quad ext{where } \quad ec{\chi}_F = C^{lpha} rac{\partialec{\phi}}{\partial\lambda^{lpha}} \quad (lpha = 1 \sim n) \end{aligned}$

* \mathcal{R}_c expressed in terms of $(\vec{\chi}_F)_{N=N_k}$ (N_k: horizon crossing time)

$$\mathcal{R}_c(N) = - \left[rac{\partial N}{\partial \phi^p} \chi_F^p
ight]_{N=N_k} - rac{C^a}{ec \phi_N^2} \, ec \phi_N \cdot rac{\partial ec \phi}{\partial \lambda^a}; \quad C^a = \left[rac{\partial \lambda^a}{\partial \phi^p} \, \chi_F^p
ight]_{N=N_k} \quad (a=2\sim n)$$

 $ec{\chi}_F|_{N=N_k}$: to be evaluated by quantization

 $\star \mathcal{R}_c = \Delta N ext{ at the end of inflation} \quad (H^2 = rac{1}{3}V = ext{const. at } N = N_f)$

$$ec{\phi}_N \cdot rac{\partial ec{\phi}}{\partial \lambda^a} = -rac{\partial \ln V}{\partial \lambda^a} = 0 \quad \Rightarrow \quad \left[\mathcal{R}_c(N_e) = -\left[rac{\partial N}{\partial \phi^p} \chi_F^p
ight]_{N_k} = -\left[rac{\partial N}{\partial \phi^p} \delta \phi^p
ight]_{N_k}$$

§5. Summary

- Super-horizon scale perturbations are described solely by (a congruence of) homogeneous background solutions.
 - * Correlations among various quantities can be easily calculated. (e.g., correlation between entropy and adiabatic perturbations)
- Curvature perturbation \mathcal{R}_c may vary in time on super-horizon scales either for multi-field or non-slow-roll inflation.
 - $\star \mathcal{R}_c \approx \Delta N$ in the slow-roll case.
 - * Large enhancement on super-horizon scales can occur even for single-field inflation.

₩

- Simple (slow-roll) models predict scale-invariant spectrum, but other, more complicated spectral shapes are possible.
- Tensor perturbations may be non-negligible.

On-going and future observations

- SDSS \cdots $\sim 10^{6}$ galaxies

 \downarrow

– MAP, PLANK \cdots CMB anisotropy map with resolution of $heta \lesssim 10'$

Inflaton potential may be determined

 \downarrow Understanding of physics of the early universe (\approx extreme high energy physics)