Higher-order symmetry energy parameters and neutron star properties

Akira Ohnishi

(Yukawa Inst. for Theor. Phys., Kyoto U.) in collaboraton with

E. E. Kolomeitsev (Matej Bel U.), James M. Lattimer (Stony Brook), Ingo Tews (LANL), Xuhao Wu (Nankai U./YITP)

YITP long-term workshop on Multi-Messenger Astrophysics in the Gravitational Wave Era Sep. 24 – Oct. 25 2019, Kyoto, Japan

YITP long-term workshop Multi-Messenger Astrophysics in the Gravitational Wave Era September 24 - October 25 2019, Tukawa Institute for Theoretical Physics, Kyoto University

A. Ohnishi @ MMGW2019, Oct. 3, 2019

1

Symmetry Energy and Neutron Star Radius

S.Gandolfi, J.Carlson, S.Reddy, PRC85('12) 032801

I. Tews, J.M.Lattimer, AO, E.E.Kolomeitsev (TLOK), ApJ 848 ('17)105

Constraints on EOS from GW170817

A. Ohnishi @ MMGW2019, Oct. 3, 2019 3

Time dependence of Neutron Star Radius $(R_{1.4})$

Symmetry Energy Parameters (S_0 , L) affect Neutron Star Radius $S_0 = (32-35) \text{ MeV} \rightarrow R = (9-14) \text{ km}$

Now GW observation suggests $R = 11 \pm 1$ km, and $30 < S_0 < 32$ MeV and 40 < L < 60 MeV are favored by nucl. phys. experiments

How about higher-order parameters ?

Outline

- Introduction
- Symmetry energy parameters and Neutron Star Radius
 - Constructing EOS using symmetry energy parameters
 - Higher-order symmetry energy parameters
 - Neutron star radius
- Quarkyonic QCD Phase Transition and Neutron Star Properties
 - What is quarkyonic matter ?
 - Density dependence of sound velocity
 - M-R curve with quarkyonic matter
- Summary

Symmetry Energy Parameters and Neutron Star Radius

Sym. E. Parameters $\rightarrow EOS$

Saturation & Symmetry Energy Parameters

 $E_{\rm NM}(u,\alpha) = E_{\rm SNM}(u) + \alpha^2 S(u)$ $E_{\rm SNM}(u) \simeq E_0 + \frac{K_0}{18}(u-1)^2 + \frac{Q_0}{162}(u-1)^3$ $S(u) \simeq S_0 + \frac{L}{3}(u-1) + \frac{K_s}{18}(u-1)^2 + \frac{Q_s}{162}(u-1)^3$ $(u = n/n_0, \alpha = (n_n - n_p)/n)$

TLOK

Energy does not approach zero at $n \rightarrow 0$.

- Fermi momentum expansion (~ Skyrme type EDF)
 - Generated many-body force is given by $k_F \propto u^{1/3} \longrightarrow \mathbf{m}^*$

$$E_{\text{SNM}}(u) \simeq T_0 u^{2/3} + a_0 u + b_0 u^{4/3} + c_0 u^{5/3} + d_0 u^2$$

$$S(u) \simeq T_s u^{2/3} + a_s u + b_s u^{4/3} + c_s u^{5/3} + d_s u^2$$

Kin. E. Two-body Density-dep. pot.

Expansion Coefficients

Coefficients (a,b,c,d) are represented by Saturation and Symmetry Energy Parameters			TLOK	
$a_0 = -4T_0$	$+20E_{0}$	$+ K_0$	$-Q_{0}/6$	
$b_0 = 6T_0$	$-45E_{0}$	$-5K_{0}/2$	$+Q_{0}/2$	
$c_0 = -4T_0$	$+36E_{0}$	$+2K_{0}$	$-Q_{0}/2$	
$d_0 = T_0$	$-10E_{0}$	$-K_{0}/2$	$+Q_{0}/6$	
$a_s = -4T_s$	$+20S_0 - 19L/3$	$+ K_s$	$-Q_s/6$	
$b_s = 6T_s$	$-45S_0 + 15L$	$-5K_s/2$	$+Q_s/2$	
$c_s = -4T_s$	$+36S_0 - 12L$	$+2K_s$	$-Q_s/2$	
$d_s = T_s$	$-10S_0 + 10L/3$	$-K_s/2$	$+Q_s/6$	
$\left(T_0 = \frac{3}{5} \frac{\hbar^2 k_F(r)}{2m}\right)$	$(\frac{n_0)^2}{2}, T_s = T_0(2^{1/3} - 1)$			

Tedious but straightforward calc.

A. Ohnishi @ MMGW2019, Oct. 3, 2019 9

Further Constraints on Higher-Order Sym. E. parameters **K**_n and Q_n are correlated with L in "Good" theoretical models. $K_n = 3.534L - (74.02 \pm 21.17) \text{MeV}$ $Q_n = -7.313L + (354.03 \pm 133.16) \text{MeV}$ Skyrme a 650 Skvrme a 1500 Skyrme r Skyrme r RMF a RMF a RMF r RMF r 4501000 500 $K_n [\mathrm{MeV}]$ 250 $\mathcal{Q}_n [\mathrm{MeV}]$ 50 $K_{n,0}$ -500-150-1000

Regard theoretical models as data !

-50

150

I. Tews, J.M.Lattimer, AO, E.E.Kolomeitsev (TLOK), ApJ 848 ('17)105

0

50

L [MeV]

-350

-50

0

50

L [MeV]

100

A. Ohnishi @ MMGW2019, Oct. 3, 2019 10

100

150

TLOK+2 M_{\odot} constraints

- TLOK constraints
 - (S₀, L) is in Pentagon.
 - (K_n, Q_n) are from TLOK constraint.
 - K₀=(190-270) MeV
 - (n_0, E_0) is fixed $n_0=0.164 \text{ fm}^{-3}, E_0=-15.9 \text{ MeV} (\text{small uncertainties})$
 - Q₀ is taken to kill d₀ parameter
 (Coef. of u². Sym. N. M. is not very stiff at high-density)
- **2** \mathbf{M}_{\odot} constraint
 - $\bullet\,$ EOS should support 2 M_\odot neutron stars.

AO, Kolomeitsev, Lattimer, Tews, Wu (OKLTW), in prog.

TLOK+2 M_{\odot} constraints on EOS

- **2** M_{\odot} constraint narrows the range of EOS.
- Consistent with FP and TT(Togashi-Takano) EOSs.
- APR and GCR(Gandolfi-Carlson-Reddy) EOSs seems to have larger S₀ values.

Neutron Star MR curve

- **TLOK + 2** M_{\odot} constraints $\rightarrow R_{1.4}$ =(10.6-12.2) km
- OKLTW, in prog.
- E and P are linear fn. of Sat. & Sym. E. parameters
 Min./Max. appears at the corners of pentagon (ABCDE).
- For a given (S₀, L), unc. of R_{1.4} ~ 0.5 km
 = unc. from higher-order parameters
- Unc. from (S₀, L) ~ 1.1 km
 → We still need to fix (S₀, L) more precisely.

Time dependence of Neutron Star Radius $(R_{1,4})$

Astrophysics Observation and Estimate based on Nuclear Physics are consistent.

But there are several problems !

Non.-Rel. EOS violates causality ! Effects of QCD phase transition exists at high density ? Crust modifies NS radius !

Quarkyonic QCD Phase Transition and Neutron Star Properties

Quarkyonic Transition

- Quarkyonic (Quark+(Bar)yon+ic) Matter L. McLerran, R. D. Pisarski, NPA796 ('07) 83.
 - Quark Fermi Sphere + Baryonic Excitation
 - Low momentum baryons are blocked by quarks
 - Excitations is dominated by baryons
- Quarkyonic Transition L. McLerran, S. Reddy, PRL122 ('19)122701.

- Suppressed baryon density for a given $k_B \rightarrow$ Quick rise and down of sound velocity
- Supports massive NS without increasing R much.

Quarkyonic Transition

Pressure difference

P(QY)-P(B) (MeV/fm³)

Kinetic Energy Only

Example of Application to TLOK EOS

TLOK+2M_.+**MR** (McLerran-Reddy)

Summary

- Tews-Lattimer-AO-Kolomeitsev ('17) constraints (S0, L, K_n , Q_n) and 2 M_{\odot} constraint with the aid of Fermi momentum (k_F) expansion lead to the costraint on 1.4 M_{\odot} neutron star radius of (10.6-12.2) km.
 - Consistent with many of other constraint.
- Quarkyonic transition picture seems to be promising.
 - Sudden rise and down of sound velocity is helpful to support massive NS without changing R(1.4) much.
 - We can respect both of causality at high densities and symmetry energy parameters at low densities. (c.f. Polytrope)
 - Interactions in quark matter should be considered.
- Soft (<2n₀) Stiff (2n₀<n<5n₀) Soft (>5n₀) EOS agrees with the implication from heavy-ion collision data.

MR (McLerran-Reddy) model

Baryon shell thickness

$$\Delta_B = \frac{\Lambda^3}{k_B^2} + \frac{\kappa\Lambda}{N_c^2}$$

- Quark Fermi sphere
 - Symmetric Matter

$$k_q = \frac{k_B - \Delta_B}{N_c}$$

Asymmetric Matter

$$k_u^3 = \frac{1}{N_c^3} \left(\frac{2(k_p - \Delta_p)^3}{3} + \frac{(k_n - \Delta_n)^3}{3} \right)$$

$$k_d^3 = \frac{1}{N_c^3} \left(\frac{(k_p - \Delta_p)^3}{3} + \frac{2(k_n - \Delta_n)^3}{3} \right) \quad \Lambda = (380 - 400) \text{ MeV}/c, \ \kappa \simeq 0.8$$

MR : $\Lambda = 300 \text{ MeV}/c, \ \kappa = 0.3$

Thank you for your attention !

MR curve from X-ray burst

Constraints from Nuclear Physics (+a)

(ρ, T, Y_{e}) during SN, BH formation, BNSM

Negative Directed Flow

Directed Flow $v_1 = \langle \cos \phi \rangle = \langle p_x / p_T \rangle$, Slope $= dv_1 / dy$

Negative Flow in Heavy-Ion Collisions

STAR Collab. (L. Adamczyk et al.), Phys.Rev.Lett. 112 ('14), 162301

Negative Directed Flow

■ Negative Directed Flow slope at $\sqrt{s_{NN}}$ = 11.5 GeV (STAR ('14)) → Strong softening of EOS is necessary at n > (5-10) n₀

Isospin & Hypercharge Sym. E in quark matter

■ Two types of vector int. in NJL → Isospin & Hypercharge Sym. E X.Wu, AO, H.Shen, PRC to appear (arXiv:1806.03760)

$$\mathcal{L}_v = -G_0(\bar{q}\gamma_\mu q)^2 - G_v \sum_i \left[(\bar{q}\gamma_\mu \lambda_i q)^2 + (\bar{q}i\gamma_5\gamma_\mu \lambda_i q)^2 \right]$$

 $E = \alpha^2 S(n) + \alpha_Y^2 S_Y(n) , \ \alpha = -2\langle T_z \rangle / B , \ \alpha_Y = \langle B + S \rangle / B$

Neutron Star MR curve

- Our constraint is consistent with many of previous ones.
 - $R_{1.4} = (10.6-12.2) \text{ km Present work (TLOK + 2 M_{\odot})}$ OKLTW, in prog.
 - LIGO-Virgo (Tidal deformability Λ from BNSM) (10.5-13.3) km *Abbott+('18b)* (9.1-14.0) km *De+('18)* (Λ) Neutron Star Mass and Radius

