Electromagnetic emission from *r*-process-powered transients

MMGW19 @ YITP Kyoto University 8 Oct 2019

Jennifer Barnes NASA Einstein Fellow Columbia University

Open questions for the multimessenger era

The *r*-process produces ~half of elements heavier than Fe

		В	Big Bang				CCSNe			the r-process							
H																He	
-Li-	Be	Cosmic Rays Sive la B C N O F															Ne
3	4											5	6	7	8	9	10
Na	Mg 12	S-PROCESS (AGBS) SYNTHETIC AI Si P S (13 14 15 16													CI 17	Ar 18	
K 19	Ca 20	Sc 21	Ti	V 23	Cr 24	Mn 25	Fe 26	C0 27	Ni 28	Cu 29	Zn 30	Ga 31	Ge 32	As 33	Se 34	Br	Kr 36
Rb 37	Sr 38	Y 39	Zr 40	Nb 41	Mo 42	Tc 43	Ru	Rh 45	Pd 46	Ag	Cd 48	In 49	Sn	Sb 51	Te 52	 53	Xe 54
Cs 55	Ba	°	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI 81	Pb 82	Bi 83	Po 84	At 85	Rn 86
Fr	Ra	Ba															
87	88	ĨL	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
			57	-58	59	60	61	82	63	64	65	66	67	68	69	70	71
			89 89	1h 90	91 91	92	93	94	Am 95	96 96	97 97	98 98	599	100	101	NO 102	Lr 103

The *r*-process produces ~half of elements heavier than Fe

Mergers are natural sites of the *r*-process

final orbits: strong GW source

Mergers are natural sites of the r-process merger: neutron

final orbits: strong GW source

forms

star disrupts,

Mergers are natural sites of the *r*-process

final orbits:
strong Gw
source

ejecta: some
material
escapes; some
is bound

star disrupts,

central remnant

forms

Mergers are natural sites of the *r*-process

final orbits: strong GW source

ejecta: some material escapes; some is bound

final: a central NS or BH, an accretion disk, unbound ejecta

star disrupts,

central remnant

forms

The *r*-process assembles heavy nuclei in explosive environments

Nuclear Statistical Equilibrium

 $T \gtrsim 6 \times 10^9 \,\mathrm{K}$

Composition depends on state variables, not on reaction rates

The *r*-process assembles heavy nuclei in explosive environments

The *r*-process assembles heavy nuclei in explosive environments

QSE Freeze-out and the start of an *r*-process $T \approx 2 - 4 \times 10^9 \text{ K}$

Changes to the composition are driven by n-capture Final composition set by <A>, R_{n/s} Quasi-Statistical Equilibrium $T < 6 \times 10^9 \text{ K}$

Nuclear Statistical Equilibrium $T\gtrsim 6 imes 10^9~{
m K}$

The r-process: a detailed look

The r-process: a detailed look

The decay of *r*-process elements powers a "kilonova"

"kilonova"

Mildly relativistic neutronrich unbound material
Synthesis of heavy elements
An expanding cloud heated

by radioactive decays

tidally stripped

disk outflows

In kilonovae, **bound-bound** opacity (cm² g⁻¹) sets the photon mean free path.

Understanding kilonova emission Opacity and composition

The *r*-process burns heavy elements with unique atomic structures and a **high density of strong lines**

The opacity of certain *r*-process elements (**lanthanides** and **actinides**) is very high

higher opacities \longrightarrow longer, dimmer, redder light curves diffusion time: $t_{\text{diff}} \sim \kappa^{1/2}$ adiabatic losses: $E_{\text{phot}} \sim t^{-1}$ line blanketing at optical wavelengths

higher opacities \longrightarrow longer, dimmer, redder light curves diffusion time: $t_{\text{diff}} \sim \kappa^{1/2}$ adiabatic losses: $E_{\text{phot}} \sim t^{-1}$ line blanketing at optical wavelengths

Kilonova composition and opacity Outcomes of the *r*-process

Kilonova composition and opacity Outcomes of the *r*-process

fewer weak interactions ← → more weak interactions

Kilonova composition and opacity Outcomes of the *r*-process

(Not shown: gamma-ray signal)

Radioactive transient from dynamical ejecta and/or a disk wind.

> transient source detected in galaxy NGC 4993

ad. from ALV + EM Partners 17

(Not shown: gamma-ray signal)

Interpreting the GW170817 kilonova Spectra and ejecta structure

Interpreting the GW170817 kilonova Spectra and ejecta structure

NIR: wide absorption features suggest slower velocities ~0.1 c

Kilonova heating and luminosity

Kilonova heating and luminosity

Kilonova heating and luminosity

Kilonova heating and luminosity The effect on light curves

- lower luminosity (especially for less massive ejecta)
- allows better estimate of mass from observations

Kilonova heating and luminosity The role of a given decay/channel is highly variable

R-process radioactivity depends on initial conditions and on nuclear physics far from stability

Varying these will vary $L_{\rm bol}$

Kilonova heating and luminosity Effect of decay channel

Decay channels with higher characteristic energies have higher cross-sections for energy loss

β-decay

 α -decay

Fission

At certain times, one or a few decays can dominate the *r*-process radioactive energy

Kilonova heating and luminosity The importance of individual nuclei

See Kasen & JB 19; Wu, JB+19

Case Study I: Californium Dreaming

Cf-254 fissions with a half-life T~60.5 days, releasing a tremendous amount of energy

The role of fission in the *r*-process is highly uncertain, but Zhu+18 find Cf-254 is produced by β -feeders in the A=254 isobaric chain on timescales of ~0.1 days

Case Study I: Californium Dreaming Cf-254 can dominate heating and affect luminosity

Zhu...JB+ 18

Case Study II: α -decaying actinides Can long-lived actinides impact the bolometric luminosity?

Find nuclear heating rates consistent with measured luminosity of AT1017gfo
Resolve late-time alpha decays individually to predict late-time bolometric luminosity

Wu,JB+ 19

- Estimated present-day merger rate: 10 - 100 per Myr
- The most recent mergers
 → took place 10⁴ 10⁵ year ago
 - There are *r*-process nuclei with $\tau_{1/2} \approx$ the age of the last galactic NSM

Wu, Bannerjee...JB+19 See also: Qian 98,99; Ripley+14

Assumptions of the model:

- Binary NS birth places trace stellar mass
- Binary NS systems acquire substantial kick velocities
- Rate: 10 Myr⁻¹ or 100 Myr⁻¹

Individual sources

Wu, Bannerjee...JB+19

Assumptions of the model:

- Binary NS birth places trace stellar mass
- Binary NS systems acquire substantial kick velocities
- Rate: 10 Myr⁻¹ or 100 Myr⁻¹

Individual sources

Wu, Bannerjee...JB+19

Assumptions of the model:

- Binary NS birth places trace stellar mass
- Binary NS systems acquire substantial kick velocities
- Rate: 10 Myr⁻¹ or 100 Myr⁻¹

Diffuse sources (182Hf)

Wu, Bannerjee...JB+19

Summary & Conclusions

- Kilonova observations can help us understand merger-driven nucleosynthesis
 - This can reveal the mechanics of mass ejection and the fate of the central remnant
 - Can constrain sources of r-process material
- We need to develop more precise diagnostics of composition
 - Both spectra and light curves encode useful information
- We can look forward to the next nearby merger...but we can also look back to the last one.

Thank you!

Questions?