Two-solar-mass hybrid stars

a two model description with the Nambu-Jona-Lasinio quark model

Renan Câmara Pereira

in collaboration with: Pedro Costa & Constança Providência Centre for Physics of the University of Coimbra

YITP long-term workshop "Multi-Messenger Astrophysics in the Gravitational Wave Era"

September 26, 2019

1/20

Introduction

It is an exciting era to study neutron stars:

- The Equation of State (EoS) of dense cold nuclear matter is still unknown from first principles calculations;
- The discovery of Gravitational Waves opened the window for new experimental constraints;

Due to its large central densities, the core of a neutron star may be composed by pure quark matter.

Do massive neutron stars have a core composed by quark matter?

The QCD phase diagram

The QCD phase diagram

The different manifestations of QCD matter can be displayed in a $T - \mu_B$ phase diagram.

Neutron stars populate a very interesting regime in the **QCD** phase diagram.

Renan Câmara Pereira (CFisUC)

Two-solar-mass Hybrid Stars

In these conditions, to study QCD, we are limited in options: or

Lattice QCD

- first principle calculations;
- currently only works on the finite temperature and zero/low density region due to the so called sign problem;

• Dyson–Schwinger equations

- truncation required;

Effective models

- incorporate the most important features of QCD at a certain energy scale;
- work on the entire range of the phase diagram;
- coupling parameters need to be fixed to experimental data or first principle calculations;

< ロ > < 同 > < 回 > < 回 > < 回 > <

In this work, to study the possibility of a quark core, we make a two-model approach to the description of the **EoS** of compact stars with two independent models.

- The hadronic phase will be described by the NL3 $\omega \rho$ model;
- The quark phase by the 3 flavour Nambu–Jona-Lasinio model;

Following previous studies, to favour the appearance of quark matter in the core of neutron stars, we will consider:

- A low vacuum constituent quark mass;
- Different types of vector interactions, known to stiffen the **EoS**;
- That the deconfinement transition coincides with the partial restoration of chiral symmetry;

A phenomenological Bag constant will be used to make the transition between the hadronic and quark models coincide with the chiral symmetry restoration of the quark model, [Pagliara and Schaffner-Bielich, 2008].

 B^* is fixed in such a way that: deconfinement phase transition and the chiral transition, coincide through:

$$\begin{split} P_{eff} &= P^{\text{ quarks}} + B^*, \\ \epsilon_{eff} &= \epsilon^{\text{ quarks}} - B^*. \end{split}$$

To build the hybrid **EoS** we use the Maxwell construction:

$$\begin{split} \mu^{H}_{B} &= \mu^{Q}_{B} & \text{chemical equilibrium,} \\ p^{H}_{B} &= p^{Q}_{B} & \text{mechanical equilibrium,} \\ T^{H}_{B} &= T^{Q}_{B} & \text{thermal equilibrium.} \end{split}$$

Renan Câmara Pereira (CFisUC)

The hadronic model

The NL3 $\omega \rho$ model Lagrangian density is given by:

$$\begin{aligned} \mathscr{L}^{\mathsf{NL}3\omega\rho} &= \overline{\psi}_{\mathsf{N}} \left[\gamma^{\mu} \left(i\partial_{\mu} - g_{\omega}\omega_{\mu} - \frac{1}{2}g_{\rho}\boldsymbol{\tau} \cdot \boldsymbol{\rho}_{\mu} \right) - (m - g_{\sigma}\sigma) \right] \psi_{\mathsf{N}} \\ &+ \frac{1}{2} \partial^{\mu}\sigma \partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{3}bm(g_{\sigma}\sigma)^{3} - \frac{1}{4}c(g_{\sigma}\sigma)^{4} \\ &+ \frac{1}{2}m_{\omega}^{2}\omega^{\mu}\omega_{\mu} - \frac{1}{4}\omega_{\mu\nu}\omega^{\mu\nu} + \frac{1}{4!}\xi g_{\omega}^{4}(\omega_{\mu}\omega^{\mu})^{2} \\ &- \frac{1}{4}\boldsymbol{\rho}^{\mu\nu} \cdot \boldsymbol{\rho}_{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\boldsymbol{\rho}^{\mu} \cdot \boldsymbol{\rho}_{\mu} \\ &+ \Lambda_{\omega} \left(g_{\omega}^{2}\omega_{\mu}\omega^{\mu} \right) \left(g_{\rho}^{2}\boldsymbol{\rho}_{\mu} \cdot \boldsymbol{\rho}^{\mu} \right). \end{aligned}$$

This model satisfies constraints imposed by observation ($M_{\text{max}} > 2M_{\odot}$), CET (chiral effective field theory), and nuclear properties, [Fortin et al., 2016].

Renan Câmara Pereira (CFisUC)

The quark model

The general Lagrangian density of the NJL model for N_f flavours of quarks interacting through a local scalar and pseudoscalar four point interaction, is given by:

$$\mathscr{L}^{\mathsf{NJL}} = \overline{\psi} \left(i \partial \!\!\!/ - \hat{m} + \hat{\mu} \gamma^0 \right) \psi + \mathcal{G}_{\mathcal{S}} \sum_{a=0}^{N_t^2 - 1} \left[\left(\overline{\psi} \Gamma^a \psi \right)^2 + \left(\overline{\psi} i \gamma_5 \Gamma^a \psi \right)^2 \right] + \mathscr{L}^{det} - \mathscr{L}^{vec}.$$

We consider a 3-momentum cut off as a regularization scheme.

 \mathscr{L}^{det} explicitly break the $U_A(1)$ symmetry:

$$\mathscr{L}^{det} = \mathit{G}_{D}\left(\det_{f}\left[\overline{\psi}\left(1+\gamma_{5}
ight)\psi
ight] + \det_{f}\left[\overline{\psi}\left(1-\gamma_{5}
ight)\psi
ight]
ight).$$

 \mathscr{L}^{vec} is a vector interaction:

$$\mathscr{L}^{\rm vec} = G_{\rm vec} \sum_{a=0}^{N_{\rm f}^2-1} \left[(\overline{\psi} \gamma^{\mu} \Gamma^a \psi)^2 + (\overline{\psi} \gamma^{\mu} \gamma_5 \Gamma^a \psi)^2 \right].$$

The operators Γ^a , are N_f^2 matrix operators that form a $U(N_f)$ algebra.

Renan Câmara Pereira (CFisUC)

Two-solar-mass Hybrid Stars

We will consider 3 types of vector interactions

$$\begin{split} \mathsf{NJL}(\mathsf{V}+\mathsf{P}+\mathsf{VI}+\mathsf{PI}): \ \mathscr{L}_{\mathsf{I}}^{\mathsf{vec}} &= \mathsf{G}_{\omega}\left[(\overline{\psi}\gamma^{\mu}\mathsf{\Gamma}^{0}\psi)^{2} + (\overline{\psi}\gamma^{\mu}\gamma_{5}\mathsf{\Gamma}^{0}\psi)^{2}\right] \\ &+ \mathsf{G}_{\rho}\sum_{a=1}^{\mathsf{N}_{\rho}^{2}-1}\left[(\overline{\psi}\gamma^{\mu}\mathsf{\Gamma}^{a}\psi)^{2} + (\overline{\psi}\gamma^{\mu}\gamma_{5}\mathsf{\Gamma}^{a}\psi)^{2}\right], \end{split}$$

$$\mathsf{NJL}(\mathsf{V}+\mathsf{P}): \ \mathscr{L}_{II}^{vec} = \mathcal{G}_{\omega}\left[(\overline{\psi}\gamma^{\mu}\Gamma^{0}\psi)^{2} + (\overline{\psi}\gamma^{\mu}\gamma_{5}\Gamma^{0}\psi)^{2}\right],$$

$$\mathsf{NJL}(\mathsf{VI}+\mathsf{PI}): \ \mathscr{L}_{III}^{\mathsf{vec}} = \mathcal{G}_{\rho} \sum_{a=1}^{N_{f}^{2}-1} \left[(\overline{\psi}\gamma^{\mu}\Gamma^{a}\psi)^{2} + (\overline{\psi}\gamma^{\mu}\gamma_{5}\Gamma^{a}\psi)^{2} \right].$$

Renan Câmara Pereira (CFisUC)

September 26, 2019 10 / 20

3

イロト イヨト イヨト イヨト

Neutron star matter

Neutron star matter

To study matter inside neutron stars, we impose:

- Zero electrical charge density, $\rho_Q = 0$;
- β-equilibrium (the neutron decay and electron capture happens at the same rate);
- Neutrinos escape because they interact very poorly with the rest of matter;
- We use the T = 0 limit of the **EoS**;

Due to β -equilibrium, a free gas of electrons must be added to the pressure.

イロト イポト イヨト イヨト 二日

To calculate the mass-radius and mass-central density diagrams we use the Tolman-Oppenheimer-Volkoff equations (TOV) for static and spherically symmetric stars:

$$\begin{aligned} \frac{dP(r)}{dr} &= -\frac{G}{r^2} \left[\rho(r) + \frac{P(r)}{c^2} \right] \left[M(r) + 4\pi r^3 \frac{P(r)}{c^2} \right] \left[1 - \frac{2GM(r)}{c^2 r} \right]^{-1}, \\ M(r) &= 4\pi \int_0^r dr' \ r'^2 \epsilon \left(r' \right). \end{aligned}$$

The tidal deformability can be calculated solving:

$$\begin{aligned} \frac{\mathrm{d}^2 H(r)}{\mathrm{d}r^2} + &\left\{\frac{2}{r} + \left[\frac{2M(r)}{4\pi r^2} + r(P(r) - \epsilon(r))\right] \frac{4\pi}{1 - \frac{2M(r)}{r}}\right\} \frac{\mathrm{d}H(r)}{\mathrm{d}r} \\ &+ \left\{\left[5\epsilon(r) + 9P(r) + (P(r) + \epsilon(r))\frac{\mathrm{d}\epsilon}{\mathrm{d}P} - \frac{3}{2\pi r^2}\right] \frac{4\pi}{1 - \frac{2M(r)}{r}}\right\} H(r) \\ &- 4\left\{\frac{\frac{\mathrm{d}P(r)}{\mathrm{d}r}}{P(r) + \epsilon(r)}\right\}^2 H(r) = 0. \end{aligned}$$

The initial conditions for the differential equations are: P(r = R) = 0, M(r = 0) = 0 and H'(r = 0) = H(r = 0) = 0.

12 / 20

イロト 不得 トイヨト イヨト

Results

We use a parameter set in which the quark constituent mass in the vacuum, is approximately one third of the baryonic mass of the nucleon.

Parameter set	Λ [MeV]	$m_{u,d}$ [MeV]	m _s [MeV]	$G_S \Lambda^2$	$G_D \Lambda^5$	M _{u,d} [MeV]	M _s [MeV]
$SU_f(3)-I$	630.0	5.5	135.7	1.781	9.29	312	508

Table: A is the model cut-off, $m_{u,d}$ and m_s are the quark current masses, G_S and G_D are coupling constants. $M_{u,d,s}$ are the quark constituent masses in the vacuum.

We have considered the BPS **EoS** for the outer crust [Baym, Pethick, and Sutherland, 1971] and the inner crust was calculated within a Thomas-Fermi calculation of the pasta phases.

Equations of state

Table: **EoS** as a function of the baryonic density (ρ_B), with $B^* \neq 0$ and $B^* = 0$ for different values of $\xi = G_V/G_S$.

- The inclusion of a $B^* \neq 0$ makes the transition form the hadronic **EoS** to the quark **EoS** occur earlier;
- Increase G_V makes the EoS harder in models with vector-isoscalar interaction (NJL(V+P));

Renan Câmara Pereira (CFisUC)

Two-solar-mass Hybrid Stars

September 26, 2019 14 / 20

M-R relations

Table: mass-radius and mass-central density diagrams with $B^* \neq 0$ and $B^* = 0$ for different values of $\xi = G_V/G_S$.

- Stars with a pure quark core are predicted both with B^{*} ≠ 0 and if B^{*} = 0, except in some cases if ξ = G_V/G_S = 0.75 is too large;
- The vector-isovector interaction (NJL(VI+PI)) has a much smaller effect than the vector-isoscalar (NJL(V+P)) interaction;

< ロ > < 同 > < 回 > < 回 >

Quark fractions

Table: Fractions of each flavour of quark (Y_i) in function of the baryonic density (ρ_B). The central density (ρ_c , full line) and initial quark phase density (ρ_c , dashed line) are shown.

- The different interactions influence the chemical constitution of the quark phase, e.g. the strangeness content;
- As soon as the *strange* quark appear, the *down* quark suffers a strong reduction;
- The onset of *strangeness* in the NJL(V+P) model is G_V independent;

→ < ∃ →</p>

< □ > < A >

Results

Tidal deformability

Tidal deformability

Table: Tidal deformability with $B^* \neq 0$ and $B^* = 0$ for different values of $\xi = G_V/G_S$. The constrain for $\Lambda(1.4)$ represents a 90% confidence interval from [Abbott, 2018].

- Some models with quark core are not ruled out by the tidal deformability constraint;
- The tidal deformability for 1.4 M_{sun} is very constrained by the hadronic model;

Renan Câmara Pereira (CFisUC)

Two-solar-mass Hybrid Stars

September 26, 2019 17 / 20

Conclusions

How to fix the parameters of the NJL EoS for neutron star quark matter?

- Large versus low vacuum quark constituent mass: a low mass is necessary for a quark core;
- Using a bag constant to coincide the hadron-quark transition and restoration of chiral symmetry favours a quark core;
- Vector-isoscalar interaction: larger masses are attained;
- Vector-isovector interaction: larger strangeness fractions and larger radii;

Renan Câmara Pereira (CFisUC)

4 1 1 1 4 1 1 1

Further Work

- Due to the tidal deformability constraint, different nuclear models for the hadronic part of the hybrid **EoS** should be considered;
- Consider different quark models like the Quark-Meson model;
- Improve the quark model description by going beyond the usual mean field approximation and include quantum fluctuations (e.g. using the Functional Renormalization Group)

Thank you for your attention!

This work is funded by National funds through FCT-IDPASC Portugal Ph.D. program under the grant PD/BD/128234/2016 and the project UID/FIS/-04564/2016.

I would like to thank the COST Action CA16214, "PHAROS: The multimessenger physics and astrophysics of neutron stars" for providing an ITC conference grant to aid my participation in this conference.

References

- G. Pagliara and J. Schaffner-Bielich. "Stability of CFL cores in Hybrid Stars." In: *Phys. Rev.* D77 (2008), p. 063004. DOI: 10.1103/PhysRevD.77.063004. arXiv: 0711.1119 [astro-ph].
- M. Fortin et al. "Neutron star radii and crusts: uncertainties and unified equations of state." In: (2016). arXiv: 1604.01944 [astro-ph.SR].
 - Gordon Baym, Christopher Pethick, and Peter Sutherland. "The Ground state of matter at high densities: Equation of state and stellar models." In: *Astrophys. J.* 170 (1971), pp. 299–317. DOI: 10.1086/151216.
 - B. P. Abbott et al. "GW170817: Measurements of neutron star radii and equation of state." In: *Phys. Rev. Lett.* 121.16 (2018), p. 161101. DOI: 10.1103/PhysRevLett. 121.161101. arXiv: 1805.11581 [gr-qc].

Thermodynamics

After calculating Ω (the grand canonical potential), several thermodynamic quantities of interest, can be derived:

$$P(T,\mu) - P_0 = -\Omega(T,\mu),$$

$$\rho_i(T,\mu) = -\left(\frac{\partial\Omega(T,\mu)}{\partial\mu_i}\right)_T,$$

$$s(T,\mu) = -\left(\frac{\partial\Omega(T,\mu)}{\partial T}\right)_\mu,$$

$$\epsilon(T,\mu) = -P(T,\mu) + Ts(T,\mu) + \sum_i \mu_i \rho_i(T,\mu).$$

The constants P_0 and ϵ_0 are the pressure and energy density in the vacuum, respectively.

1 E N 1 E N

NL3 $\omega \rho$ model properties

This model has the following saturation properties [Fortin et al., 2016]:

saturation density: $ho_0 = 0.148 {
m fm}^{-3}$ binding energy: $E/A = -16.30 {
m MeV}$ incompressibility: $K = 271.76 {
m MeV}$ symmetry energy: $J = 31.7 {
m MeV}$ symmetry energy slope: $L = 55.5 {
m MeV}$ effective mass: $M^*/M = 0.60$;

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$SU(3)_f$ NJL model (MFA)

Using the mean field approximation, the following grand canonical potential for the $SU_f(3)$ NJL model is found:

$$\begin{split} \Omega_{\mathsf{MFA}} &- \Omega_0 = 2G_S \left(\sigma_u^2 + \sigma_d^2 + \sigma_s^2 \right) - 4G_D \sigma_u \sigma_d \sigma_s \\ &- \frac{2}{3} G_\omega \left(\rho_u + \rho_d + \rho_s \right)^2 - G_\rho \left(\rho_u - \rho_d \right)^2 - \frac{1}{3} G_\rho \left(\rho_u + \rho_d - 2\rho_s \right)^2 \\ &- 2T \; N_c \sum_{f=u,d,s} \int \frac{d^3 p}{(2\pi)^3} \left[\beta E_f + \ln \left(1 + e^{-\beta (E_f + \tilde{\mu}_f)} \right) + \ln \left(1 + e^{-\beta (E_f - \tilde{\mu}_f)} \right) \right] \end{split}$$

The effective chemical potential for each flavour of quark is:

$$\begin{split} \tilde{\mu}_{u} &= \mu_{u} - \frac{4}{3} \left(G_{\omega} + 2G_{\rho} \right) \rho_{u} - \frac{4}{3} \left(G_{\omega} - G_{\rho} \right) \rho_{d} - \frac{4}{3} \left(G_{\omega} - G_{\rho} \right) \rho_{s}, \\ \tilde{\mu}_{d} &= \mu_{d} - \frac{4}{3} \left(G_{\omega} + 2G_{\rho} \right) \rho_{d} - \frac{4}{3} \left(G_{\omega} - G_{\rho} \right) \rho_{s} - \frac{4}{3} \left(G_{\omega} - G_{\rho} \right) \rho_{u}, \\ \tilde{\mu}_{s} &= \mu_{s} - \frac{4}{3} \left(G_{\omega} + 2G_{\rho} \right) \rho_{s} - \frac{4}{3} \left(G_{\omega} - G_{\rho} \right) \rho_{u} - \frac{4}{3} \left(G_{\omega} - G_{\rho} \right) \rho_{d}. \end{split}$$

Renan Câmara Pereira (CFisUC)

э

20 / 20

The values of condensates σ_u , σ_d and σ_s are determined by minimizing the grand canonical potential:

$$\frac{\partial \Omega_{\mathsf{MFA}}}{\partial \sigma_{u}} = \frac{\partial \Omega_{\mathsf{MFA}}}{\partial \sigma_{d}} = \frac{\partial \Omega_{\mathsf{MFA}}}{\partial \sigma_{s}} = 0.$$

The *gap* equations for three flavours are :

$$M_i = m_i - 4G_S\sigma_i + 2G_D\sigma_j\sigma_k \quad i \neq j \neq k \in \{u, d, s\},$$

here the quark condensate for each flavour is given by:

$$\sigma_i = \left\langle \overline{\psi}_i \psi_i \middle| \overline{\psi}_i \psi_i \right\rangle = -2N_c \int \frac{d^3p}{(2\pi)^3} \frac{M_i}{E_i} \left(1 - n_i - \overline{n}_i\right)$$

Renan Câmara Pereira (CFisUC)

20 / 20