The Mystery of Fast Radio Bursts

Outline[†]

FRBs: summary of relevant observations

Radiation mechanism and polarization

Kyoto, September 25, 2019

<u>Fast Radio Bursts (FRBs)</u>

Discovered in 2007 – Parkes 64m radio telescope at 1.4 GHz (3° from SMC) $Flux = 30 \pm 10 Jy$ **Duration** (δt) = 5ms (3x10⁻²² erg s⁻¹cm⁻² Hz⁻¹) $\delta t = (4.4 \,\mathrm{ms}) \,\nu_{\mathrm{GHz}}^{-2} \,\mathrm{DM}$ **V**_{EM}(**v**) in plasma increases with **v** $\mathrm{DM} = \int n_e \mathrm{d}l$ Unit: pc cm⁻³ 1.6 Lorimer et al. (2007) $DM = 375 \text{ cm}^{-3} \text{ pc}$ (DM from the Galaxy 25 cm⁻³pc (CHE) high galactic latitude) requency **Estimated distance ~ 500 Mpc** (if DM = 350 from IGM) $\delta t(\lambda) \propto \lambda^{4.4}$ 1.3 (Consistent with pulse broadening due to ISM/ **IGM turbulence**) 300 100 200 400

Time after UT 19:50:01.63 (ms)

~10 years of confusion and then a breakthrough

• 16 more bursts detected (2010) in Parkes archival data by *Bailes & Burke-Spolaor*

These bursts were detected in all 13 beams of the telescope, i.e. most likely terrestrial in origin.

They named these Peryton – after the mythical winged stag

Many people suspected that the Lorimer burst was not cosmological but a Peryton.

• Emily Petroff et al. (2015) established the origin of Perytons (microwave oven!). And concluded that the Lorimer burst was not a Peryton.

Arecibo detects a burst in 2012; repeat activity found in 2015 (Spitler et al. 2016), which established that these events were not catastrophic. Accurate localization ...

FRB 121102: the "old repeater" (>10² in 4 yrs)

(Spitler et al. 2016; Chatterjee et al. 2016; not a catastrophic event; VLBI – 7 milli-arcsec)

~17

 $DM = 558.1 \pm 3.3 \text{ pc cm}^{-3}$ (same for all bursts)

Z=0.19 (3.2x10⁹ light years) No optical/X-ray counter-part

 $L_{iso} = 10^{41} - 3x10^{43} \text{ erg s}^{-1}$

log E [erg]

9~10

Duration, $\delta t \sim (1, 10)$ ms (no broadening)

~14

log v [Hz]

Petroff et al. (2015, 2017) report finding no counterpart to FRB 140514 & 150215 (t < 1d) in radio-optical-Xray follow up observations thereby ruling out SNa or GRB association.

Properties of FRBs (summary)

- Duration: $1 \text{ ms} \leq t_{frb} \leq 20 \text{ ms} \implies \text{NS or BH}$ (0.4 8 GHz) Flux variation time < 10 µs \implies source size < 10⁵ Γ cm (compact source)
- $10^2 < DM \le 10^3 \text{ pc cm}^{-3}$ $[0.2 < z < 3] 10^{40} \text{ erg s}^{-1} < L_{iso} < 10^{44} \text{ erg s}^{-1}$
- >300 FRBs observed; 11 repeaters; 121102 is 100% linearly polarized.
 <u>Birth Rate</u>
 - non-repeating: rate ~ 10⁴ d⁻¹ (>1 Jy ms) (~10% cc-SNe; 10² x bNS); beam? Kulkarni et al. 2015: "This high rate allows us to eliminate all forms of catastrophic stellar death as a progenitor"
 - **Repeating:** progenitor birth rate $\leq 10^{-3}$ core-collapse SNe
- Energetics:

The total energy release by the repeater – FRB 121102 – in 6 yrs $\sim 2x10^{43} \text{ erg} \implies \text{magnetic field strength} \geq 10^{13} \text{ G}$ (for NS)

Models for FRBs

Galactic flaring stars Giant pulses from NS Magnetar flares **Collapsing NSs** Mergers (WDs, NSs) **AGN** flare interaction with NS Asteroids colliding with NSs **Extra-terrestrial intellegent life communication** (50 more models)

If FRBs are from catastrophic events then where does most of the 10⁵¹ erg energy go?

Overview of the FRB model I will describe

- NS with strong magnetic field (> 10¹⁴ G)
- Surface activity launches high luminosity Alfven waves (youngish neutron star)
- Alfven waves become charge starved at a few R_{NS} and produce coherent curvature radiation (GHz pulse from FRBs).

Radiation Mechanism

Brightness temperature

Black body Flux: $F_{\nu} = \frac{2k_B T_B \nu^2}{c^2} \left[\frac{R_s}{d_A}\right]^2$ for $h\nu \ll k_B T_B$ $T_B = \frac{F_{\nu} d_A^2 c^2}{2(c\delta t)^2 \nu^2 k_B} > 10^{35} \mathrm{k} \ d_{A28}^2$

Number of photons in each quantum state:

 $L \propto N^2$

coherent emission:

Ē(x, t)

Maser:

Synchrotron, curvature, etc. negative absorption

 $\frac{k_B T_B}{h v} \approx 10^{36}$

Collective plasma emission:

Cherenkov, cyclotron-Cherenkov etc. **Beam instability, wave amplification**

 $L \propto N$

Antenna mechanism:

Coherent curvature radiation by charge bunches of size $< \lambda$

<u>General constraints</u>

Electric field associated with FRB radiation

 $L = c E^{2} R^{2} \implies E = 2x10^{3} esu L_{43}^{1/2}/R_{13}$ ~ 10⁶ volts/cm (at a distance of ~ 1 AU) EM wave Non-linearity parameter: $a = \frac{q E}{m_{e} c \omega} \approx 3$

Electrons exposed to FRB radiation are accelerated to Lorentz factor $2a^2 > 10$ for $R < 10^{13}$ cm.

This raises questions about confinement of the plasma in the source region.

But the problem gets worse...

Large radiation force due to induced Compton Scattering

 σ_{T}

Large radiation force due to induced Compton Scattering

·····

Scattering probability is enhanced by the "occupation number" of the final state (n_{ν})

For FRB radiation, $n_{\gamma} = \frac{k_B T_B}{h v} \approx 10^{36}$

Because of cancellations, the effective cross-section is not enhanced by the factor n_{γ} ; the effective enhancement factor is ~ 10⁹ at R = 10¹³ cm (declines with distance as R⁻³).

Even a low density medium that is highly transparent to Thomson scattering can be opaque to FRB coherent radiation. Particles at a distance from the source $< 10^{14}$ cm are accelerated to LF >> 1 due to induced-Compton scatterings (if the medium is transparent).

Large radiation force due to induced Compton Scattering

Scattering probability is enhanced by the "occupation number" of the final state (n_v)

For FRB radiation, $n_{\gamma} = \frac{k_B T_B}{h v} \approx 10^{37}$

Plasma in the source region needs to be confined so that the enormous radiation pressure does not shut down the radiation process.

 $R \lesssim 10^7 \, cm$

magnetic field is very strong and suppresses x-mode photon scatterings by a factor $(\omega_B/\omega)^2$.

 $ω_B = 10^{18} B_{12}$ Hz is cyclotron frequency and, and ω is FRB photon frequency

Photon beam size is small and scattering is not a problem. $t_{FRB} \sim R/(2c\Gamma^2) \sim 1 \text{ ms } \rightarrow \Gamma > 10^3$ $E_{jet} > 10^{47} \text{ erg for } \Gamma > 10^3$ $\& E_{jet} \propto R^2 \propto L_{FRB}$

Constraints on FRB source and radiation mechanism

1. Compact source of size $\sim 10^5 \Gamma$ cm; Γ is the LF of the source

2. Energy for FRBs is produced within ~10 R_{NS} (not enough energy at larger radius)</sub>

3. Plasma should be able to withstand the radiation pressure due to induced-Compton:

 \implies source distance from NS < 10⁷ or >10¹³ cm.

<u>Let us consider radiation production at distance >10¹³ cm</u>

FRB radiation source within a few 10s of neutron star radius

One model that satisfies these constraints is the coherent curvature radiation model that operates not too far from the NS surface.

Coherent curvature radiation

(Antenna mechanism)

Particle <u>clumps</u> of ~ cm size (in longitudinal direction) moving along curved magnetic field

Frequency of radiation:

 $\lambda/2$

$$\nu = \frac{c\gamma^3}{2\pi R_B} -$$

FRB luminosity:

I(r, t)

 $\gamma = 270 \, \nu_9^{1/3} R_{B,8}^{1/3}$

 $\leftarrow 10 \text{ m} \longrightarrow$

B₀

R_B : curvature radius of field lines

 $\begin{array}{c} \gamma \text{: Lorentz factor} \\ \text{of particles} \end{array}$

$$L \approx \frac{8\pi^2 c^5 q^2 n_e^2 \gamma^6}{3\nu^4} \longrightarrow n_e \sim 10^{14} \,\mathrm{cm}^{-3} L_{43}^{1/2} R_{B,8}^{-1}$$

This "induced" field is perpendicular to the original field

Lower limit on B₀

The "induced" field will tilt the original magnetic field by different angles at different locations (because the "induced" field lines are closed loops in planes perpendicular to \vec{B}_0)

> This will cause the particle velocities to be no longer parallel and that will destroy coherent radiation, unless

> > $B_0 > 10^{14} G$

B₀

This suggests that we are dealing with a magnetar

Particle acceleration

• The radiative cooling time of electrons is very short:

$$t_c = \frac{m_e c^2 \gamma \left(n_e \ell^2 \lambda\right)}{L_{lab}} \approx 10^{-15} \mathrm{s}$$

This time is much smaller than the wave period (1 ns for 1 GHz radiation)

• To prevent this rapid loss of energy, we need an electric field that is parallel to \vec{B}_0 to keep the particles moving with Lorentz factor γ .

The required electric field: $E_{\parallel} \sim 10^{10} \text{esu} L_{43}^{1/2} R_{B,s}^{-1}$

Alfven waves

Alfven waves

Alfven waves

Electric field generation

At a distance, R_c, from the NS:

And for $R > R_c$ particle density is insufficient to carry the current required by the Alfven wave packet.

Strong electric field develops at R > R_c

[The displacement current ($\partial \mathbf{E} / \partial \mathbf{t}$) compensates for the insufficient plasma current] Formation of particle clumps Inside charge starvation radius

Outside charge starvation radius Strong electric field, particle acceleration and curvature radiation

Energetics

• The total energy release in one burst is modest:

 $E = L \,\delta t / (4\gamma^2) \sim 10^{36} \,\mathrm{erg}$

- Whereas the total energy in the magnetic field is $\sim 10^{45}$ erg
- So there is no problem powering a large number of bursts.

The total number of electrons/positrons needed for producing a FRB radiation is $\sim 10^{30}$.

So about one kilogram of matter is producing the radiation we see at a redshift ~ 1.

Overview of the FRB model

- NS with strong magnetic field (> 10¹⁴ G)
- Surface activity launches high luminosity Alfven waves (youngish neutron star)
- Alfven waves become charge starved at a few R_{NS} and produce coherent curvature radiation (GHz pulse from FRBs).

Outbursts are in the polar region along open field lines:

 $\theta_{pc} \sim (R_{ns} \, \Omega_{ns} / c)^{1/2} \sim 2x 10^{-2} \, P_{ns}^{-1/2} \, rad$

. The probability of seeing outbursts from a young magnetar is ~ 10⁻⁴.

Predictions of the model

We should see FRB like bursts at higher frequencies (mm and possibly higher) – if the model I have described is correct.

The reason for this is that the peak frequency for curvature radiation depends strongly on γ :

 $u = \frac{c\gamma^3}{2\pi\rho} \quad \text{and} \quad \gamma \propto E_{\parallel}^{1/2}$ $L \sim E_{\parallel}^2 \rho^2 c \propto \nu^{-2/3}. \quad \text{Event rate} \quad \propto \nu^{-2/3}$

Maximum FRB Luminosity ~ 10⁴⁷ erg s⁻¹

As the electric field approaches the *Schwinger limit* – $4x10^{13}$ esu – e^{\pm} are pulled from vacuum, and the cascade shorts the electric field needed for accelerating particles for coherent radiation.

Polarization Properties of the FRB Repeater

• Polarization has been measured for about 25 outbursts of the repeater (FRB 121102), in 4-8 GHz, during a seven month period (Michilli et al. 2018; Gajjar et al. 2018):

All these outbursts were 100% linearly polarized The polarization angle varied by $\pm 20^{\circ}$ from one burst to another over the 7 month period.

The rotation measure was ~10⁵ rad m⁻² and varied by 10%

• Polarization has also been reported for several non-repeaters at 1.4 GHz and found to be between 0 and 80% linearly polarized – the less than 100% polarization could be due to Faraday depolarization in finite channel width (0.4 MHz). What is responsible for 100% polarization and nearly fixed direction for the electric field over a period of 7 months?

The answer is strong magnetic field such that the cyclotron frequency is >> GHz, and plasma frequency > a few GHz.

The mode that escapes to infinity is the X-mode: \vec{E}_w perpendicular to \vec{k} and \vec{B}_0

As the wave travels outward it keeps the electric field $\| \vec{k} \times \vec{B}_0 \|$

The electric field direction is $\| \vec{k} \times \vec{B}_0$ at the freeze-out radius.

If the freeze out radius is >> R_{NS} then $\vec{k} \parallel \vec{r}$ and

 $\vec{\mathbf{E}} \parallel \vec{\mathbf{k}} \times \vec{\mathbf{B}}_0 \parallel \vec{\mathbf{k}} \times \vec{\mathbf{m}}$

So, photons are polarized perpendicular to the magnetic axis (projected in the sky plane).

The direction of \vec{E} changes from one burst to another if the magnetic & rotation (Ω) axes are miss-aligned.

Collective Plasma Emission

B-field constraint: $r \lesssim (3 \times 10^7 \text{ cm}) B_{*,14}^{1/2} L_{\text{iso},43}^{1/4}$ $B \gtrsim (2 \times 10^9 \text{ cm})$ Particles are in the lowest Landau level and have: Waistribution function Consider a plasma moving towards the observe $\Gamma^2 \gamma' n' m_{\rm e} c^3 > L_{\rm iso}/(4\pi r^2)$ $\omega' = \omega/2\Gamma \simeq 3 \times 10^7 \,\mathrm{s}^{-1} \,\nu_9 \Gamma_2^{-1}$ $\omega'_{\rm B} = \omega_{\rm B} \simeq 2 \times 10^{17} \,\mathrm{s}^{-1} \,B_{10}$ * Another beam runs through his plasma \rightarrow instabilities where $Im(\omega)>0$ • Two-stream instruction impossible to grow at $\omega' \ll \omega'_p$ Cyclotron-Charkov (anomalous Doppler) instability: curvature $\omega' - \beta'_{\rm b} \sqrt{-10^{12} \omega_{\rm B}'/\gamma_{\rm b}'} = 0 \qquad \gamma_{\rm b} \simeq 2\Gamma \gamma_{\rm b}' \gg 2\Gamma \omega_{\rm B}'/\omega' \simeq 10^{12} B_{10} \nu_9^{-1} \Gamma_2^2$ cooling here to instability: $\omega' - \beta'_{
m b}k'_{
m H} = 0$ growth rate too low at $\omega' \ll \omega'_p$

Summary

- **FR**Bs are from extra-galactic NSs with magnetic field > 10¹⁴ G.
- The physical constraints I have described are likely to guide our ultimate understanding of FRBs.

Alfven waves launched from NS surface become charge starved at some radius. e^{\pm} are accelerated in this process and produce curvature radiation.

- The model predicts FRB like bursts (ms duration) at larger frequencies with L $\propto \nu^{-2/3}$, at a decreasing rate (v^{-2/3}).
- Polarization properties of the repeater (FRB 121102) are consistent with the coherent curvature model.