
Black holes in 
modified gravity

Hayato Motohashi (YITP)

2019.10.3 YITP long-term workshop 
Multi-Messenger Astrophysics in the Gravitational Wave Era



Testing gravity

Gravitational potential

C
ur

va
tu

re

Moon Mercury

Satellite
Pulsar

Not clear if GR is valid for these regions.

Inflation 𝑅 + 𝑅# inflation

Dark energy Cosmological constant

Black hole
Neutron stars

Planck 2018

LIGO/Virgo collaborations

Quantum gravity
Singularity



Sensible theory
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1971 
Lovelock theory
- 4D diffeo. inv.
- Metric only
- 2nd order EL eqs

1974
Horndeski theory
- 4D diffeo. inv.
- Metric + scalar field
- 2nd order EL eqs

1850
Ostrogradsky theorem
Nondegenerate higher-order Lagrangian →Ghost DOF

2011
Generalized Galileon
Deffayet et al, 1103.3260

Rediscovery of Horndeski theory
Kobayashi et al, 1105.5723

2014
Beyond Horndeski (GLPV)
Higher-order EL eqs but no ghost DOF
Gleyzes et al, 1404.6495

2014 – 2018  
Degenerate higher-order theories
HM, Suyama, 1411.3721
Langlois, Noui, 1510.06930
HM, Suyama, Yamaguchi, Langlois, 
Noui, 1603.09355
HM, Suyama, Yamaguchi, 1711.08125, 
1804.07990



Degenerate theories

• 𝐿 = 𝐿(𝜙̈*, 𝜙̇*, 𝜙*) 𝜙* = 𝜙*(𝑡)

• 𝐾*0 ≡
234

25̈625̈7
,   𝑀*0 ≡

234
25̈625̇7

− 234
25̈725̇6

Ostrogradsky theorem
det 𝐾 ≠ 0 ⟹ 𝐻 ⊃ 𝑃𝑄 is unbounded.

No-(Ostrogradsky-)ghost condition
a.k.a. Degeneracy condition  
𝐾*0 = 0 & 𝑀*0 = 0 ⟹ 𝐻 ⊃ 𝑃𝑄

HM, Suyama, 1411.3721

(1850)

Sena (1969)



Degenerate theories

• 𝐿 = 𝑎𝜙̈# + 2𝑏G𝜙̈𝑞̇G + 𝑘GJ𝑞̇G𝑞̇J + ⋯ = 𝑘LM 𝑏𝜙̈ + 𝑘𝑞̇ # + ⋯
𝐾 = 0

• 𝐿 = 𝐿(𝜙̈*, 𝜙̇*, 𝜙*, 𝑞̇G, 𝑞G)
𝐾*0 = 0 & 𝑀*0 = 0

• 𝐿 = 𝐿(𝜙GN OPM , … ; 𝜙GNST O , … ;… ; 𝜙̈GT, 𝜙̇GT, 𝜙GT, 𝜙̇GU, 𝜙GU)
HM, Suyama, Yamaguchi, 1711.08125, 1804.07990

HM, Suyama, Yamaguchi, Langlois, Noui, 1603.09355

Langlois, Noui, 1510.06930

= 0
All the constraints

quadratic DHOST
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Theories allowing GR solution
Suppose: No deviation from GR solution 

What kind of modified gravity allow GR solution?   
Let us clarify condition for ∃ GR solution.
(If GR solution is unique ⟹ No hair theorem)

c.f. Cosmology
ΛCDM expansion history 
⟸ ΛCDM, quintessence, 𝑓(𝑅)

→ Observational tests

ΛCDM

𝑓(𝑅)

Ω^

𝜎`

HM, Starobinsky, Yokoyama, 1203.6828



𝑔bc 𝜙 𝐿

(1)
Any GR solution
𝐺bc = 8𝜋𝐺𝑇bc − Λ𝑔bc 𝜙 =const.

Theories with multiple 
scalars and arbitrary 
higher-order derivs.

(2)
Vacuum GR solution

𝑅bc = 0
→ Strong coupling

𝜙(𝑟)
Horndeski subclass: 
cj = c, no shift sym.

(3)
Schwarzschild & 
Schwarzschild-(A)dS

𝜙 =
𝑞𝑡 + 𝜓(𝑟)
𝑋 =const.

Shift-sym. quadratic 
DHOST theories

HM, Minamitsuji, 1804.01731, 1809.06611, 1901.04658
Takahashi, HM, Minamitsuji, 1904.03554



𝜙 𝑡, 𝑟 = 𝑞𝑡 + 𝜓(𝑟) in shift-sym. theories
Why?

- Simplicity: 
Compatible with static spacetime.

- Nontrivial: 
Circumvent static scalar assumption of no-hair theorem.

- Interesting: 
“Stealth” Schwarzschild-de Sitter solution.

Babichev, Charmousis, 1312.3204
Kobayashi, Tanahashi, 1403.4364

Hui, Nicolis, 1202.1296
Babichev, Charmousis, Lehebel, 1702.01938

Vishveshwara (1980)



Stealth BH solutions in quadratic DHOST
We found novel exact BH solutions.

• Theory = Shift-sym. quadratic DHOST theories.
• 𝑔bc = Schwarzschild, Schwarzschild-de Sitter (SdS)
• 𝜙(𝑡, 𝑟) = 𝑞𝑡 + 𝜓(𝑟) with 𝑋 ≡ 𝜕b𝜙𝜕b𝜙 = const.

Stealth SdS solution: 
BH (& cosmological) solution with nontrivial scalar hair.

cf. BH solutions in non-shift-sym. DHOST
for 𝑐o = 𝑐 and 𝑋 = −𝑞#

HM, Minamitsuji, 1901.04658

Ben Achour, Liu, 1811.05369



Stealth BH solutions in quadratic DHOST
Action ( + degeneracy condition )

𝑆 = q𝑑s𝑥 −𝑔 𝐹v(𝑋) + 𝐹M(𝑋)□𝜙 + 𝐹#(𝑋)𝑅 +x
yzM

{

𝐴y(𝑋)𝐿y
#

𝐿M
# = 𝜙;bc𝜙;bc, 𝐿#

# = □𝜙 #, 𝐿}
# = □𝜙 𝜙;b𝜙;bc𝜙;c,

𝐿s
# = 𝜙;b𝜙;bc𝜙;c~𝜙;~, 𝐿{

# = 𝜙;b𝜙;bc𝜙;c
#.

Metric

𝑑𝑠# = −𝐴 𝑟 𝑑𝑡# +
𝑑𝑟#

𝐵 𝑟 + 2𝐶 𝑟 𝑑𝑡𝑑𝑟 + 𝐷 𝑟 𝑟#𝑑Ω#

Scalar field profile
𝜙 𝑡, 𝑟 = 𝑞𝑡 + 𝜓(𝑟) with 𝑋 ≡ 𝜕b𝜙𝜕b𝜙 = const.



Gauge fixing with 𝑔bc(𝑟) and 𝜙(𝑡, 𝑟)

𝑑𝑠# = −𝐴 𝑟 𝑑𝑡# +
𝑑𝑟#

𝐵 𝑟
+ 2𝐶 𝑟 𝑑𝑡𝑑𝑟 + 𝐷 𝑟 𝑟#𝑑Ω#

𝜙 𝑡, 𝑟 = 𝑞𝑡 + 𝜓(𝑟) with 𝑋 ≡ 𝜕b𝜙𝜕b𝜙 = const.

From the fundamental theorem on gauge fixing at the 
action level, 
𝐷 𝑟 = 1: OK
𝐶 𝑟 = 0: leads to a loss of independent EL eq. 
so it should be substituted after deriving EL eq.

The argument is independent of the form of the action.

HM, Suyama, Takahashi, 1608.00071



Example

Simple example 𝐿 = M
#
𝑥̇ − 𝑦̈ # ↔ M

#
𝑋̇#

which is invariant under a gauge transformation 
𝑥 → 𝑥 + ̇𝜉, 𝑦 → 𝑦 + 𝜉

Euler-Lagrange eqs
𝐸� = −𝑥̈ + 𝑦 = 0, 𝐸� = −𝑥 + 𝑦⃜ = 0

Off-shell identity (a.k.a. Noether identity)
−𝐸̇� + 𝐸� = 0

⇒ 𝐸�: independent / 𝐸�: redundant
Gauge fixing at action level:
1) 𝑥 = 0 :  𝐸�, 𝐸� Independent EOM is lost
2) 𝑦 = 0 :  𝐸�, 𝐸� OK

HM, Suyama, Takahashi, 1608.00071



Euler-Lagrange equations are satisfied if
𝐹v = 𝐹v� = 𝐹M� = 𝑄v𝐴M = 𝐴M + 𝐴# = 𝐴M� + 𝐴#�
= 𝑄v 2𝐴M� + 𝐴} = 0

at 𝑋 = 𝑋v.⟹ Two branches: Cases 1, 2

Schwarzschild solution
HM, Minamitsuji, 1901.04658



Schwarzschild-de Sitter solution
Sufficient conditions

At 𝑋v = −𝑞#,
𝐹v = −2Λ 𝐹# + 𝑞#𝐴M
2𝐹v� = −Λ 8𝐹#� − 2𝐴M − 𝑞# 4𝐴M� + 3𝐴}
𝐹M� = 𝐴M + 𝐴# = 𝐴M� + 𝐴#� = 0

At 𝑋v = const ≠ −𝑞#,
𝐹v = −2Λ𝐹#
𝐹v� = −Λ 4𝐹#� − 𝑋v𝐴M�
𝐹M� = 𝐴M = 𝐴# = 𝐴M� + 𝐴#� = 0

HM, Minamitsuji, 1901.04658
Raw Euler-Lagrange equations

Case 1-Λ

Case 2-Λ

cf. Takahashi, HM, Minamitsuji, 1904.03554
Reduced Euler-Lagrange equations

Compatible with 
DHOST Classes I, III



Example theories

Simple examples in DHOST subclass where 𝑐o = 𝑐:
• Stealth Schwarzschild solution
𝐹v = 𝑀s𝑎 𝑋 ,

𝐹# =
���
3

# + 𝑀#𝑏 𝑋 ,

𝐴} =
� �
��

• Self-tuned S(A)dS solution
𝐹v = −𝑀��

# Λ� +𝑀sℎ 𝑋 ,

𝐹# =
���
3

#
+ �

#
𝑀#ℎ 𝑋 ,

𝐴} = −8𝛽𝑀# �� �
�

HM, Minamitsuji, 1901.04658



Stability analysis 
We found novel solution (∉ Cases 1-Λ, 2-Λ) and 
clarified stability conditions. 

• 𝑔bc = Static, spherically sym.
• 𝜙(𝑡, 𝑟) = 𝑞𝑡 + 𝜓(𝑟) with 𝑋 =const.
• Reduced 2nd order EOMs
• 𝛿𝑔bc = Odd parity pert. (1DOF ↔ Regge-Wheeler)

𝐹# > 0, 𝐹# − 𝑋𝐴M > 0, 𝐹# −
𝑞#

𝐴 + 𝑋 𝐴M > 0

Future work: Stability for even parity perturbations.
(2DOFs ↔ Zerilli + 𝛿𝜙)

Takahashi, HM, Minamitsuji, 1904.03554
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Summary
Degenerate theories 
• Allow systematic construction of nontrivial higher-

derivative theories without Ostrogradsky ghosts.

Stealth solution in shift sym. q-DHOST theories
• Derived condition for EL eqs to allow Schwarzschild-

de Sitter solution with deficit solid angle.
• Derived condition for stability of odd parity 

perturbation (Regge-Wheeler analysis) 


