White dwarf merger remnants (and fast radio bursts)

Kazumi Kashiyama (U. of Tokyo)

double WD merger remnant

Type la supernova?

Highly magnetized massive white dwarf?

Gvaramadze et al. 19

A pale blue dot in an infra nebula WS35 (= J0053 I I)

The pale blue dot on the HR diagram

Ne enriched C/O dominated wind

Gvaramadze et al. 19

Line width \& height

$$
\begin{aligned}
& \dot{M}=(3.5 \pm 0.6) \times 10^{-6} M_{\odot} \mathrm{yr}^{-1} \\
& v_{\infty}=16,000 \pm 1,000 \mathrm{~km} \mathrm{~s}^{-1}!?
\end{aligned}
$$

A white dwarf merger product with a super-Chandrasekhar mass

Gvaramadze et al. 19

Gvaramadze et al. 19

Photosphere
$=$ base of the wind

$M_{*}>M_{\mathrm{ch}}$

ONe core

Alfvến point

$$
\nabla^{v_{r} \approx v_{\infty}}
$$

$$
r_{\mathrm{A}} \sim 10^{11} \mathrm{~cm}
$$

Our model

The launching mechanism

- $X_{C}=0.2, X_{\mathrm{O}}=0.8, X_{\mathrm{Ne}}=0.1$ (but $X_{\mathrm{Fe}}=1.6 \times 10^{-3}$ similar to the solar abundance)
"Neon novae"

e.g.,

Truran \& Livio 86
Hachisu \& Kato 16

The ONe mantle is dredged up

The launching mechanism

- A similar situation can be realized on the surface of a carbon/oxygen white dwarf merger remnant

Schwab et al. 16
In the merged COWD, C is ignited off-center and the C-burning flame propagates into the interior.

The flame reaches the center in ~ 10 kyr after the merger, neutrino cooling leads to the Kelvin-Helmholtz contraction of the ONe core and a series of offcenter C flashes occur.

The timing is consistent with the nebula age of J0053II!

OPTICALLY THICK WINDS IN NOVA OUTBURSTS

Mariko Kato

Department of Astronomy, Keio University, Hiyoshi, Kouhoku-ku, Yokohama 223, Japan;
mariko@educ.cc.keio.ac.jp
AND

Izumi Hachisu

Department of Earth Science and Astronomy, College of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan; hachisu@kyohou.c.u-tokyo.ac.jp
Received 1994 February 7; accepted 1994 June 28

4 constraint equations

$$
\begin{gathered}
\mathcal{F}_{B}=r^{2} B_{r}=\text { const } \\
\frac{B_{\phi}}{B_{r}}=\frac{v_{\phi}-r \Omega}{v_{r}} \\
\rho v_{r} r^{2}=\frac{\dot{M}}{4 \pi} \\
\mathcal{L}=r v_{\phi}-\left(\frac{r B_{r} B_{\phi}}{4 \pi \rho v_{r}}\right)=\text { const }
\end{gathered}
$$

3 evolution equations

$$
\begin{gathered}
v_{r} \frac{d v_{r}}{d r}+\frac{1}{\rho} \frac{d P_{\mathrm{g}}}{d r}-\frac{\kappa L_{\mathrm{rad}}}{4 \pi r^{2} c}+\frac{G M_{*}}{r^{2}}-\frac{V_{\phi}^{2}}{r}+\frac{B_{\phi}}{4 \pi \rho r} \frac{d}{d r}\left(r B_{\phi}\right)=0 \\
v_{r} \frac{d \varepsilon_{\mathrm{g}}}{d r}+P_{\mathrm{g}} v_{r} \frac{d}{d r}\left(\frac{1}{\rho}\right)=-\frac{1}{4 \pi r^{2} \rho} \frac{d L_{\mathrm{rad}}}{d r} \\
\frac{d T}{d r}=-\frac{\kappa \rho L_{\mathrm{rad}}}{16 \pi a c \lambda T^{3} r^{2}}
\end{gathered}
$$

3 evolution equations

$$
\begin{gathered}
\left(v_{r}^{2}-\frac{k_{\mathrm{B}} T}{\mu m_{\mathrm{u}}}-\frac{A_{\phi}^{2} v_{r}^{2}}{v_{r}^{2}-A_{r}^{2}}\right) \frac{r}{v_{r}} \frac{d v_{r}}{d r}=\frac{\kappa L_{\mathrm{rad}}}{4 \pi r c}+\frac{k_{\mathrm{B}}}{\mu m_{\mathrm{u}}}\left(\frac{d T}{d \log r}+2 T\right)-\frac{G M_{*}}{r}+v_{\phi}^{2}+2 v_{r} v_{\phi} \frac{A_{r} A_{\phi}}{v_{r}^{2}-A_{r}^{2}}, \\
\text { with } \quad A_{r}=\frac{B_{r}}{\sqrt{4 \pi \rho}}, \quad A_{\phi}=\frac{B_{\phi}}{\sqrt{4 \pi \rho}} \\
\frac{d \bar{\varepsilon}}{d r}=\frac{\kappa L_{\mathrm{rad}}}{4 \pi r^{2} c} \\
\text { with } \bar{\varepsilon}=\frac{L_{\mathrm{rad}}}{\dot{M}}+\frac{1}{2}\left(v_{r}^{2}+v_{\phi}^{2}\right)+\frac{5}{2} \frac{k T}{\mu m_{u}}-\frac{G M_{*}}{r}-r \Omega v_{\phi}+\mathcal{L} \Omega \\
\frac{d T}{d r}=-\frac{\kappa \rho L_{\mathrm{rad}}}{16 \pi a c \lambda T^{3} r^{2}}
\end{gathered}
$$

7 variables

$\left(\rho, v_{r}, v_{\phi}, B_{r}, B_{\phi}, T, L_{\mathrm{rad}}\right)$

7 boundary conditions

- Go through the slow point
- Go through the fast point
- $\dot{M} \gtrsim \dot{M}_{\text {obs }}$
- $v_{r}(\infty) \gtrsim v_{\infty, \text { obs }}$
- $T\left(r_{\mathrm{ph}}\right) \sim T_{\text {eff,obs }}$
- $L_{\mathrm{rad}}\left(r_{\mathrm{ph}}\right) \sim L_{\mathrm{rad}, \mathrm{obs}}$
- $L_{\mathrm{n}}\left(R_{*}\right) \approx L_{\mathrm{rad}}\left(R_{*}\right)$
- The $M_{*}-R_{*}$ relation of rotating ONe core

The $M_{*}-R_{*}$ relation of uniformly rotating ONe core

Fujisawa 15

Results

The WD J0053 I I wind : $\mathbf{v}_{\boldsymbol{r}} \& \mathbf{v}_{\varphi}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind: $\mathbf{v}_{\boldsymbol{r}} \& \mathbf{v}_{\varphi}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind: $\mathbf{v}_{\boldsymbol{r}} \& \mathbf{v}_{\varphi}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind: $\mathbf{v}_{\boldsymbol{r}} \& \mathbf{v}_{\varphi}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053 I I wind : $B_{r} \& B_{\varphi}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind : $\rho, T, L_{\text {rad }}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind : $\rho, T, L_{\text {rad }}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\quad \dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind : $\rho, T, L_{\text {rad }}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\quad \dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053 II wind : $\rho, T, L_{\text {rad }}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053 I I wind : How is it accelerated?

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\quad \dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053 I I wind : Allowed parameter region

The observed properties of WD J0053 I I can be explained by the rotating magnetic wind from an ONeWD with $M_{*}=$ I.I-I. $3 M_{\odot}, B_{*}=(2-5) \times 10^{7} \mathrm{G}$, and $\Omega=0.2-0.5 \mathrm{~s}^{-1}$.

Kashiyama, Fujisawa, Shigeyama 19

Discussion

- WD J0053 I I will neither explode as type la supernova nor collapse into neutron star.
- If the wind continues to blow another a few kyr, WD J0053 II will spin down significantly and join to the known sequence of slowly-rotating magnetic WDs.
- Otherwise it may appear as a fast-spinning magnetic WD and could be a new high energy source.
- The photosphere spins with a period of $\sim \min$.

J0053 I I with Tomo－e

トモエゴゼン

Timing analysis of J0053 I I

Appendix

Results

The WD J0053 I I wind : $\mathbf{v}_{\boldsymbol{r}} \& \mathbf{v}_{\varphi}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind: $\mathbf{v}_{\boldsymbol{r}} \& \mathbf{v}_{\varphi}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind: $\mathbf{v}_{\boldsymbol{r}} \& \mathbf{v}_{\varphi}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind: $\mathbf{v}_{\boldsymbol{r}} \& \mathbf{v}_{\varphi}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053 I I wind : $B_{r} \& B_{\varphi}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind : $\rho, T, L_{\text {rad }}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind : $\rho, T, L_{\text {rad }}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\quad \dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053II wind : $\rho, T, L_{\text {rad }}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\quad \dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053 II wind : $\rho, T, L_{\text {rad }}$

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053 I I wind : How is it accelerated?

$M_{*}=1.25 M_{\odot}, R_{*}=3.3 \times 10^{8} \mathrm{~cm}, B_{*}=4.2 \times 10^{7} G, \Omega=0.5 \mathrm{~s}^{-1}$, and $\quad \dot{M}=6 \times 10^{-6} M_{\odot} \mathrm{yr}^{-1}$

The WD J0053 I I wind : Allowed parameter region

The observed properties of WD J0053 I I can be explained by the rotating magnetic wind from an ONeWD with $M_{*}=$ I.I-I. $3 M_{\odot}, B_{*}=(2-5) \times 10^{7} \mathrm{G}$, and $\Omega=0.2-0.5 \mathrm{~s}^{-1}$.

Table 1 | Stellar parameters and surface abundances of J005311

Parameter	Value
$\log \left(L_{*} / L_{\odot}\right)$	4.60 ± 0.14
$T_{*}(\mathrm{~K})$	$211,000_{-23,000}^{+40,000}$
$R_{*}\left(R_{\odot}\right)$	0.15 ± 0.04
$\dot{M}\left(M_{\odot} \mathrm{yr}^{-1}\right)$	$(3.5 \pm 0.6) \times 10^{-6}$
D	10
$V_{\infty}\left(\mathrm{km} \mathrm{s}^{-1}\right)$	$16,000 \pm 1,000$
β	1.0
$d(\mathrm{kpc})$	$3.07_{-0.28}^{+0.34}$
$E(B-V)$ (mag)	0.835 ± 0.035
R	3.1
He mass fraction	<0.1
C mass fraction	0.2 ± 0.1
O mass fraction	0.8 ± 0.1
Ne mass fraction	0.01
Fe group mass fraction	1.6×10^{-3}
The given uncertainties are an indicator of the obtained fit quality as a function of stellar	
parameters, on the basis of the criteria described in Methods. Owing to the nature of this	
analysis they do not represent statistical error distributions. Parameters without error estimates	
were adopted in the model. D, wind clumping factor; β, acceleration parameter; d d distance to	
J005311; $R v$, total-to-selective absorption ratio.	

Q. How can the wind be so fast?

- Radiation pressure?
\rightarrow wind velocity ~ escape velocity @ photosphere $\sim \mathrm{O}(\mathrm{I}, 000) \mathrm{km} \mathrm{s}^{-1}$ for a \sim solar mass obj. $\ll 16,000 \mathrm{~km} \mathrm{~s}^{-1} \ldots$
- Rotating magnetic field?
\rightarrow wind velocity $\uparrow \uparrow$ for a larger B field and a faster spin

Gvaramadze et al. 19

- "... this extremely high velocity can be explained in the framework of rotating magnetic wind models."
- "We find that a co-rotation speed of $16,000 \mathrm{~km} \mathrm{~s}^{-1}$ at the Alfvén point in J0053 I I, where the inertia force starts to dominate over the magnetic forces, requires an Alfvén radius of about 10 stellar radii (about $1.5 R_{\odot}$), which is achieved with a magnetic field strength of about $10^{8} \mathrm{G}$."

???

- If the bulk acceleration occurs beyond the photosphere, a P Cygni profile should be detected, but the emission lines in the observed spectrum lacks blue-shifted absorption components ...
\rightarrow A sub-photospheric acceleration may be required.

???

- If the bulk acceleration occurs beyond the photosphere, a P Cygni profile should be detected, but the emission lines in the observed spectrum lacks blue-shifted absorption components ...
\rightarrow A sub-photospheric acceleration may be required.
- How fast the star rotates?
- How the wind is launched?
- Does it need to have a super-Chandrasekhar mass?

