The Effect of Jet-Ejecta Interaction on Multi-D Kilonova Light Curves

Hannah Klion (UC Berkeley), Paul Duffell (Harvard CFA), Dan Kasen (UC Berkeley, LBNL), Eliot Quataert (UC Berkeley)

Neutron star mergers are multimessenger events

Fernández & Metzger '16

GW170817 / GRB170817A / AT2017gfo

Drout + '17

Abbott + '17

R-Process Nucleosynthesis

Jonas Lippuner

Dynamical ejecta from tides and shocked NS matter ${\sim}10^{\text{-3}}\,M_{\odot}$ over ${\sim}10$ ms

Radice + '18

NS mergers produce multiple ejecta components

Kasen +' 17

Kilonova consistent with multiple ejecta components

Modified from Villar + 17

GW170817 radio light curve indicates jet

Mooley + '18

What next?

What kind of diversity can we expect to see in subsequent kilonovae?

What next?

What are the effects of different viewing angles?

How Does Jet-Ejecta Interaction Affect Kilonova?

Focusing on **shock-heating** due to a prompt jet and **changes to density structure**

Two of the Possible Sources of Heating for the Optical Transient

Prompt shock heating (from jet?)

(incl. Kasliwal+'17, Piro & Kollmeier'17)

~seconds

10⁴⁹ - 10⁵⁰ erg

Radioactive decay of nucleosynthesis products

(incl. Metzger+'10)

~seconds to days

10⁵⁰ erg

Approach

2D relativistic hydrodynamic simulation (in JET) of jet interacting with expanding outflow (Duffell, Quataert, Kasen, **Klion**) '18) 2D Monte Carlo radiation transport simulations with Sedona (Klion + in prep)

Relativistic Hydrodynamic Calculations

- Initial conditions from numerical NS merger simulations (Hotokezaka +13, Nagakura + 14); ejecta slightly oblate
- Fiducial scales
 - $\,\circ\,$ Mass 0.07 M_\odot
 - Engine duration T = 0.1s
- Using code JET (Duffell & MacFadyen 2011, 2013)
- Lagrangian spherical polar grid, cells can move radially with the flow
- Assume ejecta are homologously expanding. No delay between merger and engine turn on. Inject a jet with some luminosity, engine duration, and opening angle
- Evolve until $1000T \sim 100s$, when mostly homologous

Jet + Ejecta Hydrodynamic Simulations

Four regimes of jet-ejecta interaction

Jet success depends only on energy scale & angle

Assumption: ejecta expand homologously – delay between merger and engine is small

Only timescale in the problem is the **engine duration** *T*, and success condition cannot independently depend on *T*. Only energy scale and geometry matter.

Success condition:

$$E_j > E_{\rm crit}$$

 $E_{\rm crit} \propto \theta_j^2 E_{\rm ej}$

Jets can break out on timescales longer than engine duration

Higher energy jet does not guarantee more thermal energy

Jet thermalization efficiency is limited

Approach

Input Models

r-process heating > jet shock heating @ 900s

Thermal energy due to r-process heating exceeds jet shock heating throughout

Light curves are brighter on pole than on equator

Amount of brightening along jet correlates with how much jet affects density distribution

Equatorial light curves match failed jet case

Jet shock heating does not affect light curves

Klion +, in prep

obs L_{bol} from Drout + '17

More variation between models at pole than at equator

Brighter on pole because greater photospheric temperature

Emission is bluer at poles

Effect Apparent in Predicted Band Light Curves

Observed photometry from Kasliwal + '17

Early times: iron-like opacities push emission redwards at equator but not near pole

Reddening more apparent at later times

Summary

✤Jet thermalization efficiency is limited

Unlikely that light curve is dominated by (prompt jet) shock heating

r-process heating greatly exceeds shock heating

Jet changes the structure of the ejecta, giving viewing-angle effects that depend on jet energy and opening angle

✤Jet-affected viewing angles are brighter and possibly somewhat bluer