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NS Core EoS

What people hope to do:

Nuclear Theory + Experiment → NS EoS

NS EoS + TOV Eqs → NS properties

NS properties can be related to observable,

Mass −−−−−−−−− Shapiro Delay + · · ·
Radius −−−−−−−−− X-ray binary + · · ·

Moment of inertia −−−−−−−−− Binary procession + · · ·
Binding energy −−−−−−−−− CC SNe neutrinos + · · ·

Tidal deformability −−−−−−−−− GW waveform + · · ·
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NS Core EoS

What I am doing:

EOS Parameterizations + Experiment → NS EoS

NS EoS + TOV Eqs → NS properties

NS properties can be related to observable,

Mass −−−−−−−−− Shapiro Delay + · · ·
Radius −−−−−−−−− X-ray binary + · · ·

Moment of inertia −−−−−−−−− Binary procession + · · ·
Binding energy −−−−−−−−− CC SNe neutrinos + · · ·

Tidal deformability −−−−−−−−− GW waveform + · · ·
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Parameterizations of NS Core EoS

Pros:

Independent of the effective theory.

Allow wider range of EoS(more variability)

Fewer parameters by removing unnecessary parameters.

Great for prior in analysing neutron star observations.

Cons:

Dependent on parameterizations.
Solution: Use as many parameterizations as possible.

Cannot relate to experiment directly.
Solution: Using only bulk nuclear matter constrains come from
experiment and theory.
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Example

—————————————–
——–
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Parameterizations of NS Core EoS

Pure neutron matter expansion (PNM-sat): Express energy per
baryon in series of n−ns

3ns
.

Pure neutron matter expansion (PNM-tews): Express energy per

baryon in series of ( n
ns

)
1
3 . (Tews 2016)

Piecewise polytropic EoS in three fixed segments (PP3): Use three
adiabatic index Γ1,2,3 = d logp

d logn , in three density segments. (Read 2008)

Piecewise polytropic EoS in three unfixed segments (PP3+1): Add
one parameter for PP3 to make boundary of three segments flexible.

Spectral decomposition (Spectral4): Express log(Γ) in series of
log(pressure). (Lindblom 2010)

Quarkyonic EoS (Quarkyonic): Add smooth transition from hadronic
EoS to free quark gas for high density. Can be stiff at outer core and
soft (c2

s → 1
3 ) at inner core. (McLerran 2018, Capano 2019)
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Constrains on EoS

Universal constrain:

Stability: Pressure is a non decreasing function of energy density.

Causality: Sound speed should be less than light speed.

Maximum mass of NS should reach at least ≈ 2 M�.

Unitary gas constrain(Tews et al. 2016) is E (u) > EUG (u),

EUG =
3

5
ξ0EF (1)

ξ0 = 0.37 is mesured in dilute neutron gas. EF is Fermi energy.

Optional constrains:

PNM pressure at n1 = 1.85ns . Neutron matter calculations (Drischler
et al. 2016) such that 8.4 MeV fm−3 < p1 < 20 MeV fm−3.

Tighter maximum mass constrain, e.g. 2.14 M� ≤ Mmax ≤ 2.17 M�.

Binary tidal deformability bound of given chirp mass, e.g.
Λ̃(Mch = 1.186 M�) < 720
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Constrains on EoS

Pure neutron matter(PNM) can be expanded around saturation as,

E (u) = E +
L

3
(u − 1) +

K

18
(u − 1)2 +

Q

162
(u − 1)3 + . . . (2)

where u = n
ns

. 14 MeV < E < 20 MeV and 20 MeV < L < 80 MeV.
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Application of EoS Parameterizations

Prior of Λ1, Λ2 in GW waveform analysis.

Bounds of M-R diagram

Bounds of R1.4-Λ1.4-Λ̃GW 170817

Bounds of I-love relation

Bounds on EoS p(ε)
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Tidal deformability in binary merger GW waveform

Oscillating Quadruple moments of neutron star due to excitation of
periodic tidal fields contributes to phase shift in GW form.
Quadruple oscillating contribute to GW radiation reaction,

Ė (ω) = −1

5
<

...
Q

T
ij

...
Q

T
ij >= −32

5
M4/3µ2ω10/3[1 + g(ω)] (3)

By evaluating stable orbit, contribution
of quadruple oscillating to total energy
of the binary can be calculated,

E (ω) = −M1/3ω−2/3[1 + f (ω)] (4)

Using formula d2Φ
dω2 = 2( dEdω )/Ė , tidal

phase correction can be derived,

δΦ = − 9

16

ω5/3

µM7/3
[(

12m2 + m1

m1
Λ1 +

12m1 + m2

m2
Λ2] (5)

where orbital phase Φ = Φ0 + ωt.

Flanagan+ 2008
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Prior of Λ2

Λ1
(M, q)

Λ ∝ (
M

R
)6 (6)

Since two neutron star should have
the same EoS, thus the same Λ(M),
we expect Λ2

Λ1
≈ ( 1

q )6, if constant ra-
dius.

qn− ≥ Λ1/Λ2 ≥ qn0++qn1+ , (7)

where n−, n0+ and n1+ will vary with
M, tabulated in arxiv.1808.02858
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Application of EoS Parameterizations

Prior of Λ1, Λ2 in GW waveform analysis.

Bounds of M-R diagram

Bounds of R1.4-Λ1.4-Λ̃GW 170817 relations

Bounds of I-love relation

Bounds on EoS p(ε)
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Bounds on M-R with additional p1.85 constrain
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Bounds on M-R with additional ΛGW 170817 constrain
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Application of EoS Parameterizations

Prior of Λ1, Λ2 in GW waveform analysis.

Bounds of M-R diagram

Bounds of R1.4-Λ1.4-Λ̃GW170817 relations

Bounds of I-love relation

Bounds on EoS p(ε)
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Bounds of R1.4-Λ1.4-Λ̃GW 170817 relations

Λ̃ = a′(
R1.4c

2

GM
)6 (8)

where a′ = 0.0041 ± 0.0016 for
1.0M� ≤ M ≤ 1.4M�. In case of
GW170817 M = 1.186, the constant
is a′ = 0.0042± 0.008
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Application of EoS Parameterizations

Prior of Λ1, Λ2 in GW waveform analysis.

Bounds of M-R diagram

Bounds of R1.4-Λ1.4-Λ̃GW 170817 relations

Bounds of I-love relation

Bounds on EoS p(ε)
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I-love Relations

A correlation with 0.6% deviation with 1000000 hadronic EoS!!!
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Application of EoS Parameterizations

Prior of Λ1, Λ2 in GW waveform analysis.

Bounds of M-R diagram

Bounds of R1.4-Λ1.4-Λ̃GW 170817 relations

Bounds of I-love relation

Bounds on EoS p(ε)
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Bounds on EoS

Apply universal constrains, neutron matter constrain on (E, L, p1.85), tidal
deformability constrain Λ̃(Mch = 1.186M�) < 720 and maximum mass
constrain 2 M� ≤ Mmax ≤ 2.17 M�.
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Bounds on p(n)-R1.4

In natural units c = G =
1, there is nice unit scaling
[R2] ≈ [ 1

p ] or [ 1
ε ],

δR

R
=

1

2

δp(ε)
p(ε)

d logp
d logε − 1

(9)

where δp(ε) = ηp(ε)+ηεdp(ε)
dε
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Bounds on p(n)-Λ1.4

In natural units c = G = 1,
there is nice unit scaling [Λ] ≈
[R5],

δΛ

Λ
=

5

2

δp(ε)
p(ε)

d logp
d logε − 1

(10)

where δp(ε) = ηp(ε)+ηεdp(ε)
dε
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Variation study of δp(ε)-δR1.4

TOV equations are

dm

dp
= −

4πr3c2ε(r − 2Gm
c2 )

G (mc2 + 4πr3p)(ε+ p)
= A(r ,m, ε, p) (11)

dr

dp
= −

rc4(r − 2Gm
c2 )

G (mc2 + 4πr3p)(ε+ p)
= B(r ,m, ε, p) (12)

We linearize above Eqs by m→ m + δm, r → r + δr and ε→ ε+ δε,

dδm

dp
=

∂A

∂m
δm +

∂A

∂r
δr +

∂A

∂ε
δε (13)

dδr

dp
=

∂B

∂m
δm +

∂B

∂r
δr +

∂B

∂ε
δε (14)
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Variation study of δp(ε)

We choose the EoS variation to be,

δp(ε)

p
= a[(

ε− ε∗
bε∗

)2 − 1]2 (15)

where, a and b are dimensionless amplitude and range of variation, ε∗ is
the energy density where variation located. Scaling relation: δr2 ∝ a× b.
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Variation study of δp(ε)

M=1.4 M�
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Summary

Allow wider range of EoS(more variability), Great for study prior
distribution of properties, correlation of proprieties and EoS constrain.

Upgrade PP3 to PP3+1 can reach higher maximum mass.

Λ̃GW 170817 gives comparable constrain as from neutron matter
calculations.

Lower bound in radius and low density EoS are strongly dependent on
EoS parameterization.

L is corelated with neutron star radius , but not the direct cause of
radius.
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Variation on R and Λ at M=1.4 M�
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Variation on Mmax
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Variation on Mmax
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Tidal field
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Tidal deformability(Newtonian)

Tidal field potential and quadruple moment in Newtonian physics are,

Φtidal =
1

2
εijx

ix j (16)

Qij =

∫
d3xδρ(xixj −

1

3
δij) (17)

Quadruple moment is induced by tidal field linearly,

Qij = −λεij (18)

where λ is tidal deformability with a unit of (mass)(length)2/(time)2.

Two dimensionless parameters are defined from λ,

Λ = λM−5 dimensionless tidal deformability (19)

k2 =
3

2
λR−5 tidal Love number (20)

where c = G = 1.
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Tidal deformability(GR generized)

Total gravitational potential in Newtonian physics are,

Φ =
1

2
εijx

ix j − M

r
− 3

2

Qijx
ix j

r5
(21)

We know general relativity reduce to Newtonian gravity at weak(far)
field. And tt component of metric plays the exact role of Newtonian
potential. Thus is should be expanded in powers of r to match
Newtonian definition of quadruple moment and tidal deformability.

−1 + g00

2
=

1

2
εijx

ix j − M

r
− 3

2

Qijx
ix j

r5
+
∑

Cnr
n (n 6= 2,−1,−3)(22)

g00 can be solved by introducing a linear Ym=0
l=2 (θ, φ) perturbation on

spherical symmetric metric(TOV metric). And the ratio between its
(n=2) order and (n=-3) order coefficient defines tidal deformability.
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Tidal deformability of hadronic NS
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Tidal deformability of hadronic NS

Assuming 2 < Mmax/M� < 2.4

and 10MeVfm−3 < p(n = 1.85ns) < 20MeVfm−3

Λβ6 = 0.0088± 0.001

holds for common mass hadronic neutron star
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Tidal deformability of hadronic NS
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Hybrid star with first order phase transition

BPS as fixed crust EoS up to
n0 ≈ ns/2.7

Three piecewise polytropic EoS
devided by n1 = 1.85ns , n2 = 3.74ns
(J.S. Read 2008)

Constant sound speed(CSS) is used
for quark core.

A first order transition is assumed to
happened between ns and 3.74ns , or
ptrans < 250MeV /fm3. Chemical
equilibrium is assumed at boundary,

phardron = pquark , µhardron = µquark (23)

ε(p) =

{
εpoly (p) if p < ptrans

εpoly (ptrans) + ∆ε+ p−ptrans
c2
s

if p < ptrans
(24)
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Hybrid star with first order phase transition

p1 = p(n1) is closely related with
radius of a typical neutron star, and
is constrained by neutron matter
calculation.

p2 = p(n2) define stiffness below
transition, bounded by causality at
transition.

Sound speed c2
s affect maximum

mass of hybrid star.

Energy discontinuity
∆ε > 0(stability), is bounded by
requiring Mmax > 2.01M�.
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Tidal Deformability of Hybrid NS

Assuming 2 < Mmax/M� < 2.4, ntrans > ns

and 3.75MeVfm−3 < p(n = 1.85ns) < 30MeVfm−3,

Λβ6 = 0.0092± 0.0034

holds for common mass hybrid neutron star
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Tidal Deformability of Hybrid NS

Assuming 2 < Mmax/M� < 2.4, ntrans > ns

and 3.75MeVfm−3 < p(n = 1.85ns) < 30MeVfm−3
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Tidal deformability in binary merger GW waveform

Oscillating Quadruple moments of neutron star due to excitation of
periodic tidal fields contributes to phase shift in GW form.
Quadruple oscillating contribute to GW radiation reaction,

Ė (ω) = −1

5
<

...
Q

T
ij

...
Q

T
ij >= −32

5
M4/3µ2ω10/3[1 + g(ω)] (25)

By evaluating stable orbit, contribution
of quadruple oscillating to total energy
of the binary can be calculated,

E (ω) = −M1/3ω−2/3[1 + f (ω)] (26)

Using formula d2Φ
dω2 = 2( dEdω )/Ė , tidal

phase correction can be derived,

δΦ = − 9

16

ω5/3

µM7/3
[(

12m2 + m1

m1
λ1 +

12m1 + m2

m2
λ2](27)

where orbital phase Φ = Φ0 + ωt.

Flanagan+ 2008
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Binary tidal deformability

At leading order, phase shift of GW is proportional to the binary tidal
deformability,

Λ̄ =
16

13

(12q + 1)Λ1 + (12 + q)q4Λ2

(1 + q)5
(28)

where q = m2/m1 < 1.

Statistics are required in order to make any conclusion for binary tidal
deformability. Thus, prior distribution of Λ̃,Λ1,Λ2 is important.

We set up bounds of Λ̃ and Λ2/Λ1 as a function of chirp mass Mch

and q, in the scenario of hadronic star and hybrid star respectively.

Λ̃lower (Mch, q) < Λ̃ < Λ̃upper (Mch, q) (29)

(Λ2/Λ1)lower (Mch, q) < (Λ2/Λ1) < (Λ2/Λ1)upper (Mch, q) (30)
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Bounds of binary tidal deformability Λ̃

q dependence reflected in linewidth

Assuming 2 < Mmax/M� < 2.4, ntrans > ns
and 3.75MeVfm−3 < p(n = 1.85ns) < 30MeVfm−3,
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EoS and M-R curves for hadronic bounds of Λ2/Λ1
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Hadronic bounds of binary tidal deformability ratio λ̃2/λ̃1

Mch

Tianqi Zhao, James Lattimer (Stony Brook University)Radius, Tidal Deformability and EoS Bounds with Different EoS ParameterizationsMMAGWE, Kyoto, 2019 45 / 49



Hybrid star bounds of binary tidal deformability ratio λ̃2/λ̃1
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Hybrid star bounds of binary tidal deformability ratio λ̃2/λ̃1

Mch

Assuming ntrans > ns
and 3.75MeVfm−3 < p(n = 1.85ns) < 30MeVfm−3,
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Bounds of binary tidal deformability ratio λ̃2/λ̃1

Mch
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Summary

Tidal deformability is a measure of compactness.

Tidal deformability-compactness relation is broaden when hybrid
neutron star was taken into account.

Binary tidal deformability is a ’average’ tidal deformability of the two
star with more weight on the massive one. It appear as perturbation
of phase shift in GW observation.

Together with mass knowledge, tidal deformability will provide us
radius of neutron star, eventually the information of EoS around
n = 1− 2ns
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