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§1  Black hole perturbation approach
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Linear perturbation in µ

( )18(1 )G G µνµνδ π  = h T

4
(1)

(0)

( ( ))( )       
-

( )x z dz
x d z z z

dg

µ
µν µ ν µµ δ ττ

τ
−

= =∫T

background 
metric

( ) ( )1
4

1 ψhζ         µν=

: expanded in spherical (spheroidal) harmonics
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Master variable ζ:

geodesic on  g(0)

 ~4ψ(            a component of Weyl tensor)

[ ] (1 )L S  =  ζ T Regge-Wheeler / Teukolsky equation



From ζ , we can calculate:
Waveform at infinity.

dE/dt|GW ,  dLz /dt|GW , etc. ( )( )2
~ O Gµ

the orbit deviates from a geodesic on  g(0)

How can we incorporate this deviation?
(focus on the Schwarzschild case)

Use dE/dt & dLz /dt to determine the evolution of
the orbital parameters (adiabatic approximation). 

?∆φ

But, this cannot predict 
the phase shift in orbit

See, however,
Y. Mino, PRD67 (’03) 084027 (                    )

Evaluate self-force from hµν acting on the particle.



§2. Regulazitaion of self-force
For point particle, 
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• self-force (back-reaction) in a curved background:
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~ geodesic eq. on   g(0)+ h singular !



Breakdown of perturbation theory ?

Yes! & No!

• Yes, because a point particle is ill-defined in GR.
Mass is non-renormalizable in GR
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∃• No, because    regular exact solution (BH) in GR.
Mass renormalization is unnecessary
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cf. EM theory: 

point particle exists            mass is renormalizable

: two parameters to tune the limit



Namely, in GR:

Identify the point particle with a BH solution of mass µ

X singular horizon

µνµνµν hgg += )0(

Embed the BH geometry in the linearly perturbed

metric                           : matching at |x-z(τ)|>>Gµ

Matched Asymptotic Expansion



Simplest Example
Considr a point particle in the flat background
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In the rest frame { Xm } of the particle:
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This is just the Newtonian part of the Schwarzschild metric. 

Thus a Schwarzschild black hole of mass µ can be naturally
matched to                            atµνµνµν hgg += )(0 | µG|X >> 

EOM unchanged.  No self-force correction to all orders in Gµ



In General Curved Background:
Hadamard decomposition of
Retarded Green function in harmonic (Lorenz) gauge 
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Matched asymptotic expansion
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• perturbation in 1/ L
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Asymptotic matching to O(Gµ)

Gµ |X|

L20
Gµ
|X|

Gµ

|X|2

L20ηab1

1/L21/L1n
m

linear 
perturbation

external
background

quadrupolar deformation

‘Center of mass’ gauge condition

singular (direct) part
→no effect on EOM

flat part
→background EOM

regular (tail) part 
→ EOM with self-force

BH (=point particle)



Regularized Gravitational Self-force
‘MiSaTaQuWa’ force:   (named by Eric Poisson) 
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Mino, Sasaki and Tanaka (’97), Quinn and Wald (‘99)

Tail part of the metric perturbation
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Detweiler - Whiting’s  S-R decomposition
(improved over “direct-tail” decomposition) PRD 67, 024025 (2003)
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§3  Mode-by-mode regularization
Direct evaluation of R-part is difficult. How can we obtain R-part?
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S-part
・S-part is determined by local expansion near the particle. 

can be expanded in terms of
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Spherical extension of S-part
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over to the whole sphere with accuracy:extend 

・Mode decomposition formula
Barack and Ori (’02), Mino Nakano & Sasaki (’02)

,F A L B C / L Dα α α α α= + + +(S ) where 1
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0== ∑ αα DC for general geodesic orbit



§4  Gauge problem
MiSaTaQuWa Force is defined in harmonic gauge:
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)])([)]([)]([(lim
)(

xhFxhFxhF
zx

GHfull,HS,Gfull, →

→
−−= δααα

τ

Need to find a gauge 
transformation

Solved in a particular (G) gauge
(e.g., RW gauge)
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• introduce a ‘hybrid’ gauge in which  
• define the self-force (            ) in G gauge consistently.

either
S,Hybrid S,Hh h=

R,G~ h



Gauge transformation of the self-force
regularized self-force： µ ( ) ); τµµµν

ν
µ ddzuFuu R == (     

Gauge transformation of regularized metric
R R    x x h h hµ µ µ
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µµµ ξ−= zz   tochangesOrbit 
Gauge-dependence is unimportant for secular orbital evolution,
provided that ξµ stayes small.

⇒ Guaranteed for a ‘contact gauge transformation’
contact gauge transformation：

A gauge transformation that is (quasi-)locally and uniquely 
determined, when harmonic coefficients of hµν are given.
(like Regge-Wheeler gauge)



Force in hybrid gauge
Gauge transformation to a RW type (G) gauge

G H H G H( ) ( )h x h x h→  = + ∇  ξ
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full,G H G S,H S,H H G R,H( ) ( )h x h h x h→ →   = − ∇ − − ∇   ξ ξ

Last (gauge-dependent) term may be neglected 
if it does not grow in time (has no secular effect).

R,Hybrid full,G H G S,H S,H( ) ( ) ( )h x h x h h x→  = − ∇ − ξ

: self-force in hybrid gauge][ HybridR,R  hFα⇒
Potential problem in this approach is that we have 

no control of exact gauge condition



Harmonic to RW gauge by contact gauge transformation

Force in RW gauge (equivalent to hybrid gauge?)
Nakano, Sago & MS, PRD 68 (‘03) 124003
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:provided                             can be calculated
with sufficient accuracy.

H RW S,Hhξ →  ∇  
R R,RW [ ]F hα⇒

However, since hS,H is known only locally,
it seems difficult to get rid of ambiguity from the final result. 

0 1  problem,= Need exact 

numerical attempt by Detweiler & Poisson, gr-qc/0312010

difficult to solve ℓ=1 even parity (dipole) gauge mode
~ defines “Center of Mass” coordinates

…

full,Hhℓ=0,1



・ Kerr case?
Only known gauge in which h can be obtained is radiation gauge

Chrzanowski, PRD11, 2042 (1975)

Problem: Gauge transformation to radiation gauge is 
NOT a contact gauge transformation 

Gauge condition

0rad)out =ν
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 vectornull principal outgoing : ν

 vectornull principal ingoing : νn
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Differential equation (in r and t) for gauge parameters

H Rad   →
µξno guarantee for to remain small

Some progress made by Barack & Ori, PRL 90 (’03) 111101. 



§4  Another decomposition of Green function
Hikida, Jhingan, Nakano, Sago, Sasaki & Tanaka, gr-qc/0308068

http://www2.yukawa.kyoto-u.ac.jp/~misao/BHPC
(Black Hole Perturbation Club)

Need  full-part in time domain to perform subtraction.
Time / frequency domain problem:
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Regge-Wheeler (or Teukolsky) equation
Green function for a master variable
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Systematic method for solving radial functions
Mano, Suzuki and Takasugi, Prog. Theor. Phys. 95, 1079 (1996)

A solution given in a series of Coulomb wave functions

ν: eigenvalue 
(to be determined later)
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Problem reduces to solving 3 terms recursion eqn.



 R-S ~~ decomposition
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:part  -S~

No log ω Post-Newtonian expansion

• only integer powers of z
• only positive integer powers of ω2 

:part  -R~
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• no step function ⇒ homogeneous solution
• finite for finite PN order



S-part in time domain 
～

Since there is no logω, ω –integral is easy

In the case of scalar-charge



part-in  isbehavior singular  All S
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Summary
),,,( ΦΘRζ Harmonic expansion

local expansion
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Regularized force up to n -PN



Result for S-S part 
～

For a scalar charge in a geodesic orbit

….



Conclusion
• Gravitational self-force is given by R-part of metric 

perturbation (EOM = geodesic on g(0)+hR).
• Mode-by-mode regularization seems promising.
• Gauge problem not completely solved yet.

• Extension to Kerr background still at preliminary stage.
• decomposition instead of          decomposition.R-S ~~ R-S

  pr1 oblem=

makes it possible to perform subtraction in time domain
for any orbit at the expence of PN expansion.

Regularized force up to n-PN order
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