Improvements on Initial Data for Spinning Neutron Star Binaries

Hannes Rüter - 03.10.2019

Albert Einstein Institute Potsdam (work carried out at Friedrich Schiller University Jena)

Fundamental Equations

- Energy-momentum tensor of a perfect fluid:

$$
\begin{aligned}
T_{\alpha \beta} & =(\epsilon+p) u_{\alpha} u_{\beta}+p g_{\alpha \beta} \\
& =\rho h u_{\alpha} u_{\beta}+p g_{\alpha \beta}
\end{aligned}
$$

ϵ - proper energy density
h - specific enthalpy
p - fluid pressure
u^{α} - fluid four-velocity
$g_{\alpha \beta}$ - spacetime metric

$$
h:=\frac{\epsilon+p}{\rho}
$$

ρ - baryonic mass density

Metric Constraint Equations

- Decomposition of the spacetime metric

$$
g_{\mu \nu} d x^{\mu} d x^{\nu}=-\alpha^{2} d t^{2}+\gamma_{i j}\left(d x^{i}+\beta^{i} d t\right)\left(d x^{j}+\beta^{j} d t\right)
$$

$$
\begin{aligned}
& \alpha-\text { lapse } \\
& \beta^{i}-\text { shift } \\
& \gamma_{i j}-\text { spatial metric }
\end{aligned}
$$

Constraint Equations

Metric Constraint Equations

- Extended conformal thin sandwich (XCTS) equations

$$
\begin{aligned}
\bar{D}^{j} \bar{D}_{j} \psi & =\ldots \\
\bar{D}^{j} \bar{D}_{j} \beta^{i} & =-\frac{1}{3} \bar{D}^{i} \bar{D}_{j} \beta^{j}+\ldots \\
\bar{D}^{j} \bar{D}_{j}(\alpha \psi) & =\ldots
\end{aligned}
$$

- Conformal decomposition:

$$
\gamma_{i j}=\psi^{4} \bar{\gamma}_{i j}
$$

Fluid Constraint Equations

- Energy-momentum conservation \rightarrow Euler equations:

$$
0=P_{\nu}^{\alpha} \nabla_{\mu} T^{\mu \nu}=(\epsilon+p)\left(u^{\mu} \nabla_{\mu} u^{\alpha}\right)+P_{\mu}^{\alpha} \nabla^{\mu} p
$$

- Particle number conservation \rightarrow Continuity equation:

$$
0=\nabla_{\alpha}\left(\rho u^{\alpha}\right)
$$

$$
\begin{aligned}
& P_{\mu}^{\alpha}-\text { projection: } P_{\mu}^{\alpha}:=\delta_{\mu}^{\alpha}+u^{\alpha} u_{\mu} \\
& \quad \rho-\text { baryonic mass density }
\end{aligned}
$$

Split of the Enthalpy Current

- Define enthalpy current:

$$
\tilde{u}^{\mu}:=h u^{\mu}
$$

- Split off irrotational part:

$$
\tilde{u}^{\mu}=\tilde{u}_{\mathrm{irr}}^{\mu}+w^{\mu}
$$

$\tilde{u}_{\text {irr }}^{\mu}$ - irrotational part of enthalpy current $w^{\mu}-$ rotational part / "spin"

Irrotational Fluids

- Irrotational fluids:

$$
\omega_{\alpha \beta}:=P_{\alpha}^{\mu} P_{\beta}^{\nu} \frac{1}{2}\left(\nabla_{\mu} u_{\nu}-\nabla_{\nu} u_{\mu}\right)=0
$$

- For irrotational barotropic fluids: [Shibata - PRD 58, 024012 (1998)]

$$
\omega_{\alpha \beta}=0 \Longleftrightarrow D_{i}{ }^{(3)} \tilde{u}_{j}-D_{j}{ }^{(3)} \tilde{u}_{i}=0
$$

- $\Longrightarrow{ }^{(3)} \tilde{u}_{i}=D_{i} \phi$
ϕ - velocity potential

Split of the Enthalpy Current

- Enthalpy current can be written as:

$$
\tilde{u}^{\mu}=\tilde{u}_{\mathrm{irr}}^{\mu}+w^{\mu}=\nabla^{\mu} \phi+w^{\mu} \quad D_{i} w^{i}=0
$$

$\tilde{u}_{\text {irr }}^{\mu}$ - irrotational part of enthalpy current w^{μ} - rotational part / "spin" ϕ - velocity potential

Choice of Time Derivatives

- Quasi-equilibrium: [Tichy - PRD 84, 024041 (2011)]

$$
\begin{gathered}
\mathcal{L}_{\xi} g_{\mu \nu}=0 \quad \mathcal{L}_{\xi}\left(\rho u^{t}\right)=0 \quad \gamma_{i}^{\nu} \mathcal{L}_{\xi}\left(\tilde{u}_{\text {irr } \nu}\right)=0 \\
\xi^{\mu}-\text { approximate }(\text { helliptical }) \text { Killing vector } \\
\xi_{1,2}^{\mu}=\left(1, \quad-\Omega y, \Omega\left(x-x_{1,2}\right), 0\right)
\end{gathered}
$$

- But for rotational part:

$$
\gamma_{i}^{\nu} \mathcal{L}_{\tilde{u}_{\mathrm{irr}} / \tilde{u}^{t}}\left(w_{\nu}\right)=0
$$

Fluid Constraint Equations

- Split off Killing vector: $\tilde{u}^{\mu}=\tilde{u}^{t}\left(\xi^{\mu}+V^{\mu}\right), V^{\mu} n_{\mu}=0$
- Constraint Equations: [Tichy - PRD 84, 024041 (2011)]

$$
\begin{aligned}
& 0=-D_{i} C+{ }^{(3)} \mathcal{L}_{w / \tilde{u}^{t}} w_{i} \approx-D_{i} C \\
& 0=D_{i}\left(\frac{\rho \alpha}{h}\left(D^{i} \phi+w^{i}-\tilde{u}^{t}\left(\beta^{i}+\xi^{i}\right)\right)\right) \\
& C-\text { constant of integration } C=-\frac{h^{2}}{\tilde{u}^{t}}-V^{k} D_{k} \phi
\end{aligned}
$$

Fluid Constraint Equations

- Split off Killing vector: $\tilde{u}^{\mu}=\tilde{u}^{t}\left(\xi^{\mu}+V^{\mu}\right), V^{\mu} n_{\mu}=0$
- Constraint Equations: [Tichy - PRD 84, 024041 (2011)]

$$
\begin{aligned}
& 0=-D_{i} C+{ }^{(3)} \mathcal{L}_{w / \tilde{u}^{t}} w_{i} \approx-D_{i} C \\
& 0=D_{i}\left(\frac{\rho \alpha}{h}\left(D^{i} \phi+w^{i}-\tilde{u}^{t}\left(\beta^{i}+\xi^{i}\right)\right)\right) \\
& C-\text { constant of integration } C=-\frac{h^{2}}{\tilde{u}^{t}}-V^{k} D_{k} \phi
\end{aligned}
$$

Exact Integration of the Euler Equations

Exact Integration of the Euler Equations

- Euler equations: $0=-D_{i} C+{ }^{(3)} \mathcal{L}_{w / \tilde{u}^{t}} w_{i}$
- Requires:

$$
0 \stackrel{!}{=} D_{i}{ }^{(3)} \mathcal{L}_{w / \tilde{u}^{t}} w_{j}-D_{j}{ }^{(3)} \mathcal{L}_{w / \tilde{u}^{t}} w_{i}
$$

- Satisfied, if w^{i} is a Beltrami field:

$$
0=w^{k}\left(D_{k} w_{i}-D_{i} w_{k}\right) \equiv \epsilon_{j k i} w^{k}(\operatorname{curl} w)^{j}
$$

Exact Integration of the Euler Equations

- Beltrami fields:

$$
\begin{aligned}
& 0=w^{k}\left(D_{k} w_{i}-D_{i} w_{k}\right) \equiv \epsilon_{j k i} w^{k}(\operatorname{curl} w)^{j} \\
\Leftrightarrow & \epsilon^{j m n} D_{m} w_{n}=\lambda w^{j}
\end{aligned}
$$

- In flat space: $\vec{\nabla} \times \vec{w}=\lambda \vec{w}$
- Planar and axisymmetric flows not allowed!
- Euler equation:

$$
0=-D_{i}\left(C-\frac{w_{j} w^{j}}{\tilde{u}^{t}}\right)
$$

Solution with Helical Rotational Part

- Want: Uniform rotation around a spin-axis
- Example solution:
rotation around z-axis in flat space:

$$
w^{i}=\omega\left(-y, x, \pm 2 \sqrt{c^{2}-\frac{x^{2}+y^{2}}{2}}\right)
$$

ω - spin frequency
c - constant

Solution with Planar Rotational Part

- Binary on quasi-circular orbit
- Equal mass
- Anti-aligned spin
- Polytropic EOS

$$
\rho=\frac{\kappa(h-1)}{2}
$$

Solution with Helical Rotational Part

- Binary on quasi-circular orbit

$$
\rho=\frac{\kappa(h-1)}{2}
$$

New Formalism

Possible Causes for Problems in Previous Formalism

- Split of the enthalpy current: $\tilde{u}^{\mu}=\tilde{u}_{\text {irr }}^{\mu}+w^{\mu}$
- $\tilde{u}_{\text {irr }}^{\mu}=\nabla^{\mu} \phi$ holds only if $w^{\mu}=0$
- $D_{i}{ }^{(3)} \tilde{u}_{\text {irr }, j}-D_{j}{ }^{(3)} \tilde{u}_{\text {irr }, i}=0$
required the relations:
[Shibata - PRD 58, 024012 (1998)]

$$
u_{\mathrm{irr}}^{\mu} u_{\mu \mathrm{irr}}=-1
$$

Euler equations:

$$
\begin{aligned}
& 0=u_{\mathrm{irr}}^{\mu} \nabla_{\mu}\left(h u_{\mathrm{irr} \nu}\right)+\nabla_{\nu} h \\
& \gamma_{i}^{\mu} \mathcal{L}_{n} \tilde{u}_{\text {irr } \mu}=0
\end{aligned}
$$

Improved Formalism

- New split for u:

$$
u^{\mu}=t\left(u_{\mathrm{irr}}^{\mu}+u_{\mathrm{rot}}^{\mu}\right)
$$

- Analogue to Euler eqs.: $0=u_{\mathrm{irr}}^{\mu} \nabla_{\mu}\left(X u_{\mathrm{irr} \nu}\right)+\nabla_{\nu} X$

$$
t \text { - normalization constant }
$$

X - some function to be chosen
$\Longrightarrow 0=D_{i}\left(X u_{\mathrm{irrj}}\right)-D_{j}\left(X u_{\mathrm{irri}}\right)$
$\Longrightarrow u_{\mathrm{irr} i}=\frac{1}{X} D_{i} \sigma \quad \sigma$ - new velocity potential

Improved Formalism

- Euler equations \rightarrow ODE for X

$$
\begin{aligned}
0= & \gamma_{i}^{\nu}\left(\delta_{\nu}^{\mu}+u^{\mu} u_{\nu}\right) \nabla_{\mu} \ln \left(\frac{h t}{X}\right) \\
& +t u_{\mathrm{irr}}^{t} \gamma_{i}^{\nu} \mathcal{L}_{u_{\mathrm{irr}} / u_{\mathrm{irr}}^{t}} w_{\nu}-t u_{\mathrm{irr}}^{t} D_{i} \frac{u_{\mathrm{irr}}^{\mu}}{u_{\mathrm{irr}}^{t}} w_{\mu} \\
& +\frac{t}{X} w^{j}\left(D_{j} w_{i}-D_{i} w_{j}\right)
\end{aligned}
$$

here: $w^{\mu}=X u_{\text {rot }}^{\mu}$

Summary

- The exact integration of the Euler equations revealed problems in the old formalism for initial data construction for neutron star binaries with spin.
- Mistakes in the old formalism have been identified and are addressed in an improved formalism.

Summary

- The exact integration of the Euler equations revealed problems in the old formalism for initial data construction for neutron star binaries with spin.
- Mistakes in the old formalism have been identified and are addressed in an improved formalism.

Future Objectives

- Implement new formalism in a numerical code
- More accurate initial data for comparison with signals from future high precision gravitational wave detectors

Future Objectives

- Implement new formalism in a numerical code
- More accurate initial data for comparison with signals from future high precision gravitational wave detectors

Bonus

New Formalism for Irrotational Fluid

- $\mathrm{X}=\mathrm{h}$
- $w=0$
- ODE for X follows from

$$
\gamma_{i}^{\mu} \mathcal{L}_{n}\left(X u_{\operatorname{irr} \mu}\right)=\gamma_{i}^{\mu} \mathcal{L}_{n} \tilde{u}_{\operatorname{irr} \mu}=0
$$

Bonus: Numerical details - BAMPS

- Pseudospectral evolution code for hyperbolic first order PDEs
- 4th order Runge-Kutta time integrator

BAMPS:
D. Hilditch, A. Weyhausen,
B. Brügmann -

PRD 93, 063006 (2016)

Bonus: Numerical details

Bonus: Rotational Part as a Beltrami Field for arbitrary spin

- Want: Uniform rotation around a spin-axis
- Flat space solution for arbitrary spin ω_{i} :

$$
\begin{aligned}
w^{i} & =\epsilon^{i j k} \omega_{j}\left(x_{k}-x_{C k}\right) \\
& \pm 2 \omega^{i} \sqrt{c^{2}-\frac{\delta_{i j}\left(x^{i}-x_{C}^{i}\right)\left(x^{j}-x_{C}^{j}\right)}{2}+\frac{\delta_{i j}\left(\omega^{j}\left(x^{i}-x_{C}^{i}\right)\right)^{2}}{2 \delta_{k l} \omega^{l} \omega^{k}}}
\end{aligned}
$$

