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2. Extreme Matter, Extreme Environs

SCIENCE TARGET

Determine the properties of the hottest and densest matter in the Universe

The discovery of GW170817 [7] was a watershed moment in astronomy and astrophysics. GW and
EM observations of this event provided incontrovertible evidence that BNS mergers are connected to short
gamma-ray bursts [132, 133] and the precise optical localization [134] unveiled that these are prolific sites
of heavy element nucleosynthesis [135–137]. Furthermore, they showed that to an outstanding accuracy
the speed of GWs is identical to the speed of light. These multimessenger observations have allowed the
first measurement of the Hubble constant using GW standard sirens [138, 139], ushering in a new era in
cosmology, and first measurement of the tidal deformability of NSs [132, 16] that is already constraining the
properties of dense nuclear matter [15, 140, 13, 16, 14]. Circumstantial evidence for the formation of a black
hole on a timescale of tens of milliseconds have provided model dependent constraints on the maximum mass
of NSs and a lower limit on the NS radius [141–143]. However, a number of questions were left unanswered
(see Sec. 2.1); observations with detectors of significantly greater sensitivity will be key to shedding light on
extreme matter in extreme environments.

KEY SCIENCE GOALS

Future GW detector networks and EM observatories will provide a unique opportunity to observe the most
luminous events in the Universe involving matter in extreme environs. The observations will address some of
the key questions in physics and astronomy:
• Structure of Neutron Stars. What can GW observations reveal about fundamental properties of hot and

dense nuclear matter? Do NSs undergo a phase transition to de-confined quarks at their cores?
• Formation and Evolution of Compact Binaries. How do BNS and NSBH binaries form and evolve; what

are their demographics, merger rates, and mass and spin distributions as a function of redshift?
• Sites of Formation of Heavy Elements. What is the role of BNS mergers in the production of heavy

elements in the Universe? Are they able to explain abundances in the Solar System and stars?
• Jet physics. What is the physics of central engines in mergers, and how do they relate to short gamma-ray

bursts? How do the jet properties vary with progenitor binary parameters?

Capabilities of Next Generation Detector Networks: The next generation of GW detectors (see Table 2.1)
will compile surveys of the Universe for close binary coalescence events in which one of the companions
is a NS and the other is either a stellar mass black hole or also a NS. The Table shows the capability of
3G observatories compared to the current network of advanced detectors at their design sensitivity. For
this simulation, source redshifts were sampled from a merger redshift distribution of BNSs, assuming the
Madau–Dickinson star formation rate, with an exponential time delay between formation and merger with
e-fold time of 100 Myr (see [144]) and a local co-moving BNS merger rate of 1000 Gpc�3 yr�1. It is clear
that the 3G network will provide ample opportunities for EM follow-up of BNS mergers.

Gravitational-Wave Astronomy with
the Next-Generation Earth-Based

Observatories
Exploring the Universe from Planck to Hubble Scales

GWIC, GWIC-3G, GWIC-3G-SCT-Consortium

8 Chapter 2. Extreme Matter, Extreme Environs

Key science questions addressed by the detected
population in the 3G era is very rich and diverse.
GW observations of the pre- and post-merger
signal will help measure the masses and radii
of NSs and determine the equation of state of
dense matter, observing the EM counterpart will
allow characterization of matter in extreme en-
vironments, the redshift of the host galaxy en-
ables cosmological applications, whilst the sub-
arcsecond localization of the kilonova provides
information about the nucleosynthesis, environ-
ment of the event, jet physics and formation
scenarios.

DETECTION CAPABILITY OF 3G NETWORK

Table 2.1: Expected BNS detections per year N; number
detected with a resolution of < 1, < 10 and < 100
sq. deg. N1, N10 and N100, respectively, and median
localization error M in sq. deg., in a network consisting
of LIGO-Hanford, LIGO-Livingston and Virgo (HLV),
HLV, KAGRA and LIGO-India (HLVKI) and 1 Einstein
Telescope and 2 Cosmic Explorer detectors (1ET+2CE).

Network N N1 N10 N100 M
HLV 48 0 16 48 19
HLVKI 48 0 48 48 7
1ET+2CE 990k 14k 410k 970k 12

2.1 Nature of Matter at Highest Densities and Temperatures
Neutron stars are precious laboratories for physics under extreme conditions. The phases and properties of
dense matter encountered inside NSs is of fundamental interest to nuclear physics and their role in shaping
multimessenger observation of BNS mergers and core-collapse SNe is of broad interest to nuclear and particle
astrophysics. Our current understanding of the NS interior is captured in Fig. 2.1.

Theories of dense matter up to densities encountered inside terrestrial nuclei (r0 ' 2.5⇥1014 gcm�3) are
fairly advanced and provide a description of matter in the NS crust and outer core. The equation of state of the
outer core, where the density r ⇡ r0–2r0, has a significant impact on the radii of low-mass NSs with masses
M . 1.3 M�, and an accurate determination of the NS radius can constrain the nuclear Hamiltonian and
validate quantum many-body theories of dense nuclear matter [145]. However, in heavier NSs a large fraction
of the core is at higher densities and a description in terms of nucleons may not be adequate. The quark
sub-structure of hadrons becomes relevant when the density & 2r0–3r0 (for a recent review, see Ref. [146]).
With increasing density, a phase transition to matter containing de-confined quarks is expected. The nature of
this transition, which could be complex, directly affects NS structure and its dynamics. Properties of matter
in this region determines the NS maximum mass.

Figure 2.1: Internal structure of a NS, predicted by
theory. Quark degrees of freedom become important
at the densities encountered in the inner core and de-
confined quark matter may be realized at the highest
densities. The nature of the transition from matter
containing nucleons to matter containing de-confined
quarks, expected to be complex, is relevant to our
understanding of NS structure and dynamics.
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These considerations have motivated significant observational [147, 148] and theoretical [149, 145]
efforts to use multimessenger observations of to constrain their EOS, by identifying strategies to measure
their masses and radii. Radio observations of pulsars have yielded accurate mass measurements of a handful
of NSs [150]. The discovery of a massive NS J0348+0432 with M ' 2 M� [151] has had far-reaching
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implications for the equation of state of dense matter, ruling out strong first-order phase transitions in the NS
core [152]. However, accurate measurements of the NS radius and/or its compactness (GM/c2R) has been
more challenging since it relies on our ability to model X-ray emission from the surface.

Efforts to model and interpret X-ray data
from accreting NSs during bursts, and in
quiescence, suggest that NS radii are in
the range 9–13 km [150, 153], albeit with
untested model assumptions.

GW emission from BNS and NSBH sys-
tems during the late inspiral and post-merger
phases are sensitive to the structure of NSs
and the properties of dense matter encoun-
tered in their cores. Signature of matter
in GWs from a merging binary result from
a number of effects: rotational deforma-
tions [154], various kinds of tidal interactions
including the excitation of internal oscilla-
tion modes [155–159], spin-tidal couplings
[160, 161], and the presence of a hard sur-
face [162–164]. The most striking matter im-
prints in the waveform occur during the tidal
disruption in a NSBH binary [165, 166], or
the merger and post-merger epochs in BNS
collisions [167]. Fig. 2.2 shows a projection
of the precision with which 3G detectors will
allow us to measure the NS mass and radius.
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Figure 2.2: Measuring NS mass-radius. Plot shows
the 90% credible region in the mass-radius plane for
eight NSs in four BNS systems with masses in the range
1.1–1.6M�. The binaries are optimially oriented at a dis-
tance of 400 Mpc, with signal-to-noise ratio (SNR) in the
range 100–140 in a 3G detector, crosses represent the cho-
sen masses and radii for the simulation. In this example
NS radius could be measured with a precision of about
0.5–1 km. For comparison we also show mass–radius
curves for 6 typical equations of state.

The remnant of a BNS merger depends primarily on the companion masses and the NS equation of state
[168–171]. It could promptly collapse to a black hole above a critical total mass of the binary. For a wide
range of smaller masses, a significant amount of gravitational radiation could be emitted by hypermassive NS
[172–191]. Signals from these regimes have frequencies in the range 1–5 kHz and last over a timescale of
⇠ 100 ms.

Due to their high frequencies, they are very difficult to measure with advanced detectors. However, the
3G network will be sensitive to properties of matter encountered in hypermassive NSs that form during the
post-merger phase when density and temperature are most extreme, agruably the largest in the universe. This
is depicted in the QCD phase diagram in Fig. 2.3, showing various phases of strongly interacting matter.

At lower temperatures and densities < 2r0 the composition of matter is well understood. With increas-
ing density and temperature other hadrons, including pions and heavier mesons and baryons containing
strangeness become relevant. A transition region in which hadrons dissolve to produce de-confined quark
matter is also shown.

The nature of this transition is unknown, expected to be complex because QCD matter is strongly
correlated in this region. Since matter encountered during BNS and NSBH mergers explores a large swath
of the QCD phase diagram, whose approximate extent is shown as light-green shaded region, there is great
potential to constrain its properties through multimessenger observations of BNS mergers. The 3G network
will improve current measurements of tidal deformability by a factor of ⇠ 10 and thus determine the cold
equation of state significantly better, and enable unprecedented measurements of the new physics encountered
during the coalescence and post-merger epochs.

dL=400Mpc 
SNR=100-140 
in a 3G detector 
ΔRadius~0.5-1 km
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Figure 2.3: Phase diagram of hot and dense
matter shows approximate phase boundaries
and the most relevant degrees of freedom.
The regions occupied by cold NSs (blue
shaded region) and the those encountered
during the merger (green shaded region) are
also shown.

Gravitational-wave observations by the 3G network could shed light on many critical questions about
the nature of NSs: Does matter encountered in NSs and BNS mergers contain novel phases not realized
inside nuclei and heavy-ion collisions? How do nuclear reactions and neutrinos shape NS merger dynamics
and nucleosynthesis? How do the properties of nuclei that are far from stability impact the EM emission
from material ejected during NS mergers? Do large scale (magneto)hydrodynamic instabilities play a role in
merging BNS systems? Can we combine GW and EM signatures to validate multi-physics simulations of
BNS and NSBH mergers to predict ejecta, nucleosynthesis, and the gamma-ray burst mechanism?

2.2 Demographics of Compact Binary Mergers
A key question about compact binary mergers is their demographics, as this could reveal their formation
mechanism. Localization of merger events to less than galactic scales (⇠ 30 kpc) is essential to unambiguously
infer associations of mergers with their host galaxies. Without an EM counterpart the vast majority of events
will have error boxes that greatly exceed the typical radii of potential host galaxies. The merger fraction split
between early type and star-formation galaxies will provide a fascinating insight into the fraction of mergers
that are created with short gravitational fuses [192] that are comparable to the evolutionary timescales of
massive stars and those that extend out to a Hubble time. Their locations [193, 194] within the hosts will give
insights into the kick velocities imparted to the binaries during their SN explosions.

EM follow-up of BNS mergers will be critical in pinning down host galaxies. BBH mergers, not believed
to produce any EM counterparts, will not be resolved well enough to unambiguously identify their hosts.
The situation is more optimistic for NSBH mergers. Theoretical predictions suggest that when the mass
ratio is not too extreme depending on the black hole spin, conditions could be favorable for the creation of
an accretion disk around that might rival the absolute visual magnitude of the GW170817 kilonova, and,
therefore, be detectable out to z = 0.5 in the reddest filters. If such mergers occur in the globular cluster cores
it will be difficult to identify host clusters much beyond Virgo, and those in Virgo do not require a 3G GW
detectors for discovery.

Based on our current understanding, galaxies are assembled by the merger of smaller proto-galaxies
and star formation peaks near z ⇠ 2 [195]. Identification of kilonovae beyond z ⇠ 0.5 requires hour-long
integrations on 8m class facilities like LSST or Subaru and therefore determining the host galaxies of BNS
mergers near the peak of star formation will not be routine in the absence of a gamma-ray burst jet pointing
towards the Earth, even with ELTs. Nevertheless, at redshifts z < 0.5 3G detectors will work in concert with
astronomy facilities to enable thousands of host galaxy identifications from BNS and NSBH mergers thanks
to the identification of a kilonova. At larger distances, the identification will be possible only through the
detection of an associated gamma-ray burst afterglow, which can be much more luminous than a kilonova if
the jet is directed towards the Earth.

Binary-neutron-star (BNS) merger
NS

NS

Inspiral

BNS mergers are valuable laboratories for nuclear astrophysics.

late-Inspiral

Matter effects influence the 
orbital evolution and gravitational 
radiation through the tidal 
interaction between the NSs.
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• What’s plotted:
- This work uses the following PN waveform families from lalsimulation with leading order (5PN) and next-to-leading order (6PN) tidal 

corrections: TaylorT1, TaylorT2, TaylorT3, TaylorT4, and TaylorF2
- This work also uses lalinference to perform full Bayesian Markov Chain Monte Carlo (MCMC) parameter estimation simulations on 

BNS systems
- In all presented figures, we use: 3 detector network (Advance LIGO and Virgo) with a zero detuning high power PSD and a network SNR 

of 32.4,                        ,   and injected values of                            and 

Studying the effects of tidal corrections on 
parameter estimation

Leslie Wade (UWM), Jolien Creighton (UWM), Evan Ochsner (UWM), Benjamin Lackey (Princeton)

Background:
• Neutron star (NS) tidal deformability

- A NS in a binary will become tidally deformed because the 
gravitational field from its companion is not constant over its finite 
diameter

- The NS’s tidal deformability    , which depends on its equation of 
state (EOS), parameterizes how much it will deform

• Compact binary coalescence (CBC) gravitational waveform
- The inspiral portion of a CBC event is approximated using post-

Newtonian (PN) theory and assumes each body is a point-particle
- Tidal effects cause NS binaries to depart from the point-particle 

approximation during the late inspiral portion of a CBC event
- The leading order tidal corrections to the point-particle 

approximation emerge at 5PN order [1,2]

�

Motivation:
• Extracting tidal deformability with gravitational-waves

- It has been shown [1-3] that a NS’s tidal deformability may be 
measurable using ground-based gravitational-wave detectors

- This work uses full Bayesian parameter estimation simulations 
of single, binary NS (BNS) sources to study the effects of tidal 
interactions in order to learn more about NS structure

• Systematic biases from using different waveform families
- In approximating the true CBC gravitational waveform, slightly 

different perturbative techniques lead to gravitational 
waveform families that differ by a next-order truncation error

- It is essential to understand the resulting systematic biases in 
our parameter estimation methods if we seek to extract EOS 
information from a gravitational-wave (GW) detection

Conclusions:
• Measurability

- While      and     are not well measured,     
is!

- Since chirp mass is so well measured, 
several BNS observations with varying 
chirp masses can lead to very tight 
constraints on the NS EOS

• Systematic bias
- There may be significant bias in the measured tidal 

parameter between different PN waveform families
- Therefore, phenom/hybrid/NR waveforms will likely be 

needed for parameter estimation to capture the proper 
physics of the late inspiral (such as tidal disruption and/or 
hypermassive NS oscillations)

�1 �2 ⇤̃

Preliminary Results:

• Systematic bias?
- To study systematic 

biases, we used different 
waveform families for the 
injection and the 
templates

- The systematic bias can 
be significant between 
any two waveform families

fmin = 30 Hz
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• Can GWs help constrain the NS EOS?
- To visualize how a GW detection might constrain the NS EOS, we 

plot a 2D PDF from a single source on mass-radius-like curves

�̂1 = �̂2 = 607 m1 = m2 = 1.35 M�

• Can we measure individual NS tidal deformability?
- We find that a NS’s tidal deformability (                                   , [4])

where      is the Love number, is not well measuredk2
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• What can we measure?
- If we re-parameterize according to [5,1]

we find that we can measure    , though       is too small
- Below are 2D marginalized posterior density functions (PDFs) as 

computed by our MCMC pipeline

⇤̃ �⇤̃

- We find that a single, loud (Network 
SNR 32.4) BNS GW detection can 
rule out several NS EOS families

- Multiple detections will highly 
constrain the NS EOS
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Spectrograms

Discovery of GW170817 SNR 
32.4 (Network) 
18.8 (H), 26.4(L), 2.0 (V)

Estimates of the two components 
of the binary

[LVC, 2017]



GW170817 enabled us to measure the tidal 
deformability for the first time

Λ constrains the nuclear EOS of NS matter.
LIGO-Virgo Collaboration put 
conservative upper limits on 
tidal deformability with post-
Newtonian waveform  
(restricted TF2  
with 5+1PNTidal).
symmetric contribution of 
tidal deformability

[LVC, 2017]

Λ̃ ≤ 900
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FIG. 3. The 90% credible region of the posterior probability for
the common radius R̂ and binary tidal deformability ⇤̃ with the
common EOS constraint for the three mass priors. The posteriors
for the individual parameters are shown with dotted lines at the
5%, 50% and 95% percentiles. The values of ⇤̃, and hence R̂
forbidden by causality have been excluded from the posteriors.

suggest a radius R̂ = 10.7+2.1
�1.6 ± 0.2 km (90% credible

interval, statistical and systematic errors) for the uniform
mass prior, R̂ = 10.9+2.1

�1.6±0.2 km for double neutron star
mass prior, and R̂ = 10.8+2.1

�1.6±0.2 km for the prior based
on all neutron star masses.

For the uniform mass prior, we computed the Bayes fac-
tor comparing a model with a prior ⇤s ⇠ U [0, 5000] to a
model with a prior ⇤s ⇠ U [0, 100]. We find log10(B) ⇠
1, suggesting that the data favors a model that includes
measurement of tidal deformability ⇤̃ & 100. However,
the evidences were calculated using thermodynamic inte-
gration of the MCMC chains [9]. We will investigate model
selection using e.g. nested sampling [33] in a future work.

Finally, we note the post-Newtonian waveform family
used will result in systematic errors in our measurement of
the tidal deformability [34, 35]. However, this waveform
family allows a direct comparison to the results of Ref. [1].
Accurate modeling of the waveform is challenging, as the
errors in numerical simulations are comparable to the size
of the matter effects that we are trying to measure [36].
Waveform systematics and comparison of other waveform
models (e.g. [37]) will be investigated in a future work.

Discussion—Using Bayesian parameter estimation we
have measured the tidal deformability and common radius
of the neutron stars in GW170817. Table I summarizes our
findings. To compare to Ref. [1], which reports a 90% up-
per limit on ⇤̃  800 under the assumption of a uniform
prior on ⇤̃, we integrate the posterior for ⇤̃ to obtain 90%
upper limits on ⇤̃. For the common EOS analyses these are
485, 521, and 516 for the uniform, double neutron star, and
Galactic neutron star component mass priors, respectively.

Mass prior ⇤̃ R̂ (km) B ⇤̃90%

Uniform 222+420
�138 10.7+2.1

�1.6 ± 0.2 369 < 485

Double neutron star 245+453
�151 10.9+2.1

�1.6 ± 0.2 125 < 521

Galactic neutron star 233+448
�144 10.8+2.1

�1.6 ± 0.2 612 < 516

TABLE I. Results from parameter estimation analyses using three
different mass prior choices with the common EOS constraint,
and applying the causal minimum constraint to ⇤(m). We show
90% credible intervals for ⇤̃, 90% credible intervals and system-
atic errors for R̂, Bayes factors B comparing our common EOS
to the unconstrained results, and the 90% upper limits on ⇤̃.

We find that in comparison to the unconstrained analysis,
the common EOS assumption significantly reduces the me-
dian value and 90% confidence upper bound of ⇤̃ by about
28% and 19% respectively for all three mass priors. The
difference between our common EOS results for the three
mass priors is consistent with the physics of the gravita-
tional waveform. At constant M, decreasing q causes the
binary to inspiral more quickly [38]. At constant M and
constant q, increasing ⇤̃ also causes the binary to inspi-
ral more quickly, so there is a mild degeneracy between q

and ⇤̃. The uniform mass prior allows the largest range
of mass ratios, so we can fit the data with a larger q and
smaller ⇤̃. The double neutron star mass prior allows the
smallest range of mass ratios and so a larger ⇤̃ is required
to fit the data, with the Galactic neutron star mass prior
lying between these two cases.

Nevertheless, considering all analyses we performed
with different mass prior choices, we find a relatively ro-
bust measurement of the common neutron star radius with
a mean value hR̂i = 10.8 km bounded above by R̂ <

13.2 km and below by R̂ > 8.9 km. Nuclear theory and
experiment currently predict a somewhat smaller range by
2 km, but with approximately the same centroid as our re-
sults [14, 39]. A minimum radius 10.5–11 km is strongly
supported by neutron matter theory [40–42], the unitary
gas [43], and most nuclear experiments [14, 39, 44]. The
only major nuclear experiment that could indicate radii
much larger than 13 km is the PREX neutron skin mea-
surement, but this has published error bars much larger
than previous analyses based on anti-proton data, charge
radii of mirror nuclei, and dipole resonances. Our re-
sults are consistent with photospheric radius expansion
measurements of X-ray binaries which obtain R ⇡ 10–
12 km [12, 45, 46]. Ref. [47] found from an analysis of 5
neutron stars in quiescent low-mass X-ray binaries a com-
mon neutron star radius 9.4±1.2 km, but systematic effects
including uncertainties in interstellar absorption and the
neutron stars’ atmospheric compositions are large. Other
analyses have inferred 12 ± 0.7 km [48] and 12.3 ± 1.8
km [49] for the radii of 1.4M� quiescent sources.

We have found that the relation q
7.48

< ⇤1/⇤2 < q
5.76

in fact completely bounds the uncertainty for the range of
M relevant to GW170817, assuming m2 > 1M� [55]

Independent analysis of GW170817
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FIG. 3. The 90% credible region of the posterior probability for
the common radius R̂ and binary tidal deformability ⇤̃ with the
common EOS constraint for the three mass priors. The posteriors
for the individual parameters are shown with dotted lines at the
5%, 50% and 95% percentiles.

namic integration of the MCMC chains [8] and we will in-
vestigate model selection using e.g. nested sampling [24]
in a future work.

Finally, we note the post-Newtonian waveform family
used will result in systematic errors in our measurement of
the tidal deformability [25, 26]. However, this waveform
family allows a direct comparison to the results of Ref. [1].
Accurate modeling of the waveform is challenging, as the
errors in numerical simulations are comparable to the size
of the matter effects that we are trying to measure [27].
Waveform systematics and comparison of other waveform
models (e.g. [28]) will be investigated in a future work.

Discussion—Using Bayesian parameter estimation we
have measured the tidal deformability and common radius
of the neutron stars in GW170817. Table I summarizes our
findings. To compare to Ref. [1], which reports a 90% up-
per limit on ⇤̃  800 under the assumption of a uniform
prior on ⇤̃, we integrate the posterior for ⇤̃ to obtain 90%
upper limits on ⇤̃. For the common EOS analyses these are
825, 888, and 852 for the uniform, double neutron star, and
Galactic neutron star component mass priors, respectively.
The difference between our results for the three mass pri-
ors is consistent with the physics of the gravitational wave-
form. At constant chirp mass, decreasing q causes the bi-
nary to inspiral more quickly [29]. At constant chirp mass
and constant q, increasing ⇤̃ also causes the binary to in-
spiral more quickly, so there is a mild degeneracy between
q and ⇤̃. The uniform mass prior allows the largest range
of mass ratios, so we can fit the data with a larger q and
smaller ⇤̃. The double neutron star mass prior allows the
smallest range of mass ratios and so a larger ⇤̃ is required

Mass prior ⇤̃ R̂ (km) B ⇤̃90%

Uniform 310+679
�234 11.3+2.4

�2.4 ± 0.2 525 < 825

Double neutron star 354+691
�245 11.6+2.3

�2.1 ± 0.2 230 < 852

Galactic neutron star 334+669
�241 11.5+2.3

�2.2 ± 0.2 285 < 888

TABLE I. Results from parameter estimation analyses using three
different mass prior choices with the common EOS constraint.
We show 90% credible intervals for ⇤̃, 90% credible intervals and
systematic errors for R̂, Bayes factors B comparing our common
EOS to the unconstrained results, and the 90% upper limits on ⇤̃.

to fit the data, with the Galactic neutron star mass prior
lying between these two cases.

Nevertheless, considering all analyses we performed
with different mass prior choices, we find a relatively ro-
bust measurement of the common neutron star radius with
a mean value hR̂i = 11.5 km bounded above by R̂ <

14.1 km and below by R̂ > 8.8 km. Nuclear theory and
experiment currently predict a somewhat smaller range by
2 km, but with approximately the same centroid as our
results. Ref. [11] used results from 12 photospheric ra-
dius expansion measurements of X-ray binaries to obtain
R = 10.6 ± 0.6, however this result neglects systematic
uncertainties which could be 2 km or greater.

In this letter, we have shown that for binary neutron star
mergers consistent with observed double neutron star sys-
tems, assuming a common EOS implies that ⇤1/⇤2 ' q

6.
We find evidence from GW170817 that favors the common
EOS interpretation compared to uncorrelated deformabili-
ties. Variation of the component mass priors does not sig-
nificantly influence our conclusions, suggesting that our re-
sults are robust. The lower limits of all our 90% credible
intervals lie above 75, which is larger than the lower causal
limit on ⇤̃ � 65 for a binary with M = 1.19M� and
mmax > 2M� [12]. Our results support the conclusion
that we find the first evidence for finite size effects using
gravitational-wave observations.
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the posterior for ⇤̃, goes to zero in the limit ⇤̃ ! 0. To
avoid the misinterpretation that there is no evidence for
⇤̃ = 0, we reweight the posterior for ⇤̃ by dividing by the
prior used, e↵ectively imposing a flat prior in ⇤̃. In prac-
tice, this is done by dividing a histogram of the posterior
by a histogram of the prior. The resulting histogram is
then resampled and smoothed with kernel density esti-
mation. We have verified the validity of the reweighting
procedure by comparing the results to runs where we fix
⇤2 = 0 and use a flat prior in ⇤̃. This di↵ers from the
reweighting procedure only in the small, next-to-leading-
order tidal e↵ect.

After reweighting there is still some support at ⇤̃ = 0.
For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed
in Tables II and IV. For the TaylorF2 model, this 90% up-
per limit can be directly compared to the value reported
in [3]. We note, however, that due to a bookkeeping error
the value reported in [3] should have been 800 instead of
700. Our improved value of 730 is ⇠ 10% less than this
corrected value. As with the ⇤1–⇤2 posterior (Fig. 10),
the three models with the NRTidal prescription predict
90% upper limits that are consistent with each other and
less than the TaylorF2 results by ⇠ 10%. For the low-
spin prior, we can now place a two-sided 90% highest
posterior density (HPD) credible interval on ⇤̃ that does
not contain ⇤̃ = 0. This 90% HPD interval is the smallest
interval that contains 90% of the probability.

The PDFs for the NRTidal waveform models are bi-
modal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific
noise realization, as similar results have been seen with
injected waveforms with simulated Gaussian noise (see
Fig. 4 of [135]).

In Fig. 11 we also show posteriors of ⇤̃ (gray PDFs)
predicted by the same EOSs as in Fig. 10, evaluated us-
ing the masses m1 and m2 sampled from the posterior.
The sharp cuto↵ to the right of each EOS posterior cor-
responds to the equal mass ratio boundary. Again, as in
Fig. 10, the EOSs MS1, MS1b, and H4 lie outside the
90% credible upper limit, and are therefore disfavored.

The di↵erences between the high-spin prior and low-
spin prior can be better understood from the joint pos-
terior for ⇤̃ and the mass ratio q. Figure 12 shows these
posteriors for the PhenomPNRT model without reweight-
ing by the prior. For mass ratios near q = 1, the two
posteriors are similar. However, the high-spin prior al-
lows for a larger range of mass ratios, and for smaller
values of q there is more support for small values of ⇤̃.
If we restrict the mass ratio to q >⇠ 0.5, or equivalently
m2

>⇠ 1 M�, we find that there is less support for small
values of ⇤̃, and the two posteriors for ⇤̃ are nearly iden-
tical.

To verify that we have reliably measured the tidal
parameters, we supplement the four waveforms used in
this paper with two time-domain EOB waveform models:
SEOBNRv4T [75, 136] and TEOBResumS [74]. SEOB-
NRv4T includes dynamical tides and the e↵ects of the
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FIG. 11. PDFs of the combined tidal parameter ⇤̃ for the
high-spin (top) and low-spin (bottom) priors. Unlike in Fig. 6,
the PDFs have been reweighted by dividing by the origi-
nal prior for ⇤̃ (also shown). The 90% HPD credible in-
tervals are represented by vertical lines for each of the four
waveform models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on
the credible interval is ⇤̃ = 0. The seven gray PDFs are
those for the seven representative EOSs using the masses es-
timated with the PhenomPNRT model. Their normalization
constants have been rescaled to fit in the figure. For these
EOSs, a 1.36M� NS has a radius of 10.4 km (WFF1), 11.3 km
(APR4), 11.7 km (SLy), 12.4 km (MPA1), 14.0 km (H4),
14.5 km (MS1b), and 14.9 km (MS1).

spin-induced quadrupole moment. TEOBResumS incor-
porates a gravitational-self-force re-summed tidal poten-
tial and the spin-induced quadrupole moment. Both
models are compatible with state-of-the-art BNS numer-
ical simulations up to merger [77, 137].

Unfortunately, these waveform models are too expen-
sive to be used for parameter estimation with LALIn-
ference. We therefore use the parallelized, but less
validated parameter estimation code RapidPE [78, 79].
This code uses a di↵erent procedure from the standard
LALInference code for generating posterior samples
and allows for parameter estimation with significantly
more expensive waveform models. For each point in the
intrinsic parameter space, RapidPE marginalizes over
the extrinsic parameters with Monte Carlo integration.
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FIG. 4. Marginalized posteriors for the binary inclination
(✓JN) and luminosity distance (DL) using a uniform-in-volume
prior (blue) and EM-constrained luminosity distance prior
(purple) [104]. The dashed and solid contours enclose the
50% and 90% credible regions respectively. Both analyses
use a low-spin prior and make use of the known location of
SSS17a. 1-D marginal distributions have been renormalized
to have equal maxima to facilitate comparison, and the ver-
tical and horizontal lines mark 90% credible intervals.

gle ✓JN = 151+15
�11 deg (low-spin) and ✓JN = 153+15

�11 deg
(high spin). This measurement is consistent for both the
high-spin and low-spin cases, since the EM measurements
constrain the source of GW170817 to higher luminosity
distances and correspondingly more face-on inclination
values. They are also consistent with the limits reported
in previous studies using afterglow measurements [108]
and combined GW and EM constraints [104, 109, 110] to
infer the inclination of the binary.

B. Masses

Owing to its low mass, most of the SNR for GW170817
comes from the inspiral phase, while the merger and
post-merger phases happen at frequencies above 1 kHz,
where LIGO and Virgo are less sensitive (Fig. 1). This
is di↵erent than the BBH systems detected so far,
e.g. GW150914 [111–114] or GW170814 [52]. The inspiral
phase evolution of a compact binary coalescence can be
written as a PN expansion, a power series in v/c, where v

is the characteristic velocity within the system [87]. The
intrinsic parameters on which the system depends enter
the expansion at di↵erent PN orders. Generally speak-
ing, parameters which enter at lower orders have a large
impact on the phase evolution, and are thus easier to
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FIG. 5. 90% credible regions for component masses using
the four waveform models for the high-spin prior (top) and
low-spin prior (bottom). The true thickness of the contour,
determined by the uncertainty in the chirp mass, is too small
to show. The points mark the edge of the 90% credible re-
gions. 1-D marginal distributions have been renormalized to
have equal maxima, and the vertical and horizontal lines give
the 90% upper and lower limits on m1 and m2, respectively.

measure using the inspiral portion of the signal.

The chirp mass M enters the phase evolution at the
lowest order, thus we expect it to be the best-constrained
among the source parameters [32, 80, 92, 93]. The mass
ratio q, and consequently the component masses, are in-
stead harder to measure due to two main factors: 1)
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We find that the Hanford and Livingston detectors of Advanced LIGO derive distinct poste-
rior probability distribution of binary tidal deformability ⇤̃ of the first binary-neutron-star merger
GW170817. Analyzing public data of GW170817 with a nested-sampling engine and the default
TaylorF2 waveform provided by the LALInference package, we obtain significantly multimodal dis-
tribution characterized by a disconnected highest-posterior-density 90% credible interval from the
Livingston detector. Furthermore, the distribution derived by the Livingston detector changes irreg-
ularly when we vary the maximum frequency of the data used in the analysis. These features are not
observed for the Hanford detector. By imposing the flat prior on tidal deformability of individual
stars, symmetric 90% credible intervals of ⇤̃ are estimated to be 234+960

�172 with the Hanford detector,
1639+578

�1193 with the Livingston detector, and 183+993
�130 with the LIGO-Virgo detector network. While

they are all consistent, the discrepancy and irregular behavior suggest that an in-depth study of
noise properties might improve our understanding of GW170817 and future events.

Introduction. Tidal deformability of neutron stars can
be a key quantity to understand the hitherto-unknown
nature of supranuclear density matter (see Ref. [1] for
reviews). The relation between the mass and tidal de-
formability is uniquely determined by the neutron-star
equation of state [2, 3] as the mass–radius relation is
[4]. Thus, simultaneous measurements of the mass and
tidal deformability are eagerly desired, and gravitational
waves from binary-neutron-star mergers give us a per-
fect opportunity. Once the mass–tidal deformability re-
lation is understood accurately, binary neutron stars can
be used as standard sirens to explore the expansion of the
universe even in the absence of electromagnetic counter-
parts [5]. Motivated by these facts, the influence of tidal
deformability on gravitational waves from binary neutron
stars has been studied vigorously in this decade [6–12].

The direct detection of gravitational waves from a
binary-neutron-star merger, GW170817, enabled us to
measure the tidal deformability of a neutron star for the
first time [13]. The LIGO-Virgo collaboration (LVC) re-
ported an upper bound on the most influential combi-
nation of tidal deformability parameters of two neutron
stars, the so-called binary tidal deformability ⇤̃, to be
. 800 (all the values in this paper refer to 90% credi-
bility) in their discovery paper [13] under the reasonable
assumption of small neutron-star spins (later corrected to
. 900 [14]). Independent analysis in Ref. [15] reported,
e.g., ⇤̃ = 222+420

�138 with the flat prior on the mass of neu-
tron stars and the reasonable assumption of a common,

causal equation of state for both neutron stars. LVC also
reported an updated highest-posterior-density interval,
⇤̃ = 300+420

�230 [14] using sophisticated waveform models
[16, 17] (see also Ref. [18] for an update), and this is fur-
ther restricted to 190+390

�120 if a common equation of state
is assumed [19].

All these inferences are made by combining the out-
put of Advanced LIGO twins, i.e., the Hanford and Liv-
ingston detectors (and Advanced Virgo). It should be
important to examine the extent to which results de-
rived by individual detectors agree, particularly in the
presence of glitch near merger [13]. A study on p–g in-
stability presented posterior probability distribution of ⇤̃
derived by individual detectors [20], but this is estimated
only with incorporating this e↵ect and without assuming
the small spins. Neither consistency nor discrepancy of
derived distribution is discussed.

In this paper, we present our independent analysis of
GW170817 to show that the Advanced LIGO twins derive
distinct posterior probability distribution of ⇤̃ (and only
for this quantity: see Supplemental Material). Although
the 90% credible intervals of ⇤̃ are nominally consistent
between the twins, close inspection of the distribution
suggests that the di↵erence might not be purely statis-
tical. Specifically, the distribution derived by the Liv-
ingston detector exhibits significant multimodal struc-
tures favoring larger values of ⇤̃ than those derived by
combining the twins. While it has been predicted that
particular noise realization sometimes give rise to mul-

If a common EOS is assumed, this is further 
restricted to Λ̃ = 190+390

−120
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Our independent reanalysis of GW170817

・NR calibrated tidal waveform models 
・flat prior on    ,     ~U[0, 3000]

・Bayesian inference, Nested sampling implemented in 
LALInference. 
・The sky position is fixed to the location determined by 
optical followup observations. 

・BayesLine PSD

basically following those adopted in the improved LVC analysis  
(e.g., arXiv:1805.11579) 

or our previous study (TN+, Phys. Rev. Res. 2019).

Λ̃ Λ̃



Bayesian parameter estimation of GWs

Bayes' theorem

H: hypothesis (signal embedded in data), {d}: data set, θ: parameters

Posterior

Prior

V. STATISITICS

Matched filter

ρ = (s, ĥ) = 2

∫ ∞

−∞
df

s̃(f)ĥ∗(f)

Sn(f)
(10)

O ≡ P (MG|s)
P (GR|s) =

P (MG)

P (GR)

P (s|MG)

P (s|GR)
, (11)

Bayes’ theorem

p(ϑ⃗|d⃗) ∝ L(d⃗|ϑ⃗)p(ϑ⃗) (12)

p(θ⃗|{d}, H) =
p(θ⃗|H)p({d}|θ⃗, H)

P ({d}|H)
(13)

O ∝ eSNR2(1−FF) (14)

data=noise+measured strain

dk(t) = nk(t) + hM
k (t; ϑ⃗) (15)

model the effect of calibration uncertainty

h̃M
k (f ; ϑ⃗) = h̃k(f ; ϑ⃗)

[
1 + δAk(f ; ϑ⃗)

]
exp

[
iδφk(f ; ϑ⃗)

]
(16)

VI. SKY LOCALIZATION

|Ω∂θτ | ≤ |∂θ logF+,×| (17)

VII. MODE-DECOMPOSING MATCHED-FILTERING SEARCH

(s|h) → (s+|h+) + (s×|h×) + (sb|hb) + (sl|hl) + (ssn|hsn) + (sse|hse) (18)

VIII. OPTIMAL SNR

Optimal SNR which Yuzurin calculated:

ρopt = Gc−3/2M
5/6

dπ2/3

(
5η

6

)1/2
[∫ fmax

fmin

df
f−7/3

Sn(f)

]1/2
(19)

Likelihood

as well as more stringent tests of the underlying source
dynamics [28,29].

Most of these studies use theoretical estimates of
parameter uncertainty based on the Cramer-Rao bound
[30], which should be valid in the limit of high signal-to-
noise ratio (SNR). Initial detections may be too weak for
this bound to provide useful guidance. Therefore, a com-
plete Bayesian analysis like the one described below must
be used to quantify parameter uncertainties. Other studies
have relied on injections into synthetic data. In this paper,
we will use injections into real data, which introduces a
new set of challenges, including non-Gaussianity and
nonstationarity.

The fact that gravitational waveforms used in the analy-
sis are an approximation to the actual radiation produced by
astrophysical sources and that the measured strain is af-
fected by the uncertainties in the instrument calibration
[31–33] represent additional challenges for making robust
inferences on the underlying physics. To study parameter
estimation in this regime, we have analyzed several artifi-
cial compact binary coalescence (CBC) signals added to
real detector data, including the ‘‘blind’’ injection
described above, added both in hardware and software to
the data collected by the two LIGO instruments (Hanford
and Livingston) and the Virgo detector during the most
recent joint science run, S6/VSR2-3. The use of injections
has been, and continues to be, an essential means to
validate the detection process, and as we report here, has
been naturally extended to the source-characterization
stage of the analysis. Here we exemplify the ability to
extract information about the source physics on a selected
number of injections that cover the neutron-star and black-
hole parameter space over the component mass range
1M!–25M! and the full range of spin parameters. We
consider a spectrum of realistic signal strengths, from
candidates observed close to the detection threshold to
high-SNR events, and various relative strengths across the
instruments of the network. We analyze the signals using a
range of waveform models that demonstrate the interplay
between (some) systematic bias and statistical uncertainty.
To help validate our results, we carry out the analysis with
several independent techniques; these are implemented
within a specially developed software package part of the
LSC Algorithm Library, LALINFERENCE [34].

The paper is organized as follows. In Sec. II we give a
brief overview of the analysis method. While no detections
were claimed in Ref. [7], simulated signals (‘‘injections’’)
were added to the data, both at a hardware level as the data
was being taken and in software afterwards. The hardware
injections were performed to validate the end-to-end
analysis, including parameter estimation on detection
candidates, whereas the injections in software serve as a
useful comparison, free of any calibration error in the
detectors. Here we report on the analysis using six hard-
ware and software injections, including waveform models

for binary neutron star (BNS), neutron star–black hole
binary (NSBH) and binary black-hole BBH) simulations,
described in Sec. III. One of these hardware injections was
performed without the knowledge of the data analysis
teams as part of the ‘‘blind injection challenge’’; it was
successfully detected, as reported in Ref. [7]. We use these
injections to illustrate the possible implications for GW
astronomy in Sec. IV, and we conclude in Sec. V.

II. ANALYSIS

A. Bayesian inference

Each data segment containing an injected signal was
analyzed using a Bayesian parameter estimation pipeline
to calculate the probability density function (PDF) of
the unknown parameters of the waveform model. We will

call ~! the vector containing these parameters. The actual

content and dimension of ~!, i.e. the dimensionality of the
parameter space, depend on the waveform model used for
the analysis (see Sec. II B).

The posterior distribution of ~! given a model H is given
by Bayes’ theorem,

pð ~!jfdg; HÞ ¼ pð ~!jHÞpðfdgj ~!; HÞ
PðfdgjHÞ ; (1)

where pð ~!jHÞ is the prior distribution of ~!, describing
knowledge about the parameters within a model H before

the data is analyzed, and pðfdgj ~!; HÞ is the likelihood
function, denoting the probability under model H of

obtaining the data set fdg for a given parameter set ~!.
The likelihood is a function of the noise-weighted resid-
uals after subtracting the model from the data, and is
thus a direct measure of the goodness of fit of the model
to the data.
The optimal network SNR is defined as

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

det

Z fHigh

fLow

jsdetðf; ~!Þj2
SdetðfÞ

df

s
; (2)

where the sum is taken over each detector det with sdet the
signal in that detector and SdetðfÞ its noise power spectral
density (PSD).
Our model for the likelihood function is based on the

assumption that the noise is stationary and Gaussian, and
uncorrelated in different frequency bins. Although we do
not expect this assumption to be precisely true for real
detector noise, limited investigations suggest that this is
an acceptable approximation when the data is of good
quality [35].
The denominator of Eq. (1), PðfdgjHÞ % ZH, is the

evidence for the model H. As it is a normalization
constant, the evidence does not affect the estimation of
the parameters for a particular model H, but it does
allow us to compare the ability of different models to
describe the data. The Bayes factor between two models,

J. AASI et al. PHYSICAL REVIEW D 88, 062001 (2013)

062001-6

Evidence for the model H

Why Bayesian statistics and stochastic sampling 
・A lot of parameters 
・Parameter estimation (PE) 
・Model selection

We calculate posterior with Nested sampling 
(LIGO Algorithm Library (LAL), LALInference)

L(d|~✓) / exp

 
�2

Z 1

0

|d̃(f)� h(~✓, f)|2

Sn(f)
df

!

・23 Hz≦f≦fmax, fmax=1000 Hz or 2048 Hz (min[fISCO, fs/2]), fs=4096 Hz.
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p(~✓|H) is the prior for the binary parameters. The like-

lihood p(~s(t)|~✓, H) is evaluated by assuming stationarity
and Gaussianity for the detector noise using the noise
power spectrum density derived with BayesLine2. We
compute PDFs by using stochastic sampling engine based
on nested sampling [47, 48]. Specifically, we use the pa-
rameter estimation software, LALInference [49], which is
one of the software of LIGO Algorithm Library (LAL)
software suite. We take the frequency range from 23
Hz to fmax. Here, the maximum frequency fmax is cho-

sen from two values, 1000 Hz or min[fISCO, fs/2], where
fISCO is the frequency at the innermost stable circular
orbit of a Schwarzschild black hole with total mass of
the binary, and fs is the sampling rate of data. We set
fs = 4096 Hz. The former choice is made because the
TF2+ KyotoTidal model is calibrated in the frequency
range of 10-1000 Hz. The latter choice corresponds to
the assumption that the inspiral stage is terminated at
the smaller of fISCO and fs/2. In this work, we represent
the latter choice by fmax = 2048 Hz for simplicity.

Model name Point-particle parts Tidal e↵ects Refs.
amplitude phase amplitude phase

TF2 PNTidal 3PN 3.5PN 5+1PN 5+2.5PN [28, 37]
TF2+ PNTidal 6PN 6PN 5+1PN 5+2.5PN [28]

TF2+ KyotoTidal 6PN 6PN Polynomial Non-linear [28]
TF2+ NRTidal 6PN 6PN - Padé approximation [41]

TABLE I. Waveform models used to reanalyze GW170817. Our reference model, the TF2+ KyotoTidal model incorporates
TF2+ as the point-particle parts and NR calibrated tidal e↵ects, where TF2+ is the TaylorF2 approximant supplemented with
phenomenological higher-order PN terms. The TF2+ NRTidal model is another NR calibrated waveform model for tidal e↵ects.
The TF2+ PNTidal model employ the PN tidal-part phase formula. The point-particle part of the TF2 PNTidal model is the
TaylorF2 approximant. All waveform models used in our parameter estimation analyses treat aligned spins and incorporate
3.5PN order formula in spin-orbit interactions, 2PN order formula in spin-spin, and self-spin interactions.

B. Waveform models for inspiraling BNSs

We use four di↵erent analytic frequency-domain wave-
form models for the inspiral phase. Each waveform’s fea-
ture is summarized in Table I. The Fourier transform of
the gravitational waveform can be written as

h̃(f) = A(f)ei (f)
. (2)

where the amplitude A(f) and the phase  (f) can be
decomposed into the point-particle phase evolution, the
spin e↵ects, and the tidal e↵ects as

A(f) = Apoint�particle(f) +Aspin(f) +Atidal(f) (3)

and

 (f) =  point�particle(f) + spin(f) + tidal(f). (4)

We use TaylorF2 (hereafter TF2) and phenomenolog-
ically extended model of TF2, called TF2+ (see Ref. [28]
and below) as the point-particle baseline. Here, the
3.5PN and 3PN-order formulas are employed for the
phase and amplitude, respectively, for TF2 [33, 37]. For
TF2+, the PN order for both the phase and amplitude
are extended to the 6PN order by fitting SEOBNRv2
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tion analyses assume that the spins of component stars
are aligned with the orbital angular momentum, and in-
corporate 3.5PN order formula in couplings between the
orbital angular momentum and the component spins [36],
2PN order formula in point-mass spin-spin, and self-
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menta of the components. We note that TF2 and TF2+

denote the point-particle baseline and spin e↵ects.
During the BNS inspiral, at the leading order, the in-

duced quadrupole moment tensor Qij is proportional to
the external tidal field tensor Eij as Qij = ��Eij . The
information about the NS EOS can be quantified by the
tidal deformability parameter � [39]. The leading order
tidal contribution to the GW phase evolution (relative
5PN order) is governed by the symmetric contribution
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which is a mass-weighted linear combination of the tidal
deformability of the both components, where m1,2 is the
component mass and ⇤1,2 is the dimensionless tidal de-
formability parameter of each star ⇤ = �/m

5. The an-
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p(~✓|H) is the prior for the binary parameters. The like-

lihood p(~s(t)|~✓, H) is evaluated by assuming stationarity
and Gaussianity for the detector noise using the noise
power spectrum density derived with BayesLine2. We
compute PDFs by using stochastic sampling engine based
on nested sampling [47, 48]. Specifically, we use the pa-
rameter estimation software, LALInference [49], which is
one of the software of LIGO Algorithm Library (LAL)
software suite. We take the frequency range from 23
Hz to fmax. Here, the maximum frequency fmax is cho-

sen from two values, 1000 Hz or min[fISCO, fs/2], where
fISCO is the frequency at the innermost stable circular
orbit of a Schwarzschild black hole with total mass of
the binary, and fs is the sampling rate of data. We set
fs = 4096 Hz. The former choice is made because the
TF2+ KyotoTidal model is calibrated in the frequency
range of 10-1000 Hz. The latter choice corresponds to
the assumption that the inspiral stage is terminated at
the smaller of fISCO and fs/2. In this work, we represent
the latter choice by fmax = 2048 Hz for simplicity.

Model name Point-particle parts Tidal e↵ects Refs.
amplitude phase amplitude phase

TF2 PNTidal 3PN 3.5PN 5+1PN 5+2.5PN [28, 37]
TF2+ PNTidal 6PN 6PN 5+1PN 5+2.5PN [28]

TF2+ KyotoTidal 6PN 6PN Polynomial Non-linear [28]
TF2+ NRTidal 6PN 6PN - Padé approximation [41]

TABLE I. Waveform models used to reanalyze GW170817. Our reference model, the TF2+ KyotoTidal model incorporates
TF2+ as the point-particle parts and NR calibrated tidal e↵ects, where TF2+ is the TaylorF2 approximant supplemented with
phenomenological higher-order PN terms. The TF2+ NRTidal model is another NR calibrated waveform model for tidal e↵ects.
The TF2+ PNTidal model employ the PN tidal-part phase formula. The point-particle part of the TF2 PNTidal model is the
TaylorF2 approximant. All waveform models used in our parameter estimation analyses treat aligned spins and incorporate
3.5PN order formula in spin-orbit interactions, 2PN order formula in spin-spin, and self-spin interactions.

B. Waveform models for inspiraling BNSs

We use four di↵erent analytic frequency-domain wave-
form models for the inspiral phase. Each waveform’s fea-
ture is summarized in Table I. The Fourier transform of
the gravitational waveform can be written as

h̃(f) = A(f)ei (f)
. (2)

where the amplitude A(f) and the phase  (f) can be
decomposed into the point-particle phase evolution, the
spin e↵ects, and the tidal e↵ects as

A(f) = Apoint�particle(f) +Aspin(f) +Atidal(f) (3)

and

 (f) =  point�particle(f) + spin(f) + tidal(f). (4)

We use TaylorF2 (hereafter TF2) and phenomenolog-
ically extended model of TF2, called TF2+ (see Ref. [28]
and below) as the point-particle baseline. Here, the
3.5PN and 3PN-order formulas are employed for the
phase and amplitude, respectively, for TF2 [33, 37]. For
TF2+, the PN order for both the phase and amplitude
are extended to the 6PN order by fitting SEOBNRv2

model [60, 63].
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tion analyses assume that the spins of component stars
are aligned with the orbital angular momentum, and in-
corporate 3.5PN order formula in couplings between the
orbital angular momentum and the component spins [36],
2PN order formula in point-mass spin-spin, and self-
spin interactions [34, 35]. The e↵ective spin parameter
�e↵ = (m1�1+m2�2)/Mtot is the most measurable com-
bination of spin components, where �1,2 = cS1,2/(Gm
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is the orbit-aligned dimensionless spin components of the
stars with S1,2 are the magnitudes of the spin angular mo-
menta of the components. We note that TF2 and TF2+

denote the point-particle baseline and spin e↵ects.
During the BNS inspiral, at the leading order, the in-

duced quadrupole moment tensor Qij is proportional to
the external tidal field tensor Eij as Qij = ��Eij . The
information about the NS EOS can be quantified by the
tidal deformability parameter � [39]. The leading order
tidal contribution to the GW phase evolution (relative
5PN order) is governed by the symmetric contribution
of NS tidal deformation, the binary tidal deformabil-
ity [39, 40]
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which is a mass-weighted linear combination of the tidal
deformability of the both components, where m1,2 is the
component mass and ⇤1,2 is the dimensionless tidal de-
formability parameter of each star ⇤ = �/m

5. The an-

where the amplitude and the phase
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・NRTidalv2 
・PNTidal

Model name Point-particle part

Amplitude Phase

TF2 3PN 3.5PN

TF2+ 6PN 6PN

Model name Tidal part
Amplitude Phase

KyotoTidal Polynomial Nonlinear
NRTidal - Pade approx.

NRTidalv2 Pade approx. Pade approx.

PNTidal 5+1PN 5+2.5PN
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compute PDFs by using stochastic sampling engine based
on nested sampling [48, 49]. Specifically, we use the pa-
rameter estimation software, LALInference [50], which is
one of the software of LIGO Algorithm Library (LAL)
software suite. We take the frequency range from 23
Hz to fmax. Here, the maximum frequency fmax is cho-
sen from two values, 1000 Hz or min[fISCO, fs/2], where
fISCO is the frequency at the innermost stable circular

orbit of a Schwarzschild black hole with total mass of
the binary, and fs is the sampling rate of data. We set
fs = 4096 Hz. The former choice is made because the
TF2+ KyotoTidal model is calibrated in the frequency
range of 10-1000 Hz. The latter choice corresponds to
the assumption that the inspiral stage is terminated at
the smaller of fISCO and fs/2. In this work, we represent
the latter choice by fmax = 2048 Hz for simplicity.

Model name Point-particle part Tidal part Refs.
amplitude phase amplitude phase

TF2 PNTidal 3PN 3.5PN 5+1PN 5+2.5PN [28, 38]
TF2+ PNTidal 6PN 6PN 5+1PN 5+2.5PN [28]

TF2+ KyotoTidal 6PN 6PN Polynomial Non-linear [28]
TF2+ NRTidal 6PN 6PN - Padé approximation [42]

TABLE I. Waveform models used to reanalyze GW170817. Our reference model, the TF2+ KyotoTidal model incorporates
TF2+ as the point-particle and spin parts and NR calibrated tidal e↵ects. The TaylorF2 approximant employs the 3.5PN-
and 3PN-order formulas for the phase and amplitude, respectively as the point-particle part, and treats aligned spins and
incorporates 3.5PN-order formula in spin-orbit interactions, 2PN-order formula in spin-spin, and self-spin interactions. TF2+ is
the TaylorF2 approximant supplemented with phenomenological higher-order PN terms for the point-particle part. The
TF2+ NRTidal model is another NR calibrated waveform model for tidal e↵ects. The TF2 PNTidal and TF2+ PNTidal models
employ the PN tidal-part phase formula.

B. Waveform models for inspiraling BNSs

We use four di↵erent analytic frequency-domain wave-
form models for the inspiral phase. Each waveform’s fea-
ture is summarized in Table I. The Fourier transform of
the gravitational waveform can be written as

h̃(f) = A(f)ei (f)
. (2)

where the amplitude A(f) and the phase  (f) can be
decomposed into the point-particle phase evolution, the
spin e↵ects, and the tidal e↵ects as

A(f) = Apoint�particle(f) +Aspin(f) +Atidal(f) (3)

and

 (f) =  point�particle(f) + spin(f) + tidal(f). (4)

We use TaylorF2 [33, 35, 38] (hereafter TF2) and phe-
nomenologically extended model of TF2, called TF2+ (see
Ref. [28] and below) as binary black hole baseline, which
consists of point-particle and spin parts. Here, the
3.5PN-order formula for the phase and 3PN-order for-
mulas for the amplitude are employed as the point-
paticle part of TF2 [33, 35, 38]. For TF2+, the PN order
for both the phase and amplitude of the point-particle
part are extended to the 6PN-order by fitting SEOBNRv2

model [61, 64].
All waveform models used in our parameter estima-

tion analyses assume that the spins of component stars
are aligned with the orbital angular momentum, and in-
corporate 3.5PN-order formula in couplings between the

orbital angular momentum and the component spins [37],
2PN-order formula in point-mass spin-spin, and self-
spin interactions [34, 36]. The e↵ective spin parameter
�e↵ = (m1�1+m2�2)/Mtot is the most measurable com-
bination of spin components, where �1,2 = cS1,2/(Gm

2
1,2)

is the orbit-aligned dimensionless spin components of the
stars with S1,2 are the magnitudes of the spin angular mo-
menta of the components. We note that TF2 and TF2+

denote point-particle and spin parts as binary black hole
baseline.
During the BNS inspiral, at the leading order, the in-

duced quadrupole moment tensor Qij is proportional to
the external tidal field tensor Eij as Qij = ��Eij . The
information about the NS EOS can be quantified by the
tidal deformability parameter � [40]. The leading order
tidal contribution to the gravitational wave (GW) phase
evolution (relative 5PN-order) is governed by the sym-
metric contribution of NS tidal deformation, the binary
tidal deformability [40, 41]
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which is a mass-weighted linear combination of the tidal
deformability of the both components, where m1,2 is the
component mass and ⇤1,2 is the dimensionless tidal de-
formability parameter of each star ⇤ = �/m

5. The an-
tisymmetric contribution �⇤̃ terms are always subdomi-
nant on the tidal e↵ects to the gravitational-wave phase
and the symmetric contribution ⇤̃ terms dominate [2, 52].
In this paper, we ignore the �⇤̃ contribution.
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where AGW(t) and �GW(t) are the GW amplitude and
phase, respectively. For a binary viewed face-on, GWs are
circularly polarized, whereas for a binary observed edge-
on, GWs are linearly polarized.

During the inspiral, the phase evolution
�GW(t;m1,2,S1,2) can be computed using post-
Newtonian (PN) theory, which is a perturbative expansion
in powers of the orbital velocity v/c [24]. For GW150914,
v/c is in the range ⇡0.2–0.5 in the LIGO sensitivity
band. At the leading order, the phase evolution is driven
by a particular combination of the two masses, commonly
called the chirp mass [25],
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ḟ
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where f is the GW frequency, ḟ is its time derivative and
M = m1 + m2 is the total mass. Additional parameters
enter at each of the following PN orders. First, the mass
ratio, q = m2/m1  1, and the BH spin components
parallel to the orbital angular momentum vector L affect
the phase evolution. The full degrees of freedom of the
spins enter at higher orders. Thus, from the inspiral, we
expect to measure the chirp mass best and only place weak
constraints on the mass ratio and (the components parallel
to L of) the spins of the BHs [18, 26].

Spins are responsible for an additional characteristic ef-
fect: if misaligned with respect to L, they cause the bi-
nary’s orbital plane to precess around the almost-constant
direction of the total angular momentum of the binary,
J = L + S1 + S2. This leaves characteristic amplitude
and phase modulations in the observed strain [27], as  
and ◆ become time-dependent. The size of these modula-
tions depends crucially on the viewing angle of the source.

As the BHs get closer to each other and their veloci-
ties increase, the accuracy of the PN expansion degrades,
and eventually the full solution of Einstein’s equations is
needed to accurately describe the binary evolution. This is
accomplished using numerical relativity (NR) which, after
the initial breakthrough [28–30], has been improved con-
tinuously to achieve the sophistication of modeling needed
for our purposes. The details of the merger and ringdown
are primarily governed by the mass and spin of the final
BH. In particular, the final mass and spin determine the
(constant) frequency and decay time of the BH’s ringdown
to its final state [31]. The late stage of the coalescence al-
lows us to measure the total mass which, combined with
the measurement of the chirp mass and mass-ratio from the
early inspiral, yields estimates of the individual component
masses for the binary.

The observed frequency of the signal is redshifted by a
factor of (1 + z), where z is the cosmological redshift.
There is no intrinsic mass or length scale in vacuum gen-
eral relativity, and the dimensionless quantity that incorpo-
rates frequency is fGm/c

3. Consequently, a redshifting
of frequency is indistinguishable from a rescaling of the

masses by the same factor [32, 33]. We therefore measure
redshifted masses m, which are related to source frame
masses by m = (1 + z)m

source. However, the GW am-
plitude AGW, Eq. (2), also scales linearly with the mass
and is inversely proportional to the comoving distance in
an expanding universe. This implies that AGW / 1/DL

and from the GW signal alone we can directly measure the
luminosity distance, but not the redshift.

The observed time delay, and the need for the regis-
tered signal at the two sites to be consistent in amplitude
and phase, allow us to localize the source to a ring on the
sky [34, 35]. Where there is no precession, changing the
viewing angle of the system simply changes the observed
waveform by an overall amplitude and phase. Furthermore,
the two polarizations are the same up to overall amplitude
and phase. Thus, for systems with minimal precession, the
distance, binary orientation, phase at coalescence and sky
location of the source change the overall amplitude and
phase of the source in each detector, but they do not change
the signal morphology. Phase and amplitude consistency
allow us to untangle some of the geometry of the source. If
the binary is precessing, the GW amplitude and phase have
a complicated dependency on the orientation of the binary,
which provides additional information.

Our ability to characterise GW150914 as the signature
of a binary system of compact objects, as we have outlined
above, is dependent on the finite signal-to-noise ratio of the
signal and the specific properties of the underlying source.
These properties described in detail below, and the inferred
parameters for GW150914 are summarised in Table I and
Figures 1–6.

Method— Full information about the properties of the
source is provided by the probability density function
(PDF) p(~#|~d) of the unknown parameters, given the two
data-streams from the instruments ~d.

The posterior PDF is computed through a straightfor-
ward application of Bayes’ theorem [36, 37]. It is propor-
tional to the product of the likelihood of the data given the
parameters L(~d|~#), and the prior PDF on the parameters
p(~#) before we consider the data. From the (marginalised)
posterior PDF, shown in Figures 1–5 for selected param-
eters, we then construct credible intervals for the parame-
ters, reported in Table I.

In addition, we can compute the evidence Z for the
model under consideration. The evidence (also known as
marginal likelihood) is the average of the likelihood under
the prior on the unknown parameters for a specific model
choice.

At the detector output we record the data dk(t) =

nk(t) + h
M
k (t;

~#), where nk is the noise, and h
M
k is the

measured strain, which differs from the physical strain hk

from Eq. (1) as a result of the detectors’ calibration [38].
In the frequency domain, we model the effect of calibra-

and only place weak constraints on the mass ratio q=m2/m1≦1 
and the spin.

0PN 1PN 1.5PN

[Kawaguchi+, 2018]
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Effect of spins on GW signals 

• If  spins are misaligned with the orbital angular momentum, 
spins and orbit will precess. Observed GW signal will 
contain amplitude & phase modulations. 
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binaries with large mass ratios and high inclination angles, 
which are intrinsically dimmer. 
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tion uncertainty by considering
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where �Ak(f ;
~#) and ��k(f ;

~#) are the frequency-
dependent amplitude and phase calibration-error functions,
respectively. These calibration-error functions are mod-
elled using a cubic spline polynomial, with five nodes per
spline model placed uniformly in ln f [39].

We have analyzed the data at the time of this event using
a coherent analysis. Under the assumption of stationary,
Gaussian noise uncorrelated in each detector [40], the like-
lihood function for the LIGO network is [17, 41]:

L(~d|~#) / exp

"
�1

2

X
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D
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k (
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���hM
k (

~#) � dk

E#
,

(5)
where h·|·i is the noise-weighted inner product [17]. We
model the noise as a stationary Gaussian process of zero
mean and known variance, which is estimated from the
power spectrum computed using up to 1024 s of data adja-
cent to, but not containing, the GW signal [41].

The source properties are encoded into the two polar-
izations h+ and h⇥. Here we focus on the case in which
they originate from a compact binary coalescence; we use
model waveforms (described below) that are based on solv-
ing Einstein’s equations for the inspiral and merger of two
BHs.

The computation of marginalized PDFs and the model
evidences require the evaluation of multi-dimensional in-
tegrals. This is addressed by using a suite of Bayesian
parameter-estimation and model-selection algorithms tai-
lored to this problem [41]. We verify the results by us-
ing two independent stochastic sampling engines based on
Markov-chain Monte Carlo [42, 43] and nested sampling
[44, 45] techniques.1

In addition to this analysis, we consider a model which is
not derived from a particular physical scenario and makes
minimal assumptions about h+,⇥. In this case we com-
pute directly the posterior p(~h|~d) by reconstructing h+,⇥
using a linear combination of elliptically polarized sine–
Gaussian wavelets whose amplitudes are assumed to be
consistent with a uniform source distribution [46], see Fig-
ure 6. The number of wavelets in the linear combination
is not fixed a priori but is optimized via Bayesian model
selection. This analysis directly infers the PDF of the GW
strain given the data, p(~h|~d).

1 The marginalized PDFs and model evidences are computed using the
LALInference package of the LIGO Algorithm Library (LAL) software
suite available from www.lsc-group.phys.uwm.edu/lal.

BBH waveform models— For the modelled analysis of
binary coalescences, an accurate waveform prediction for
the gravitational radiation h+,⇥ is essential. As a conse-
quence of the complexity of solving the two body prob-
lem in general relativity, several techniques have to be
combined to describe all stages of the binary coalescence.
While the early inspiral is well described by the analyti-
cal PN expansion [47], which relies on small velocities and
weak gravitational fields, the strong-field merger stage can
only be solved in full generality by large-scale NR sim-
ulations [28–30]. Since these pioneering works, numer-
ous improvements have enabled numerical simulations of
BBHs with sufficient accuracy for the applications consid-
ered here and for the region of parameter space of relevance
to GW150914 (see, e.g. [48–50]). Tremendous progress
has also been made in the past decade to combine analytical
and numerical approaches, and now several accurate wave-
form models are available, and they are able to describe the
entire coalescence for a large variety of possible configura-
tions [49, 51–57]. Extending and improving such models
is an active area of research, and none of the current mod-
els can capture all possible physical effects (eccentricity,
higher order gravitational modes in the presence of spins,
etc.) for all conceivable binary systems. We discuss the
current state of the art below.

In the Introduction, we outlined how the binary parame-
ters affect the observable GW signal, and now we discuss in
the BH spins greater detail. There are two main effects that
the BH spins S1 and S2 have on the phase and amplitude
evolution of the GW signal. The spin projections along
the direction of the orbital angular momentum L̂ affect the
inspiral rate of the binary. In particular, spin components
aligned (antialigned) with L̂ increase (decrease) the num-
ber of orbits from any given separation to merger with re-
spect to the nonspinning case [47, 58]. Given the limited
signal-to-noise ratio of the observed signal, it is difficult to
untangle the full degrees of freedom of the individual BH’s
spins, see e.g., [59, 60]. However, some spin information
is encoded in a dominant spin effect. Several possible 1-
dimensional parametrizations of this effect can be found
in the literature [18, 61, 62]; here, we use a simple mass-
weighted linear combination of the spins [63, 64]
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which takes values between �1 (both BHs have maximal
spins antialigned with respect to the orbital angular mo-
mentum) and +1 (maximal aligned spins).

Having described the effect of the two spin components
aligned with the orbital angular momentum, four in-plane
spin components remain. These lead to precession of the
spins and the orbital plane, which in turn introduces mod-
ulations in the strain amplitude and phase as measured at
the detectors. At leading order in the PN expansion, the

which takes values between -1 (both objects have maximal spins 
antialigned with respect to L) and +1 (maximal aligned spins).

χ = c |S | /(Gm2) ≤ 1
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FIG. 1. Tidal phase in the frequency domain divided by the
leading, Newtonian (relative 5PN-order) tidal phase formula.
Here, we use (m1, m2) = (1.35M�, 1.35M�). We show ⇤̃ =
1000 (blue, dot-dashed), 400 (blue, dashed), and 100 (blue,
dotted) for the KyotoTidal model. The NRTidal model (red)
and the 5+2.5PN tidal-part phase formula, 5+2.5PNTidal

(green) are also presented, which are independent from ⇤̃
when divided by the leading tidal phase e↵ect.

tisymmetric contribution �⇤̃ terms are always subdomi-
nant on the tidal e↵ects to the gravitational-wave phase
and the symmetric contribution ⇤̃ terms dominate [2, 51].
In this paper, we ignore the �⇤̃ contribution.

The TF2 PNTidal model and the TF2+ PNTidal model
denote the waveform models employing TF2 and
TF2+ as the point-particle parts of gravitational
waves, respectively. Both the TF2 PNTidal and the
TF2+ PNTidal models employ the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [38]
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where x = (⇡Mtotf)2/3 is the dimensionless PN pa-
rameter, Mtot = m1 + m2 is the total mass, and
⌘ = m1m2/(m1 + m2)2 is the symmetric mass ra-
tio. The tidal-part amplitude for both TF2 PNTidal and
TF2+ PNTidal employ the 5+1PN-order amplitude for-
mula given by [38]
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where dL is the luminosity distance to the source.
The TF2+ KyotoTidal model is a NR calibrated wave-

form model for inspiraling BNS mergers [28, 29]. The

TF2+ KyotoTidal model employs TF2+ as the point-
particle parts and extends the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [38] by multi-
plying ⇤̃ by a nonlinear correction to model the tidal part
to the gravitational-wave phase. The functional forms of
the tidal-part phase is
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where a = 12.55 and p = 4.240. The tidal-part amplitude
is extended by adding Eq. (7) to the higher-order PN
tidal e↵ects as

A
KyotoTidal

tidal
=

r
5⇡⌘

24

M
2
tot

dL
⇤̃x�7/4

⇥
✓
�27

16
x
5 � 449

64
x
6 � bx

r

◆
, (9)

where b = 4251 and r = 7.890. In the KyotoTidalmodel,
the hybrid waveforms constructed from high-precision
NR waveforms and the SEOBNRv2T waveforms [60, 63–
66] are used for model calibration. The phase di↵er-
ence between the TF2+ KyotoTidal model and the hy-
brid waveforms is smaller than 0.1 rad up to 1000 Hz for
300 . ⇤̃ . 1900 and for the mass ratio q = m2/m1  1
between 0.73 and 1 [28]. In [28], it is shown that for the
signal-to-noise ratio (SNR) . 50 the mismatch between
the TF2+ KyotoTidal model and the hybrid waveforms
is always smaller than 1.1⇥ 10�5.
The NRTidal model is another approach to describe

tidal e↵ects calibrated by NR waveforms [41]3. The
TF2+ NRTidal model employs TF2+ as the point-particle
parts. For the tidal e↵ects, this model extends the linear-
order e↵ects by e↵ectively adding the higher-order terms
of the tidal deformability to the gravitational-wave phase.
As shown in Ref. [41], the expression of the tidal phase
is given by the form of a Padé function:
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where d̃1 = ñ1 � 3115/1248, the other parameters
are (ñ1, ñ3/2, ñ2, ñ5/2) = (�17.428, 31.867, �
26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [41].

3
During the completion stage of this work, a new model NRTidalv2

has come out in Ref. [42]
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FIG. 1. Tidal phase in the frequency domain divided by the
leading, Newtonian (relative 5PN-order) tidal phase formula.
Here, we use (m1, m2) = (1.35M�, 1.35M�). We show ⇤̃ =
1000 (blue, dot-dashed), 400 (blue, dashed), and 100 (blue,
dotted) for the KyotoTidal model. The NRTidal model (red)
and the 5+2.5PN tidal-part phase formula, 5+2.5PNTidal

(green) are also presented, which are independent from ⇤̃
when divided by the leading tidal phase e↵ect.
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and the symmetric contribution ⇤̃ terms dominate [2, 51].
In this paper, we ignore the �⇤̃ contribution.
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where x = (⇡Mtotf)2/3 is the dimensionless PN pa-
rameter, Mtot = m1 + m2 is the total mass, and
⌘ = m1m2/(m1 + m2)2 is the symmetric mass ra-
tio. The tidal-part amplitude for both TF2 PNTidal and
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where dL is the luminosity distance to the source.
The TF2+ KyotoTidal model is a NR calibrated wave-

form model for inspiraling BNS mergers [28, 29]. The

TF2+ KyotoTidal model employs TF2+ as the point-
particle parts and extends the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [38] by multi-
plying ⇤̃ by a nonlinear correction to model the tidal part
to the gravitational-wave phase. The functional forms of
the tidal-part phase is
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where a = 12.55 and p = 4.240. The tidal-part amplitude
is extended by adding Eq. (7) to the higher-order PN
tidal e↵ects as
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where b = 4251 and r = 7.890. In the KyotoTidalmodel,
the hybrid waveforms constructed from high-precision
NR waveforms and the SEOBNRv2T waveforms [60, 63–
66] are used for model calibration. The phase di↵er-
ence between the TF2+ KyotoTidal model and the hy-
brid waveforms is smaller than 0.1 rad up to 1000 Hz for
300 . ⇤̃ . 1900 and for the mass ratio q = m2/m1  1
between 0.73 and 1 [28]. In [28], it is shown that for the
signal-to-noise ratio (SNR) . 50 the mismatch between
the TF2+ KyotoTidal model and the hybrid waveforms
is always smaller than 1.1⇥ 10�5.
The NRTidal model is another approach to describe

tidal e↵ects calibrated by NR waveforms [41]3. The
TF2+ NRTidal model employs TF2+ as the point-particle
parts. For the tidal e↵ects, this model extends the linear-
order e↵ects by e↵ectively adding the higher-order terms
of the tidal deformability to the gravitational-wave phase.
As shown in Ref. [41], the expression of the tidal phase
is given by the form of a Padé function:
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2 + ñ5/2x

5/2

1 + d̃1x+ d̃3/2x
3/2

#
,

(10)

where d̃1 = ñ1 � 3115/1248, the other parameters
are (ñ1, ñ3/2, ñ2, ñ5/2) = (�17.428, 31.867, �
26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [41].
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[Vines, Flanagan & Hinderer 2011]

Tidal effects

Q=-λε

Q: (tidal induced) quadrupole moment

When binary orbital separations are small, each star is tidally distorted by its 
companion.

tidal deformability: λ=-
ε: companion's tidal field

The information about the NS EOS can be quantified by λ.

3

p(~✓|H) is the prior for the binary parameters. The like-

lihood p(~s(t)|~✓, H) is evaluated by assuming stationarity
and Gaussianity for the detector noise using the noise
power spectrum density derived with BayesLine2. We
compute PDFs by using stochastic sampling engine based
on nested sampling [47, 48]. Specifically, we use the pa-
rameter estimation software, LALInference [49], which is
one of the software of LIGO Algorithm Library (LAL)
software suite. We take the frequency range from 23
Hz to fmax. Here, the maximum frequency fmax is cho-

sen from two values, 1000 Hz or min[fISCO, fs/2], where
fISCO is the frequency at the innermost stable circular
orbit of a Schwarzschild black hole with total mass of
the binary, and fs is the sampling rate of data. We set
fs = 4096 Hz. The former choice is made because the
TF2+ KyotoTidal model is calibrated in the frequency
range of 10-1000 Hz. The latter choice corresponds to
the assumption that the inspiral stage is terminated at
the smaller of fISCO and fs/2. In this work, we represent
the latter choice by fmax = 2048 Hz for simplicity.

Model name Point-particle parts Tidal e↵ects Refs.
amplitude phase amplitude phase

TF2 PNTidal 3PN 3.5PN 5+1PN 5+2.5PN [28, 37]
TF2+ PNTidal 6PN 6PN 5+1PN 5+2.5PN [28]

TF2+ KyotoTidal 6PN 6PN Polynomial Non-linear [28]
TF2+ NRTidal 6PN 6PN - Padé approximation [41]

TABLE I. Waveform models used to reanalyze GW170817. Our reference model, the TF2+ KyotoTidal model incorporates
TF2+ as the point-particle parts and NR calibrated tidal e↵ects, where TF2+ is the TaylorF2 approximant supplemented with
phenomenological higher-order PN terms. The TF2+ NRTidal model is another NR calibrated waveform model for tidal e↵ects.
The TF2+ PNTidal model employ the PN tidal-part phase formula. The point-particle part of the TF2 PNTidal model is the
TaylorF2 approximant. All waveform models used in our parameter estimation analyses treat aligned spins and incorporate
3.5PN order formula in spin-orbit interactions, 2PN order formula in spin-spin, and self-spin interactions.

B. Waveform models for inspiraling BNSs

We use four di↵erent analytic frequency-domain wave-
form models for the inspiral phase. Each waveform’s fea-
ture is summarized in Table I. The Fourier transform of
the gravitational waveform can be written as

h̃(f) = A(f)ei (f)
. (2)

where the amplitude A(f) and the phase  (f) can be
decomposed into the point-particle phase evolution, the
spin e↵ects, and the tidal e↵ects as

A(f) = Apoint�particle(f) +Aspin(f) +Atidal(f) (3)

and

 (f) =  point�particle(f) + spin(f) + tidal(f). (4)

We use TaylorF2 (hereafter TF2) and phenomenolog-
ically extended model of TF2, called TF2+ (see Ref. [28]
and below) as the point-particle baseline. Here, the
3.5PN and 3PN-order formulas are employed for the
phase and amplitude, respectively, for TF2 [33, 37]. For
TF2+, the PN order for both the phase and amplitude
are extended to the 6PN order by fitting SEOBNRv2

model [60, 63].

2
https://dcc.ligo.org/LIGO-P1900011/public

All waveform models used in our parameter estima-
tion analyses assume that the spins of component stars
are aligned with the orbital angular momentum, and in-
corporate 3.5PN order formula in couplings between the
orbital angular momentum and the component spins [36],
2PN order formula in point-mass spin-spin, and self-
spin interactions [34, 35]. The e↵ective spin parameter
�e↵ = (m1�1+m2�2)/Mtot is the most measurable com-
bination of spin components, where �1,2 = cS1,2/(Gm

2
1,2)

is the orbit-aligned dimensionless spin components of the
stars with S1,2 are the magnitudes of the spin angular mo-
menta of the components. We note that TF2 and TF2+

denote the point-particle baseline and spin e↵ects.
During the BNS inspiral, at the leading order, the in-

duced quadrupole moment tensor Qij is proportional to
the external tidal field tensor Eij as Qij = ��Eij . The
information about the NS EOS can be quantified by the
tidal deformability parameter � [39]. The leading order
tidal contribution to the GW phase evolution (relative
5PN order) is governed by the symmetric contribution
of NS tidal deformation, the binary tidal deformabil-
ity [39, 40]
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component mass and ⇤1,2 is the dimensionless tidal de-
formability parameter of each star ⇤ = �/m
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FIG. 1. Tidal phase in the frequency domain divided by
the leading, Newtonian (relative 5PN-order) tidal phase for-
mula. Here, we use (m1, m2) = (1.35M�, 1.35M�). We
show ⇤̃ = 1000 (blue, dot-dashed), 400 (blue, dashed), and
100 (blue, dotted) for the KyotoTidal model. The NRTidal

model (red) and the 5+2.5PN-order tidal-part phase formula,
5+2.5PNTidal (green) are also presented, which are indepen-
dent from ⇤̃ when divided by the leading tidal phase e↵ect.

The TF2 PNTidal model and the TF2+ PNTidal model
denote the waveform models employing TF2 and
TF2+ as the point-particle parts of gravitational
waves, respectively. Both the TF2 PNTidal and the
TF2+ PNTidal models employ the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39]
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where x = (⇡Mtotf)2/3 is the dimensionless PN pa-
rameter, Mtot = m1 + m2 is the total mass, and
⌘ = m1m2/(m1 + m2)2 is the symmetric mass ra-
tio. The tidal-part amplitude for both TF2 PNTidal and
TF2+ PNTidal employ the 5+1PN-order amplitude for-
mula given by [39]
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where dL is the luminosity distance to the source.
The TF2+ KyotoTidal model is a NR calibrated wave-

form model for inspiraling BNS mergers [28, 29]. The
TF2+ KyotoTidal model employs TF2+ as the point-
particle parts and extends the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39] by multi-
plying ⇤̃ by a nonlinear correction to model the tidal part

to the gravitational-wave phase. The functional forms of
the tidal-part phase is
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where a = 12.55 and p = 4.240. The tidal-part amplitude
is extended by adding the higher-order PN tidal e↵ects
to Eq. (7) as
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where b = 4251 and r = 7.890. In the KyotoTidalmodel,
the hybrid waveforms constructed from high-precision
NR waveforms and the SEOBNRv2T waveforms [61, 64–
67] are used for model calibration. The phase di↵er-
ence between the TF2+ KyotoTidal model and the hy-
brid waveforms is smaller than 0.1 rad up to 1000 Hz for
300 . ⇤̃ . 1900 and for the mass ratio q = m2/m1  1
between 0.73 and 1 [28]. In [28], it is shown that the
mismatch between the TF2+ KyotoTidal model and the
hybrid waveforms is always smaller than 1.1⇥ 10�5.
The NRTidal model is another approach to describe

tidal e↵ects calibrated by NR waveforms [42]3. The
TF2+ NRTidal model employs TF2+ as the point-particle
parts. For the tidal e↵ects, this model extends the linear-
order e↵ects by e↵ectively adding the higher-order terms
of the tidal deformability to the gravitational-wave phase.
As shown in Ref. [42], the expression of the tidal phase
is given by the form of a Padé function:
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where d̃1 = ñ1 � 3115/1248, the other parameters
are (ñ1, ñ3/2, ñ2, ñ5/2) = (�17.428, 31.867, �
26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [42].
In Fig. 1, we show di↵erences in the phase evolu-

tion of tidal part among the KyotoTidal, NRTidal, and
5+2.5PNTidal models. A di↵erence in the treatment of
the tidal e↵ects makes di↵erent ⇤̃-dependence. The tidal

3
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has come out in Ref. [43]

5PN 5+1PN 5+1.5PN 5+2PN 5+2.5PN

4

FIG. 1. Tidal phase in the frequency domain divided by
the leading, Newtonian (relative 5PN-order) tidal phase for-
mula. Here, we use (m1, m2) = (1.35M�, 1.35M�). We
show ⇤̃ = 1000 (blue, dot-dashed), 400 (blue, dashed), and
100 (blue, dotted) for the KyotoTidal model. The NRTidal

model (red) and the 5+2.5PN-order tidal-part phase formula,
5+2.5PNTidal (green) are also presented, which are indepen-
dent from ⇤̃ when divided by the leading tidal phase e↵ect.

The TF2 PNTidal model and the TF2+ PNTidal model
denote the waveform models employing TF2 and
TF2+ as the point-particle parts of gravitational
waves, respectively. Both the TF2 PNTidal and the
TF2+ PNTidal models employ the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39]
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where x = (⇡Mtotf)2/3 is the dimensionless PN pa-
rameter, Mtot = m1 + m2 is the total mass, and
⌘ = m1m2/(m1 + m2)2 is the symmetric mass ra-
tio. The tidal-part amplitude for both TF2 PNTidal and
TF2+ PNTidal employ the 5+1PN-order amplitude for-
mula given by [39]
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where dL is the luminosity distance to the source.
The TF2+ KyotoTidal model is a NR calibrated wave-

form model for inspiraling BNS mergers [28, 29]. The
TF2+ KyotoTidal model employs TF2+ as the point-
particle parts and extends the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39] by multi-
plying ⇤̃ by a nonlinear correction to model the tidal part

to the gravitational-wave phase. The functional forms of
the tidal-part phase is
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where a = 12.55 and p = 4.240. The tidal-part amplitude
is extended by adding the higher-order PN tidal e↵ects
to Eq. (7) as
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where b = 4251 and r = 7.890. In the KyotoTidalmodel,
the hybrid waveforms constructed from high-precision
NR waveforms and the SEOBNRv2T waveforms [61, 64–
67] are used for model calibration. The phase di↵er-
ence between the TF2+ KyotoTidal model and the hy-
brid waveforms is smaller than 0.1 rad up to 1000 Hz for
300 . ⇤̃ . 1900 and for the mass ratio q = m2/m1  1
between 0.73 and 1 [28]. In [28], it is shown that the
mismatch between the TF2+ KyotoTidal model and the
hybrid waveforms is always smaller than 1.1⇥ 10�5.
The NRTidal model is another approach to describe

tidal e↵ects calibrated by NR waveforms [42]3. The
TF2+ NRTidal model employs TF2+ as the point-particle
parts. For the tidal e↵ects, this model extends the linear-
order e↵ects by e↵ectively adding the higher-order terms
of the tidal deformability to the gravitational-wave phase.
As shown in Ref. [42], the expression of the tidal phase
is given by the form of a Padé function:
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where d̃1 = ñ1 � 3115/1248, the other parameters
are (ñ1, ñ3/2, ñ2, ñ5/2) = (�17.428, 31.867, �
26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [42].
In Fig. 1, we show di↵erences in the phase evolu-

tion of tidal part among the KyotoTidal, NRTidal, and
5+2.5PNTidal models. A di↵erence in the treatment of
the tidal e↵ects makes di↵erent ⇤̃-dependence. The tidal

3
During the completion stage of this work, a new model NRTidalv2

has come out in Ref. [43]

5PN 5+1PN
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FIG. 1. The comparison of Fourier spectra of gravitational
waves from binary neutron stars with three di↵erent equations
of state and with two values of total mass. A(f), De↵ , and m0

denote the amplitude of the spectrum, the e↵ective distance
to the gravitational-wave source, and the total mass of the
binary, respectively. The vertical dashed line denotes f =
1000Hz.

the analysis in Sec. III and Sec. IV. The details and the
derivation of these point-particle models are presented in
Appendix A.

We note that, in this work, we focus only on gravita-
tional waves for f  1000Hz. The reason for this is that
the gravitational-wave spectra for f > 1000Hz would be
a↵ected by the post-merger waveforms: In Fig. 1, we
show the amplitude of the gravitational-wave spectra for
several binary neutron star models (see Sec. II A for the
details of binary neutron star models). Figure 1 shows
that the amplitude is no longer a monotonic function of
the gravitational-wave frequency for f & 1100Hz. This
suggests that both amplitude and phase of the spectra
are a↵ected by the waveforms after the merger that can
be modified by detailed physical e↵ects (see Appendix B
for a detailed analysis). Thus, we have to restrict our
attention to the frequency of f  1000Hz. In this work,
we also focus only on the case that the spins of neutron
stars are absent. We leave the extension of our waveform
model for the future task.

A. Time-domain hybrid waveforms

The hybrid waveforms employed for deriving and cal-
ibrating our waveform model in this paper are com-
posed of the high-frequency part (& 400Hz) and the low-
frequency part (. 400Hz). For the high-frequency parts,
we employ our latest numerical-relativity waveforms de-
rived partly in Ref. [29]. The simulations are performed
by using a numerical-relativity code, SACRA, in which
an adaptive-mesh-refinement (AMR) algorithm is imple-

mented (see Refs. [29] and [41] for details of the com-
putational setup). Binary neutron stars in quasi-circular
orbits with small eccentricity ⇠ 10�3 are numerically de-
rived for the initial conditions of the simulations using a
spectral-method library, LORENE [42], and an eccentricity-
reduction procedure described in Ref. [43].
We employ the numerical-relativity waveforms of bi-

nary neutron stars with m0 ⇡ 2.7M� and m0 = 2.5M�,
where m0 is the total mass of the binary at infinite sep-
aration. More precisely, equal-mass models with each
mass m1 = m2 = 1.35M� and 1.25M�, and unequal-
mass models with each mass (m1,m2) ⇡ (1.21, 1.51)M�
and (1.16, 1.58)M� are employed. We note that, for the
models with each mass (m1,m2) ⇡ (1.21, 1.51)M�, we
employ the results of the simulations of which grid resolu-
tions are improved from those presented in Ref. [29]. The
simulations for the new models are performed in the same
way as in Ref. [29]. The orbital angular velocity of the ini-
tial configuration, ⌦0, is chosen to bem0⌦0 ⇡ 0.0155 and
0.0150 for m0 ⇡ 2.7M� and m0 = 2.5M�, respectively.
Model parameters and grid configurations are summa-
rized in Table I. We note that the numerical-relativity
waveforms are expected to have a phase error by 0.2–
0.6 rad up to the time of peak amplitude (see Ref. [29]
and Appendix C for details of this estimation).
Five parameterized piecewise-polytropic equations of

state with two pieces [8, 16, 29, 44] are employed to
consider the cases for a wide range of binary tidal de-
formability, 300 . ⇤̃ . 1900. For any equations of state
employed in this paper, the maximum mass of spher-
ical neutron stars is larger than 2.0M�, which is the
approximate maximum mass among the observed neu-
tron stars to date [45, 46]. The radius and the dimen-
sionless tidal deformability of spherical neutron stars of
1.16, 1.21, 1.25, 1.35, 1.51, and 1.58M� are listed in Ta-
ble II. The 15H equation of state might be incompatible
with the observational results of GW170817 [3], because
the tidal deformability in this equations of state for the
neutron stars of mass 1.35–1.40,M� is larger than 1000.
However, the other equations of state are compatible with
the latest observational results.
For the low-frequency part, we employ the TEOB

waveforms of Refs. [26–28], which are currently among
the most successful approximants in which the tidal ef-
fects as well as higher PN e↵ects are taken into account.
There exist two types of the TEOB formalism depending
on the choice of point-particle baseline; the SEOBNRv2T
and SEOBNRv4T formalisms of which the point-particle
parts agree with the SEOBNRv2 and SEOBNRv4 for-
malisms [47], respectively. In this work, we employ the
SEOBNRv2T waveforms for the low-frequency part of
the hybrid waveforms. This is because the point-particle
baseline of the SEOBNRv2T formalism, i.e., the SEOB-
NRv2 formalism, is more suitable for deriving waveforms
for a non-spinning equal-mass binary (see Appendix A).
For each binary neutron star model in Table I, the

SEOBNRv2T waveforms are generated by specifying the
mass and dimensionless tidal deformability, ⇤i (i = 1, 2),

Kawaguchi+, 2018



KyotoTidal 
(NR calibrated)

Nonlinear 
correction[Kawaguchi, et al., 2018]

4

FIG. 1. Tidal phase in the frequency domain divided by
the leading, Newtonian (relative 5PN-order) tidal phase for-
mula. Here, we use (m1, m2) = (1.35M�, 1.35M�). We
show ⇤̃ = 1000 (blue, dot-dashed), 400 (blue, dashed), and
100 (blue, dotted) for the KyotoTidal model. The NRTidal

model (red) and the 5+2.5PN-order tidal-part phase formula,
5+2.5PNTidal (green) are also presented, which are indepen-
dent from ⇤̃ when divided by the leading tidal phase e↵ect.

The TF2 PNTidal model and the TF2+ PNTidal model
denote the waveform models employing TF2 and
TF2+ as the point-particle parts of gravitational
waves, respectively. Both the TF2 PNTidal and the
TF2+ PNTidal models employ the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39]
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where x = (⇡Mtotf)2/3 is the dimensionless PN pa-
rameter, Mtot = m1 + m2 is the total mass, and
⌘ = m1m2/(m1 + m2)2 is the symmetric mass ra-
tio. The tidal-part amplitude for both TF2 PNTidal and
TF2+ PNTidal employ the 5+1PN-order amplitude for-
mula given by [39]
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where dL is the luminosity distance to the source.
The TF2+ KyotoTidal model is a NR calibrated wave-

form model for inspiraling BNS mergers [28, 29]. The
TF2+ KyotoTidal model employs TF2+ as the point-
particle parts and extends the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39] by multi-
plying ⇤̃ by a nonlinear correction to model the tidal part

to the gravitational-wave phase. The functional forms of
the tidal-part phase is
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where a = 12.55 and p = 4.240. The tidal-part amplitude
is extended by adding the higher-order PN tidal e↵ects
to Eq. (7) as
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where b = 4251 and r = 7.890. In the KyotoTidalmodel,
the hybrid waveforms constructed from high-precision
NR waveforms and the SEOBNRv2T waveforms [61, 64–
67] are used for model calibration. The phase di↵er-
ence between the TF2+ KyotoTidal model and the hy-
brid waveforms is smaller than 0.1 rad up to 1000 Hz for
300 . ⇤̃ . 1900 and for the mass ratio q = m2/m1  1
between 0.73 and 1 [28]. In [28], it is shown that the
mismatch between the TF2+ KyotoTidal model and the
hybrid waveforms is always smaller than 1.1⇥ 10�5.
The NRTidal model is another approach to describe

tidal e↵ects calibrated by NR waveforms [42]3. The
TF2+ NRTidal model employs TF2+ as the point-particle
parts. For the tidal e↵ects, this model extends the linear-
order e↵ects by e↵ectively adding the higher-order terms
of the tidal deformability to the gravitational-wave phase.
As shown in Ref. [42], the expression of the tidal phase
is given by the form of a Padé function:
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where d̃1 = ñ1 � 3115/1248, the other parameters
are (ñ1, ñ3/2, ñ2, ñ5/2) = (�17.428, 31.867, �
26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [42].
In Fig. 1, we show di↵erences in the phase evolu-

tion of tidal part among the KyotoTidal, NRTidal, and
5+2.5PNTidal models. A di↵erence in the treatment of
the tidal e↵ects makes di↵erent ⇤̃-dependence. The tidal

3
During the completion stage of this work, a new model NRTidalv2

has come out in Ref. [43]
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FIG. 8. (Top panel) The same as Fig. 7 but for ⇤̃. (Bottom
panel) The statistical error in the measurement of ⇤̃ as a
function of ⇤̃. The upper-bound frequency is set to be 1000Hz
and the signal-to-noise ratio is set to be 50.

is because these works employ higher upper-bound fre-
quency than in Fig. 8: The upper-bound frequency is set
to be the frequency of the innermost-stable-circular or-
bit (f ⇡1500–1800Hz) or the frequency at the contact of
stars (f ⇡1200–1800Hz) in Refs. [2, 3]. Indeed, we obtain
the values consistent with Refs. [2, 3] if we employ the
same upper-bound frequency as in Refs. [2, 3].

V. SUMMARY

In this paper, we derived a frequency-domain model
for gravitational waves from inspiraling binary neutron
stars employing the hybrid waveforms composed of the

latest numerical-relativity waveforms and the TEOBv2
waveforms. In this work, we restrict the frequency range
of gravitational waves from 10Hz to 1000Hz to focus
on the inspiral-stage waveforms. We obtained the tidal
correction to the gravitational-wave phase as
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and to the gravitational-wave amplitude as
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We showed that our waveform model reproduces the
phase of the hybrid waveforms in the frequency domain
within 0.1 rad error for 300 . ⇤̃ . 1900 and for both
equal-mass and unequal-mass binaries. We note that the
model parameters are determined using the hybrid wave-
form of a specific equal-mass binary. The relative error
of the tidal-part wave-amplitude model is always within
5% for f . 900Hz, and in particular, is always within
10% for ⇤̃  850.
We checked the validity of our waveform model by com-

puting the distinguishability from the hybrid waveforms.
We showed that our waveform model is not distinguish-
able from the hybrid waveforms even for the case that
the signal-to-noise ratio is 200. We found that the dis-
tinguishability between the TEOBv2 waveforms and the
hybrid waveforms is as small as that of our waveform
model for ⇤̃ . 600, but it becomes larger for larger val-
ues of ⇤̃. Large values of distinguishability were found
between the hybrid waveforms and waveform models em-
ploying PN tidal formulas of Eqs. (3.5) and (3.6). In
particular, we reconfirmed that the lack of the higher
PN order terms in the point-particle part of gravitational
waves is problematic: We found that the PN waveform
model employing TaylorF2 as the point-particle approx-
imant of gravitational waves is distinguishable from the
hybrid waveforms for the case that the signal-to-noise ra-
tio is larger than 25 irrespectively to the values of Mc,
⌘, and ⇤̃.
We also computed the systematic errors of our wave-

form model in the measurement of binary parameters em-
ploying the hybrid waveforms as hypothetical signals. We
found that the systematic error of our waveform model
in the measurement of ⇤̃ is always smaller than 20. On
the other hand, we found that ⇤̃ can be overestimated
by an order of 100 for ⇤̃ & 600 by employing PN tidal
formulas of Eqs. (3.5) and (3.6).
We estimated the statistical errors in the measurement

of binary parameters employing the standard Fisher-
matrix analysis. We obtained results consistent with the

5PN 5+1PN

5PN 5+1PN 5+1.5PN 5+2PN 5+2.5PN

higher-order tidal effects
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FIG. 1. Tidal phase in the frequency domain divided by
the leading, Newtonian (relative 5PN-order) tidal phase for-
mula. Here, we use (m1, m2) = (1.35M�, 1.35M�). We
show ⇤̃ = 1000 (blue, dot-dashed), 400 (blue, dashed), and
100 (blue, dotted) for the KyotoTidal model. The NRTidal

model (red) and the 5+2.5PN-order tidal-part phase formula,
5+2.5PNTidal (green) are also presented, which are indepen-
dent from ⇤̃ when divided by the leading tidal phase e↵ect.

The TF2 PNTidal model and the TF2+ PNTidal model
denote the waveform models employing TF2 and
TF2+ as the point-particle parts of gravitational
waves, respectively. Both the TF2 PNTidal and the
TF2+ PNTidal models employ the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39]
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where x = (⇡Mtotf)2/3 is the dimensionless PN pa-
rameter, Mtot = m1 + m2 is the total mass, and
⌘ = m1m2/(m1 + m2)2 is the symmetric mass ra-
tio. The tidal-part amplitude for both TF2 PNTidal and
TF2+ PNTidal employ the 5+1PN-order amplitude for-
mula given by [39]
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where dL is the luminosity distance to the source.
The TF2+ KyotoTidal model is a NR calibrated wave-

form model for inspiraling BNS mergers [28, 29]. The
TF2+ KyotoTidal model employs TF2+ as the point-
particle parts and extends the 2.5PN-order (relative
5+2.5PN-order) tidal-part phase formula [39] by multi-
plying ⇤̃ by a nonlinear correction to model the tidal part

to the gravitational-wave phase. The functional forms of
the tidal-part phase is
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where a = 12.55 and p = 4.240. The tidal-part amplitude
is extended by adding the higher-order PN tidal e↵ects
to Eq. (7) as
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where b = 4251 and r = 7.890. In the KyotoTidalmodel,
the hybrid waveforms constructed from high-precision
NR waveforms and the SEOBNRv2T waveforms [61, 64–
67] are used for model calibration. The phase di↵er-
ence between the TF2+ KyotoTidal model and the hy-
brid waveforms is smaller than 0.1 rad up to 1000 Hz for
300 . ⇤̃ . 1900 and for the mass ratio q = m2/m1  1
between 0.73 and 1 [28]. In [28], it is shown that the
mismatch between the TF2+ KyotoTidal model and the
hybrid waveforms is always smaller than 1.1⇥ 10�5.
The NRTidal model is another approach to describe

tidal e↵ects calibrated by NR waveforms [42]3. The
TF2+ NRTidal model employs TF2+ as the point-particle
parts. For the tidal e↵ects, this model extends the linear-
order e↵ects by e↵ectively adding the higher-order terms
of the tidal deformability to the gravitational-wave phase.
As shown in Ref. [42], the expression of the tidal phase
is given by the form of a Padé function:
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where d̃1 = ñ1 � 3115/1248, the other parameters
are (ñ1, ñ3/2, ñ2, ñ5/2) = (�17.428, 31.867, �
26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [42].
In Fig. 1, we show di↵erences in the phase evolu-

tion of tidal part among the KyotoTidal, NRTidal, and
5+2.5PNTidal models. A di↵erence in the treatment of
the tidal e↵ects makes di↵erent ⇤̃-dependence. The tidal

3
During the completion stage of this work, a new model NRTidalv2

has come out in Ref. [43]
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26.414, 62.362) and d̃3/2 = 36.089. We do not consider
the tidal-part amplitude for this model according to the
original form [39].

The TF2+ NRTidalv2 model is an upgraded model of
the TF2+ NRTidal model [40]. The upgrades are a new
expression for the tidal phase which is calibrated to more
accurate NR waveforms.
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where d = 13477.8.

In Fig. 1, we show di↵erences in the phase evolution of
tidal part among the KyotoTidal, NRTidal, NRTidalv2,
and 5+2.5PNTidal models. A di↵erence in the treat-
ment of the tidal e↵ects makes di↵erent ⇤̃-dependence.
The tidal phase divided by the leading (relative 5PN-
order) tidal phase formula for the KyotoTidal model
depend on the binary tidal deformability ⇤̃ due to the
nonlinear correction. Since the NRTidal, NRTidalv2,
and 5+2.5PNTidalmodels employ the linear-order e↵ects
of the tidal deformability, they are independent from ⇤̃
when divided by the leading tidal e↵ect. Fig. 1 shows
good agreement between the TF2+ KyotoTidal model
and the TF2+ NRTidalv2 model for ⇤̃ ' 1000 below
1000 Hz as suggested in Ref. [40]. The NRTidal model
gives the largest phase shift, the second is the NRTidalv2
model, the third is the KyotoTidal model, and the
5+2.5PNTidal model gives the smallest, for ⇤̃  1000,
up to ⇠1000 Hz. The TF2+ KyotoTidal model is cal-
ibrated only up to 1000 Hz and overestimates tidal ef-
fects at frequencies over 1000 Hz. The KyotoTidalmodel
gives the largest phase shift at frequency over 1200 Hz
for ⇤̃ = 1000, and larger phase shift than the one for the
NRTidalv2 model at frequency over about 1000 Hz (1400
Hz) for ⇤̃ = 1000 (400).

C. Source parameters

The source parameters and their prior probability dis-
tributions are chosen to follow those adopted in our re-
cent work [48], and we mention specific choices made in
this work.
We fix the sky location to the position of AT

2017gfo, which is the electromagnetic counterpart of
GW170817 [58], for our all analyses and estimates of the
remaining source parameters. Specifically, we estimate
the luminosity distance to the source dL, the binary incli-
nation ✓JN, which is the angle between the total angular
momentum and the line of sight, the polarization angle  ,
the coalescence time tc, the phase at the coalescence time
�c, component masses m1,2, where we assume m1 � m2,
the orbit-aligned dimensionless spin components of the
stars �1,2 and the binary tidal deformability ⇤̃.
For our analysis, we assume a uniform distribution

as the detector-frame component mass prior m1,2 ⇠
U [0.83, 7.7]M� with an additional constraint on the
detector-frame chirp mass Mdet ⇠ U [1.184, 2.168]M�,
where the chirp mass is the best estimated mass param-
eter defined as M = (m1m2)(3/5)(m1 + m2)�1/5. The
prior range for Mdet is the same as that used for LIGO-
Virgo analysis [15]. The impact of wider prior range for
Mdet on parameter estimation is negligible. We assume
a uniform prior on the spin magnitudes and we enforce
�1,2 ⇠ U [�0.05, 0.05]. This prior range of spin is consis-
tent with the observed population of known BNSs that
will merge within the Hubble time [59, 60], and is referred
to as low-spin prior for the LIGO-Virgo analysis [15].
We assume a uniform prior on the binary tidal de-

formability, with ⇤̃ ⇠ U [0, 3000]. This prior approxi-
mately corresponds to implementing the common EOS
constraint [17].

III. RESULTS

A. Source properties other than the tidal
deformability

In this subsection, we show that validity including
a sanity check of our analysis by comparison with the
LIGO-Virgo results. Figure 2 shows the marginalized
posterior probability distributions of parameters other
than the tidal deformability for di↵erent waveform mod-
els for fmax = 1000 Hz. Table II presents the 90% cred-
ible intervals of the luminosity distance dL, the binary
inclination ✓JN, mass parameters (the component masses
m1,2, the detector-frame chirp mass Mdet, the source-
frame chirp mass M, the total mass Mtot, the mass ra-
tio q), and the e↵ective spin parameter �e↵ = (m1�1 +
m2�2)/Mtot estimated using di↵erent waveform models.
The source-frame chirp mass is derived by assuming a
value of the Hubble constant H0 = 69 km s�1 Mpc�1 (a
default value in LAL).
For comparison of our analysis with the results of the
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In Fig. 1, we show di↵erences in the phase evolution of
tidal part among the KyotoTidal, NRTidal, NRTidalv2,
and 5+2.5PNTidal models. A di↵erence in the treat-
ment of the tidal e↵ects makes di↵erent ⇤̃-dependence.
The tidal phase divided by the leading (relative 5PN-
order) tidal phase formula for the KyotoTidal model
depend on the binary tidal deformability ⇤̃ due to the
nonlinear correction. Since the NRTidal, NRTidalv2,
and 5+2.5PNTidalmodels employ the linear-order e↵ects
of the tidal deformability, they are independent from ⇤̃
when divided by the leading tidal e↵ect. Fig. 1 shows
good agreement between the TF2+ KyotoTidal model
and the TF2+ NRTidalv2 model for ⇤̃ ' 1000 below
1000 Hz as suggested in Ref. [40]. The NRTidal model
gives the largest phase shift, the second is the NRTidalv2
model, the third is the KyotoTidal model, and the
5+2.5PNTidal model gives the smallest, for ⇤̃  1000,
up to ⇠1000 Hz. The TF2+ KyotoTidal model is cal-
ibrated only up to 1000 Hz and overestimates tidal ef-
fects at frequencies over 1000 Hz. The KyotoTidalmodel
gives the largest phase shift at frequency over 1200 Hz
for ⇤̃ = 1000, and larger phase shift than the one for the
NRTidalv2 model at frequency over about 1000 Hz (1400
Hz) for ⇤̃ = 1000 (400).

C. Source parameters

The source parameters and their prior probability dis-
tributions are chosen to follow those adopted in our re-
cent work [48], and we mention specific choices made in
this work.
We fix the sky location to the position of AT

2017gfo, which is the electromagnetic counterpart of
GW170817 [58], for our all analyses and estimates of the
remaining source parameters. Specifically, we estimate
the luminosity distance to the source dL, the binary incli-
nation ✓JN, which is the angle between the total angular
momentum and the line of sight, the polarization angle  ,
the coalescence time tc, the phase at the coalescence time
�c, component masses m1,2, where we assume m1 � m2,
the orbit-aligned dimensionless spin components of the
stars �1,2 and the binary tidal deformability ⇤̃.
For our analysis, we assume a uniform distribution

as the detector-frame component mass prior m1,2 ⇠
U [0.83, 7.7]M� with an additional constraint on the
detector-frame chirp mass Mdet ⇠ U [1.184, 2.168]M�,
where the chirp mass is the best estimated mass param-
eter defined as M = (m1m2)(3/5)(m1 + m2)�1/5. The
prior range for Mdet is the same as that used for LIGO-
Virgo analysis [15]. The impact of wider prior range for
Mdet on parameter estimation is negligible. We assume
a uniform prior on the spin magnitudes and we enforce
�1,2 ⇠ U [�0.05, 0.05]. This prior range of spin is consis-
tent with the observed population of known BNSs that
will merge within the Hubble time [59, 60], and is referred
to as low-spin prior for the LIGO-Virgo analysis [15].
We assume a uniform prior on the binary tidal de-

formability, with ⇤̃ ⇠ U [0, 3000]. This prior approxi-
mately corresponds to implementing the common EOS
constraint [17].

III. RESULTS

A. Source properties other than the tidal
deformability

In this subsection, we show that validity including
a sanity check of our analysis by comparison with the
LIGO-Virgo results. Figure 2 shows the marginalized
posterior probability distributions of parameters other
than the tidal deformability for di↵erent waveform mod-
els for fmax = 1000 Hz. Table II presents the 90% cred-
ible intervals of the luminosity distance dL, the binary
inclination ✓JN, mass parameters (the component masses
m1,2, the detector-frame chirp mass Mdet, the source-
frame chirp mass M, the total mass Mtot, the mass ra-
tio q), and the e↵ective spin parameter �e↵ = (m1�1 +
m2�2)/Mtot estimated using di↵erent waveform models.
The source-frame chirp mass is derived by assuming a
value of the Hubble constant H0 = 69 km s�1 Mpc�1 (a
default value in LAL).
For comparison of our analysis with the results of the
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and Gaussianity for the detector noise using the noise
power spectrum density derived with BayesLine2. We
compute PDFs by using stochastic sampling engine based
on nested sampling [49, 50]. Specifically, we use the pa-
rameter estimation software, LALInference [51], which is
one of the software of LIGO Algorithm Library (LAL)
software suite. We take the frequency range from 23
Hz to fmax. Here, the maximum frequency fmax is cho-
sen from two values, 1000 Hz or min[fISCO, fs/2], where

fISCO is twice the orbital frequency at the innermost sta-
ble circular orbit of a Schwarzschild black hole with total
mass of the binary, and fs is the sampling rate of data.
We set fs = 4096 Hz. The former choice is made be-
cause the TF2+ KyotoTidal model is calibrated in the
frequency range of 10-1000 Hz. The latter choice corre-
sponds to the assumption that the inspiral stage is ter-
minated at the smaller of fISCO and fs/2. In this work,
we represent the latter choice by fmax = 2048 Hz for
simplicity.

Model name Point-particle part Tidal part Refs.
Amplitude Phase Amplitude Phase

TF2 PNTidal 3PN 3.5PN 5+1PN 5+2.5PN [41, 54]
TF2+ PNTidal 6PN 6PN 5+1PN 5+2.5PN [41]

TF2+ KyotoTidal 6PN 6PN Polynomial Non-linear [41]
TF2+ NRTidal 6PN 6PN - Padé approximation [39]
TF2+ NRTidalv2 6PN 6PN Padé approximation Padé approximation [40]

TABLE I. Waveform models used to reanalyze GW170817. Our reference model, the TF2+ KyotoTidalmodel incorporates TF2+,
as the point-particle and spin parts, and NR calibrated tidal e↵ects. The TF2 approximant employs the 3.5PN- and 3PN-order
formulas for the phase and amplitude, respectively as the point-particle part, and treats aligned spins and incorporates 3.5PN-
order formula in spin-orbit interactions, 2PN-order formula in spin-spin, and self-spin interactions. TF2+ is the TF2 approximant
supplemented with phenomenological higher-order PN terms for the point-particle part. The TF2+ NRTidal model is another
NR calibrated waveform model for tidal e↵ects. The TF2+ NRTidalv2 model is the upgraded model of the TF2+ NRTidal model.
The TF2 PNTidal and TF2+ PNTidal models employ the PN tidal-part phase formula.

B. Waveform models for inspiraling BNSs

We use di↵erent analytic frequency-domain waveform
models for the inspiral phase. Each waveform’s feature
is summarized in Table I. The Fourier transform of the
gravitational waveform can be written as

h̃(f) = A(f)ei (f)
. (2)

where the amplitude A(f) and the phase  (f) can be
decomposed into the point-particle evolution, the spin
e↵ects, and the tidal e↵ects as

A(f) = Apoint�particle(f) +Aspin(f) +Atidal(f) (3)

and

 (f) =  point�particle(f) + spin(f) + tidal(f). (4)

We use TaylorF2 [52–54] (hereafter TF2) and phe-
nomenologically extended model of TF2, called TF2+ (see
Ref. [41] and below) as BBH baseline, which consists of
point-particle and spin parts. Here, the 3.5PN-order for-
mula for the phase and 3PN-order formulas for the ampli-
tude are employed as the point-paticle part of TF2 [52–
54]. For TF2+, the PN order for both the phase and

2
https://dcc.ligo.org/LIGO-P1900011/public

amplitude of the point-particle part are extended to the
6PN-order by fitting SEOBNRv2 model [43, 44].

All waveform models used in our parameter estima-
tion analyses assume that the spins of component stars
are aligned with the orbital angular momentum, and in-
corporate 3.5PN-order formula in couplings between the
orbital angular momentum and the component spins [55],
2PN-order formula in point-mass spin-spin, and self-
spin interactions [56, 57]. The e↵ective spin parameter
�e↵ = (m1�1+m2�2)/Mtot is the most measurable com-
bination of spin components, where �1,2 = cS1,2/(Gm

2
1,2)

is the orbit-aligned dimensionless spin components of the
stars with S1,2 are the magnitudes of the spin angular mo-
menta of the components. We note that TF2 and TF2+

denote point-particle and spin parts as BBH baseline.

During the BNS inspiral, at the leading order, the in-
duced quadrupole moment tensor Qij is proportional to
the external tidal field tensor Eij as Qij = ��Eij . The
information about the NS EOS can be quantified by the
tidal deformability parameter � [26]. The leading order
tidal contribution to the gravitational wave (GW) phase
evolution (relative 5PN-order) is governed by the sym-
metric contribution of NS tidal deformation, the binary
tidal deformability [26, 27]

⇤̃ =
16

13

(m1 + 12m2)m4
1
⇤1 + (m2 + 12m1)m4

2
⇤2

(m1 +m2)5
, (5)

phase shift:  
1. NRTidal 
2. NRTidalv2 
3. KyotoTidal 
(Lamtilde=400) 
4. PNTidal



Source parameters
・parameters for BNS {m1,2, χ1,2,      }

・additional parameters for fully describe the binary:  
{DL, θJN, ψ, tc, φc, α, δ} 

・m1,2~U[0.83, 7.7]M⊙, Mcdet~U[1.184, 2.168]M⊙

・χ1,2~U[-0.05, 0.05]
・    ~U[0, 3000]

・a uniform prior in [0,2π] for φc.  
・sources uniformly distributed in volume

Λ̃
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Results 
A. Source properties other than the tidal deformability



Almost no systematic bias associated with a difference in the 
estimates of the parameters among waveform models.



Results 
B. Posterior of binary tidal deformability



Symmetric interval
HPD 

(Highest probability 
distribution)

HLV 347+564-243 347+453-295

restricted TF2 with 5+1PN-order tidal phase 
uniform prior on Λ1,2 

fmax=2048 Hz

HLV 
(LVC report,  

arXiv:1805.11579)

very close!

HLV 
(our results, 

flat prior on Lamtilde)

Comparison with LIGO-Virgo analysis as a sanity check

(our results)
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the posterior for ⇤̃, goes to zero in the limit ⇤̃ ! 0. To
avoid the misinterpretation that there is no evidence for
⇤̃ = 0, we reweight the posterior for ⇤̃ by dividing by the
prior used, e↵ectively imposing a flat prior in ⇤̃. In prac-
tice, this is done by dividing a histogram of the posterior
by a histogram of the prior. The resulting histogram is
then resampled and smoothed with kernel density esti-
mation. We have verified the validity of the reweighting
procedure by comparing the results to runs where we fix
⇤2 = 0 and use a flat prior in ⇤̃. This di↵ers from the
reweighting procedure only in the small, next-to-leading-
order tidal e↵ect.

After reweighting there is still some support at ⇤̃ = 0.
For the high-spin prior, we can only place a 90% upper
limit on the tidal parameter, shown in Fig. 11 and listed
in Tables II and IV. For the TaylorF2 model, this 90% up-
per limit can be directly compared to the value reported
in [3]. We note, however, that due to a bookkeeping error
the value reported in [3] should have been 800 instead of
700. Our improved value of 730 is ⇠ 10% less than this
corrected value. As with the ⇤1–⇤2 posterior (Fig. 10),
the three models with the NRTidal prescription predict
90% upper limits that are consistent with each other and
less than the TaylorF2 results by ⇠ 10%. For the low-
spin prior, we can now place a two-sided 90% highest
posterior density (HPD) credible interval on ⇤̃ that does
not contain ⇤̃ = 0. This 90% HPD interval is the smallest
interval that contains 90% of the probability.

The PDFs for the NRTidal waveform models are bi-
modal. The secondary peak’s origin is the subject of
further investigation, but it may result from a specific
noise realization, as similar results have been seen with
injected waveforms with simulated Gaussian noise (see
Fig. 4 of [135]).

In Fig. 11 we also show posteriors of ⇤̃ (gray PDFs)
predicted by the same EOSs as in Fig. 10, evaluated us-
ing the masses m1 and m2 sampled from the posterior.
The sharp cuto↵ to the right of each EOS posterior cor-
responds to the equal mass ratio boundary. Again, as in
Fig. 10, the EOSs MS1, MS1b, and H4 lie outside the
90% credible upper limit, and are therefore disfavored.

The di↵erences between the high-spin prior and low-
spin prior can be better understood from the joint pos-
terior for ⇤̃ and the mass ratio q. Figure 12 shows these
posteriors for the PhenomPNRT model without reweight-
ing by the prior. For mass ratios near q = 1, the two
posteriors are similar. However, the high-spin prior al-
lows for a larger range of mass ratios, and for smaller
values of q there is more support for small values of ⇤̃.
If we restrict the mass ratio to q >⇠ 0.5, or equivalently
m2

>⇠ 1 M�, we find that there is less support for small
values of ⇤̃, and the two posteriors for ⇤̃ are nearly iden-
tical.

To verify that we have reliably measured the tidal
parameters, we supplement the four waveforms used in
this paper with two time-domain EOB waveform models:
SEOBNRv4T [75, 136] and TEOBResumS [74]. SEOB-
NRv4T includes dynamical tides and the e↵ects of the
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FIG. 11. PDFs of the combined tidal parameter ⇤̃ for the
high-spin (top) and low-spin (bottom) priors. Unlike in Fig. 6,
the PDFs have been reweighted by dividing by the origi-
nal prior for ⇤̃ (also shown). The 90% HPD credible in-
tervals are represented by vertical lines for each of the four
waveform models: TaylorF2, PhenomDNRT, SEOBNRT, and
PhenomPNRT. For the high-spin prior, the lower limit on
the credible interval is ⇤̃ = 0. The seven gray PDFs are
those for the seven representative EOSs using the masses es-
timated with the PhenomPNRT model. Their normalization
constants have been rescaled to fit in the figure. For these
EOSs, a 1.36M� NS has a radius of 10.4 km (WFF1), 11.3 km
(APR4), 11.7 km (SLy), 12.4 km (MPA1), 14.0 km (H4),
14.5 km (MS1b), and 14.9 km (MS1).

spin-induced quadrupole moment. TEOBResumS incor-
porates a gravitational-self-force re-summed tidal poten-
tial and the spin-induced quadrupole moment. Both
models are compatible with state-of-the-art BNS numer-
ical simulations up to merger [77, 137].

Unfortunately, these waveform models are too expen-
sive to be used for parameter estimation with LALIn-
ference. We therefore use the parallelized, but less
validated parameter estimation code RapidPE [78, 79].
This code uses a di↵erent procedure from the standard
LALInference code for generating posterior samples
and allows for parameter estimation with significantly
more expensive waveform models. For each point in the
intrinsic parameter space, RapidPE marginalizes over
the extrinsic parameters with Monte Carlo integration.



The estimates are biased by using  
different waveform models. 
Order of peak value is consistent with 
the order of phase shift.

Posterior of binary tidal deformability

likely ~400, 
not above 1000

peak value:  
1. NRTidal 
2. NRTidalv2 
2. KyotoTidal 
3. PNTidal

phase shift:  
1. NRTidal 
2. NRTidalv2 
3. KyotoTidal 
(Lamtilde=400) 
4. PNTidal



For fmax=2048 Hz (only a reference)

The width of intervals for fmax=2048 Hz  
are narrower than those for fmax=1000 Hz. 
The peak values decrease as fmax increases.

peak value:  
1. NRTidal 
2. NRTidalv2 
2. KyotoTidal 
3. PNTidal



Discussion 
need to improve the current waveform model
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Figure 1: Gravitational-wave strain noise for current and future detectors (left) and astrophysical reach for
equal-mass, nonspinning binaries distributed isotropically in sky and inclination (right).

a unique window to earliest moments of the formation of structure in the Universe. In the next several
paragraphs we summarize the science targets of the 3G network.

Extreme Gravity and Fundamental Physics.
Gravitational waves emanate from regions of strong gravity and large curvature, carrying uncorrupted
information from their sources. Imprint in the signal is the nature of the gravitational field, characteristics of
the sources and the physical environment in which they reside. Their observation in 3G detectors can put
general relativity to the most stringent tests, help explore violations of the theory in strong fields such as the
dynamics of black hole horizons, and discover properties of dark matter.

The 3G network offers numerous opportunities to discover failure of general relativity that could be seen,
for example, in the form of new particles and fields that violate the strong equivalence principle, Lorentz
invariance violations or variation in Newton’s constant imprint in the propagation of gravitational waves,
presence of scalar fields around compact objects, and extra polarizations in addition to the two that occur in
general relativity. One might also see the signature of quantum gravity, e.g., pseudo-scalar configurations
that violate parity, whose signature would be seen in the dynamics of binary black holes, or birefringence of
the waves propagating over great distances. Ultra-light Bosonic fields proposed in certain extensions of the
Standard Model could be detected via their effect on the orbital dynamics of black hole binaries and spin
properties of black holes.

Black holes are the most compelling explanation for the companion stars in binary coalescences discovered
by LIGO and Virgo detectors. The tell tale signature of its presence would be seen in the quasi-normal
mode spectrum of the merger remnant, whose frequencies and damping times should depend only on two
parameters: the remnant’s mass and spin. Signature of additional degrees of freedom would be seen as
inconsistency in the remnant’s parameters determined by the different modes. Certain alternatives to black
holes could mimic the quasi-normal mode spectra, but they could emit additional signals in the form of
echoes of the ingoing radiation reflected from their surface, which could be observable in the 3G network.

Big bang cosmology is largely consistent with general relativity but the accelerated expansion of the
Universe in its recent history cannot be explained by the theory, indicating either its failure or the presence of
exotic form of matter-energy density, of which we know very little. Observations on galactic to cosmological
scale provide unequivocal indirect evidence for the presence of weakly interacting dark matter, but none has
been directly detected in spite of concerted efforts over the past six decades. The 3G network might detect

Systematic error for fmax=1000 Hz

For GW170817, systematic error is dominant over statistical error. 
For 10 times louder SNR event than GW170817, systematic error 
between KyotoTidal and NRTidal is comparable with the statistical 
error. 3G detector's sensitivity is 10 times better than current 
detectors. Toward 3G detector era, it is needed to improve current 
waveform models.

Gravitational-Wave Astronomy with
the Next-Generation Earth-Based

Observatories
Exploring the Universe from Planck to Hubble Scales

GWIC, GWIC-3G, GWIC-3G-SCT-Consortium

proportional to (SNR)-1.



Need to improve at frequency higher than 1000 Hz
High frequency data are generally more informative to measure 
tidal deformability. Our results indicate that       is indeed 
constrained tighter determined for fmax=2048 Hz than for 
fmax=1000 Hz. However, since the TF2+ KyotoTidal model is 
calibrated by NR waveforms only up to 1000 Hz, toward 3G 
detector era, it is needed to further improve the model in the 
frequency higher than 1000 Hz.

Λ̃
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3. A brief recap of binary-neutron star data analysis techniques

In this section we provide a brief recap of a number of the data analysis techniques that we 
will use in later sections in this work. For a more complete introduction to these topics we 
refer the reader to [67, 68]. Consider a stretch of data s(t), recorded by a gravitational-wave 
observatory. This data is assumed to consist of colored, Gaussian noise n(t) with the possible 
presence of a gravitational-wave signal h(t). The noise is described by the one-sided noise 
power-spectral density Sn( f ), defined by

1
2
δ( f − f ′)Sn ( f ) = E[ñ ( f )ñ ∗( f ′)], (18)

where E[·] denotes the expectation value over independent noise realizations. We denote these 
assumptions of the noise properties with I. When evaluating the likelihood of a signal h(t) 
being present in the detector data, one can determine the probability of obtaining the given 
data realization if no signal is present, P(s|n, I), compared to the probability of obtaining the 
same data if a signal is present, P(s|h+ n, I). These probabilities can be calculated according 
to [67, 68]

P(s|h+ n, I) ∝ e−⟨s−h|s−h⟩/2 , (19)

which reduces to P(s|n) in the case that h  =  0. Here ⟨a|b⟩ defines a noise-weighted inner 
product according to

⟨a|b⟩ = 4 Re
∫ ∞

0

ã( f )b̃∗( f )
Sn ( f )

d f , (20)

where ã represents the Fourier transform of a. Then the relative probability of the two hypoth-
eses is given by
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Figure 2. Illustration of where in frequency the information about intrinsic binary 
parameters predominantly comes from. The quantity shown on the y-axis is a normalized 
quantity characterizing the accumulation of information about the binary parameters 
ξi per logarithmic frequency interval. Specifically, the y-axis is |(∂h̃/∂ξi)|2/( f Sn ) 
for Sn the zero-detuned high power configuration of Advanced LIGO and each curve 
normalized to its maximum value.
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[Harry, Hinderer, 2018] 
(c.f. [Damour, Nagar,  
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Summary
・LIGO-Virgo Collaboration put conservative upper limits on tidal 
deformability with post-Newtonian waveform (PNTidal) and 
measure it with NRTidal. 
・We reanalyze GW170817 with a new NR calibrated waveform 
model, KyotoTidal. 
・We compare our results with another NR calibrated waveform, 
NRTidal and its upgraded model, NRTIdalv2.

The estimates are biased by using different waveform 
models. Order of peak value is consistent with the order of 
phase shift.

The width of intervals for fmax=2048 Hz are narrower than 
those for fmax=1000 Hz. The peak values decrease as fmax 
increases.


