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Surveys of the Transient Sky are Flourishing

All-Sky Automated Search for Supernovae (ASAS-SN)
Catalina Sky Survey (CSS)

Catalina Real-Time Transient Survey (CRTS)

Dark Energy Survey (DES)

Evryscope

Gala

Zwicky Transient Facility (ZTF)

Kepler-2 (K2)

Kilodegree Extremely Little Telescopes (KELT)

La Silla Quest

Optical Gravitation Lensing Experiment (OGLE)
Panoramic Survey Telescope and Rapid Response System (Pan-STARRS)
SkyMapper Southern Sky Survey

(partial list, more being planned and built)

EVRYSCOPE




The Phase Space of Transients is Being Filled
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Part I:
T1dal Disruption Events



Important Scales
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A Tidal Disruption Event (TDE) is Complicated

NASA, S Gezar/JHU and J Guillochon/UCSC



Motivation: Study SMBHs

TDEs can be used to study quiescent massive
black holes (and the M-Sigma relation) beyond the
nearby Universe and test GR



Not A New Ildea, But Events Are Rare
Hills (1975) — A star could be disrupted by a massive BH.

Rees (1988), Phinney (1989), Evans & Kochanek (1989) —
Half of the material is bound, half unbound, expect emission
when the bound material falls back to the BH as t-/3,

From the accretion onto the SMBH, expect emission in soft x-
rays and hard UV.

Donley et al. (2002), Wang & Merritt (2004), Kesden (2012),
Stone & Metzger (2014) — Rate is 10-4-10-°> events per galaxy
per year,



Early Observations Were Archival, Sparse Data
ROSAT (X-Rays) — 5 archival candidates (Donley et al. 2002).

XMM-Newton (X-Rays) — 5 additional archival candidates
(Esquej et al. 2007).

SDSS (optical) — 2 archival candidates (van Velzen et al 2011).

GALEX (UV) + CFHT (optical) — one candidate (~year cadence
ight curve; Gezari et al. 20006).



Two Major Discoveries in 2011 and 2012

High Energy TDEs

(Bloom et al. 2011,
Burrows et al. 2011,
Levan et al. 2011,
Zauderer et al, 2011)

Swift J1644

Gamma and X-rays, radio
No optical

Non-thermal spectrum
Plateau in X-ray light curve then
~1-5/8 decline

Additional events:
Swift J2058 (Cenko+ 12), Swift
J1112 (Brown+ 15)

Optical-UV TDEs

PS1-10jh (Gezari et al. 2012)

UV / Optical
No X-rays

Hot blackbody (30,000K)
Smooth rise and fall light curve
~t-5/8 decline

Additional events:

A+ 14, Holoien+ 14, 16a,b,
VWyrzykowski+ 16, Hung+ 17
Blagorodnova+ 17,19, ...



Why Two So Different Types of TDEs?

(a) M= ll)".“:lo. M,=Mg B=1 (b) M= H)"MO. My,=My, B=4
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xX/R, xX/R,

Dai et al. (20195): [ effect

shocked, ~circularized
accretion disk

bound,
unshocked

Bloom et al. (2011): Viewing
angle effect




PS1-10jh: The First Optical + NUV TDE

* (Coincident with the center of
a non-starforming galaxy.

* Peak magnitude -20

* Constant blue colors

* Only broad He Il in spectrum

Gezari et al. (2012)



PS1-10jh Does Not Look as Expected for a TDE

Expected

Center of galaxy

Loct—2/3

T~10° —10°K
R~Rp~10" cm
ENO.lM@C2 ~ 10°° erg
Evolving Temperature

Hydrogen from the star

Observed

Center of galaxy
Loct—2/3

T =310*K
R~10% cm

E~10°! erg

Constant Temperature

No hydrogen, only helium

NN



Forming a Class, All in Galaxy Centers

He II-

: Gezari+ 12
; PS1-10jh (-22d)
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A Set of Events Now, All in Galaxy Genters

PS1-10jh
Gezari+ 2012

1/3 of disru pted ) PTF09ge
stars are helium Aroavir 2014
stars? Not likely. , O s ~ Holoron+ 20166

iPTF16fnl
Blagorodnova+ 2017

SDSSJ0748
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PS1-10jh Does Not Look as Expected for a TDE

Expected

Center of galaxy

Loct—2/3

T~10° —10°K
R~Rp~10" cm
ENO.lM@C2 ~ 10°° erg
Evolving Temperature

Hydrogen from the star

Observed

Center of galaxy
Loct—2/3

T =310*K
R~10% cm

E~10°! erg

Constant Temperature

No hydrogen, only helium

NN



Are We Looking Through Reprocessing Material?

Top View

Black Hole
BLR Clouds

Surviving Core?

Hell, HII l
!
B Side View
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A 1 Path of disrupted debris
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Guillochon et al. 2014




Are We Looking Through Reprocessing Material?

5x10" cm
<10 cm

2 %10 cm

The presence of
reprocessing material
explains:

1. The low temperatures
2. The large radi
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3. The lack of hydrogen in
the spectra Roth et al. 2016



Self Collision Shocks Important for Loosing Energy

WD-BH encounter

FoRkfek kR kRokRkk Rk
masses (sol.) 0.2 (WD) & 1000 (BH)
in. separation 50 (in 1.E9 cm)
hydrodynamics SPH (4 030 000 particles)
EOS, gravity Helmholtz, N
nucl. burning red. QSE—network (Hix 98)
simul. time 5.4 min
color coded column density
penet. factor 12
Rosswog et al,
coding, simulation, visudlisation: S, Rosswog 2008

Video available at:
http://compact-merger.astro.su.se/Movies/IMBH1000_WD02_4e6parts_P12_N.mov



Are We Seeing the Energy from Outer Shocks?

Self crossing shocks explain:

1. The low temperatures

2. The large radi

3. The mechanism by which the
material circularizes in order 1o
accrete to the black hole

4. The two different TDE types”?

(a) M= ll)".‘\r:lo. M,=Mg, B=1 (b M= N)"MO. M,=Mg, =4

4000
2000
\" g
3 0
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Shock 2

Contact ____- &
discontinuity '

Shock 3

-2000

-4000

—4000-2000 0 2000 4000 —4000 -2000 0 2000 4000
x/R, X/Ry

Dai et al. (2015): (G effect

Piran et al. 2015



Two Models for the Emission of Optical TDEs

Expected

Center of galaxy

Loct—2/3

T~10° —10°K
R~Rp~10" cm
ENO.lM@c2 ~ 10°° erg
Evolving Temperature

H from the star

Observed

Center of galaxy
Loct—2/3

T =310*K
R~10'° cm
E~10°! erg
Constant Temperature

No H, only He




Different Emission Mechanisms for TDEs

Unbound Material
Adapted from Rees (1988) by C. Bonnerot ISM interaction

Accretion Reprocessed Quter Shocks
Accretion




The Jerusalem Bagel Model: Elliptical Accretion

Svirski, Piran &
Krolik, 2016




Motivation: Study SMBHs and Accretion Physics

TDEs can be used to study quiescent massive
black holes (and the M-Sigma relation) beyond the

nearby Universe and test GR

But first, we need to understand the
events: what they look like and You
why, how are the TDE observables (i)

related to the black hole properties



GR Effects Play Crucial Role in TDE Emission

Stream collisions due to GR precession




GR Effects Play Crucial Role in TDE Emission

Stream collisions due to GR precession

BH Spin can push maximal mass up

LETTERS

BLISHED: 12 DECEMBER 2016 | VOLUME: 1| ARTICLE NUMBE!|

The superluminous transient ASASSN-15lh as a
tidal disruption event from a Kerr black hole

| eloudas et al. 2016



GR Effects Play Crucial Role in TDE Emission

Stream collisions due to GR precession
BH Spin can push maximal mass up

GR affects the TDE light curve
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Cheng et al. 2015



GR Effects Play Crucial Role in TDE Emission

Stream collisions due to GR precession

BH Spin can push maximal mass up

GR affects the TDE light curve
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GR Effects Play Crucial Role in Forming TDEs

Stream collisions due to GR precession
BH Spin can push maximal mass up
GR affects the TDE light curve

GR affects the TDE rate

Kesden 2012b



Optical+UV TDEs Prefer Post-Starburst Galaxies

— 100 Myr burst
—— 200 Myr burst
3 Goyr decline
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Part | Summary

Last few years: A class of blue broad He-Il “Optical-UV TDES’
with common (weird) host galaxy preference

Emission sources under debate, lots of room for a variety of
transient phenomenon.

Now: Large diversity of optical events being revealed,
opportunities to test several GR effects observationally



Part II:
Extreme Supernovae



uminous Rapidly Evolving Events
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Luminous Rapidly Evolving Events
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Rise Time ~> Mass Ejected in Explosion
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vitce

U = Tqir

kM

ve
time to peak luminosity




Fast & Luminous Can’t be Ni-Powered . .~
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Fast & Luminous Can’t be Ni-Powered . _ .~
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Holy (AT 2018)cow! Very Fast, Luminous, Blue

e | uminous, very rapid decline (~1-2 mags per week)
e Mostly featureless blue continuum, some broad
features reportea

Perley et al.
2019



Holy (AT 2018)cow! Very Fast, Luminous, Blue

e | uminous, very rapid decline (~1-2 mags per week)
e Mostly featureless blue continuum, some broad
features reportea
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Absolute mag (R band)

-100 -50 0 50 100 150 20 MJD-58285

Days from Peak Margutﬂ e_t a| P@Hey et a|
2019 2019




M [Me kg 1 vl (assuming a central power source and constant opacity)
ej

0.07 0.3 0.8
\ \ \

Dougie

PTF LSN«I
DES Fast-Evolvers 09cnd (SLSN+I)

o
(gold sample) SN2006gy (SLSN-II)
O

SN2007bi (SLSN-R)
-0

)
—

iPTF1 Gasu+ SNLS04D4ec

SNLS05D2bk +w > SNLS06D1he

PTF10iam SN 2011kl
SN 2018WT "SN2018gepT ¥ T,

N
o

= ®
KSN 2015K+ " SN 2011fe (la)

©
©
>
=
c
<]
©
=
-
S
o
o
X
©
[}
o

4L
©

" SN 2002bj —

.

4
oo

%
PS1 Fast-Evolvers SNe Ib/c
(gold sample)

—
' SN 2010X —o=SN 2011dh (SN IIb)

Adapted from Arcavi et al. (2016)




Part Il Summary

Last few years: A class of rapidly rising luminous transients,
which can not be powered by standard Ni decay.

Emission source still unclear, likely several classes of events.

High cadence surveys coupled to rapid response followup
facilities could solve the mystery.



Fastest ‘Bright’ Transient: The GW170817 Kilonova

[M¢ hﬂ v9] (assuming a central power source and constant opacity)

0.07 0.3 0.8 7 28 77

——
Dougie
——

DES Fast-Evolvers PTF09cnd (SLSN-Q
(gold sample) SN2006gy (SLSN-I)
©

|
-
<o}

N

~

Type la
supernova

Type Ib/c
supernova

N
»

|
N
oo

)
N

|
—_—
~

SN2007bi (SLSN-R)
o

SN 2002bj

)
N

SN 2018cow

|
N
&)

SN 2010X

o
©

KSN 2015K
.

:
" SN[2002bj
T ,

D

)
©
>
=
c
S
E _16
O
-—
=
]
(72}
o)
<

N
N

SN 1999em + 1

o
)

PSt1 Fast-Evolvers

SNe Ib/c
(gold sample)

|
N
w

N
]

Peak R or r Magnitude
I N S T N

Kilonova .
* SN2010X —=SN 2011dh (SN lIb)

|
-
N

"~
S S W WSS VS W W—— -
10
1lis,e [Days]

o
[}

-20 -10 0 10 20 30
Time from peak (rest-frame days)

Arcavi et al. 2017




Part III;
Neutron Star Mergers



Apparent magnitude
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Apparent magnitude
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Different ejecta

fidal Talls: components constrain

different physics.

Polar Ejecta:
Blue emission

Disk Winds
Blue or Red Emission _



Polar Ejecta = Constraint on the Viewing Angle

GW170817

Planck!’

SHoES?!®

80 90
Ho (kms~tMpc~1)

LIGO & Virgo Collaborations et al. 2017, Nature




Different Models for the Blue — Red Emission

Multi-component radioactive decay
Villar et al. 2017

Single-component radioactive decay
(time-varying opacity) Waxman et al. 2017

Boosted relativistic ejecta
(early blue-emission) Kasliwal et al. 2017, see also Nakar &
Piran 2017, Gottlieb et al. 2017

Shock cooling
(early blue-emission) Piro & Kollmeler 2017
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Would Have Solved With GW Localization 1h Earlier
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Would Have Solved With GW Localization 1h Earlier
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Apparent magnitude
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UV - Optical Discovery Time Difference Was Critical
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Predicted One-Hour Time Scale Blue Emission

~houts

é n—-p+e +Vv

~days
mostly free n's

A" A+y+e +V

N
H

AB Mag (D = 200 Mpc)

N
(o))

N
(o))

time t since merger (hr)

Metzger et al. 2015



Need a Tool for Coordinating Global GW Followup
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The “Treasure Map”

Voluntary reporting of observations planned and then
update to executed

See where other people are searching and plan your
observations accordingly

Reporting of candidates and classifications for
community vetting with minimal overlaps

Constant updates on brightness and color helps inform
additional followup

Allows real-time involvement of amateur observers, citizen
sclentists, theorists...



http://treasuremap.space

Treasure Map Home Alerts Query Pages ~ Submit Pages ~ Documentation Profile Logout

Gravitational Wave Ligo Alerts
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http://treasuremap.space/alerts?graceids=S190425z

Additional Information in GW Alerts Will Help

Could a localization improve after a preliminary alert or
were detectors off?

Could the preliminary / initial mass uncertainty evolve to
NS territory?

Is one of the components < 2 solar masses?

In addition to allowing for more rapid discovery, will
allow for more efficient telescope use (current EM
followup strategies not sustainable, will need to be more
selective in the future)



Part Ill Summary

The source of the early blue emission of GW170817
remains unclear: Radioactive decay from low opacity
ejecta, from boosted high velocity ejecta, shock cooling?

This Is important: Various ejecta components potentially
constrain NS EOS, nucleosynthesis, jet launching, cocoon
forming, inclination angle (— Hubble Constant).

Early data critical! Distinguishing between emission
models requires optical-UV observations starting few hour/s
after merger (10 hours is too late) with sub-day cadence.

Must coordinate to find events early!
LVC can help with additional information in alerts.



