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final orbits: 
strong GW 

source

ejecta: some 
material 

escapes; some 
is bound 

final: a central 
NS or BH, an 

accretion disk,

unbound ejecta

merger: neutron 
star disrupts, 

central remnant 
forms

Mergers are natural sites of the  
r-process



The r-process assembles heavy 
nuclei in explosive environments

Nuclear Statistical Equilibrium
T & 6⇥ 109 K

Composition depends on 
state variables, not on 

reaction rates
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The r-process assembles heavy 
nuclei in explosive environments

Nuclear Statistical Equilibrium
T & 6⇥ 109 K

Quasi-Statistical  
Equilibrium

T < 6⇥ 109 K

T ⇡ 2� 4⇥ 109 K

QSE Freeze-out and the 
start of an r-process

Changes to the 
composition are 

driven by n-capture

Final composition set 

by <A>, Rn/s
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tidally 

stripped

dynamically 

squeezed

disk 

outflows

• Mildly relativistic neutron-
rich unbound material


• Synthesis of heavy 
elements

The decay of r-process elements 
powers a “kilonova”

“kilonova”

An expanding cloud heated 
by radioactive decays
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In kilonovae, bound-bound opacity (cm2 g-1) sets the photon 
mean free path.
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Sobolev optical depth sets 
interaction probability with a 
particular line

The expansion opacity 
determines the effective 
continuum opacity

Kilonova composition and opacity



other 
explosive 
systems

r-process

p-shell  
(6 e-)

d-shell  
(10 e-)

f-shell (14 e-)

s-shell  
(2 e-)

Lanthanides

Actinides

Nlines ⇡ N2
lev

Nlev ⇡ g!

n!(g � n)!

n =
g = 2(2l + 1)

no. of electrons

The r-process burns heavy elements with unique atomic 
structures and a high density of strong lines

Understanding kilonova emission 
Opacity and composition



The opacity of certain r-process elements (lanthanides and 
actinides) is very high

Kilonova composition and opacity

light r-process, Fe

lanthanides + 

actinides

Kasen, Badnell, & JB 2013
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What is the source 
of these features?
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Interpreting the GW170817 kilonova 
Spectra and ejecta structure

Nicholl+2017

4000   5000   6000   7000   8000   9000
Rest wavelength (    )                                  

F
�

Å
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suggest slower velocities ~0.1 c



Interpreting the GW170817 kilonova 
Spectra and ejecta structure

Nicholl+2017
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17UV/optical: strong line-blending 
indicates high velocities ~0.3c

NIR: wide absorption features 
suggest slower velocities ~0.1 c

A picture emerges: 
A high-velocity, high-Ye 

outflow alongside a low(er) 
velocity, low-Ye component
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Ėtherm

/ Mej
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R-process radioactivity 
involves many decays 
with different time and 

energy scales 
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• lower luminosity (especially for less massive ejecta)

• allows better estimate of mass from observations

JB+16
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Kilonova heating and luminosity 
The effect on light curves



R-process 
radioactivity depends 
on initial conditions 

and on nuclear 
physics far from 

stability

Kilonova heating and luminosity 
The role of a given decay/channel is highly 
variable

Varying these will
Lbolvary



Kilonova heating and luminosity 
Effect of decay channel
Decay channels with higher characteristic energies have 
higher cross-sections for energy loss

At certain times, one or 
a few decays can 

dominate the r-process 
radioactive energy

-decay-decay Fission↵�



Kilonova heating and luminosity 
The importance of individual nuclei

↵

See Kasen & JB 19; Wu, JB+19

Ensemble r-process 
heating

Single isotope 
heating
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Case Study I: Californium Dreaming

Cf-254 fissions with a 
half-life    ~60.5 days, 

releasing a tremendous 
amount of energy

The role of fission in the 
r-process is highly 

uncertain, but Zhu+18 
find Cf-254 is produced 

by    -feeders in the 
A=254 isobaric chain on 
timescales of ~0.1 days

produced

decays
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Case Study I: Californium Dreaming 
Cf-254 can dominate heating and affect 
luminosity

Effective heating Broadband Light Curves

Zhu…JB+ 18
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Case Study II:    -decaying actinides 
Can long-lived actinides impact the bolometric 
luminosity?

Wu,JB+ 19

↵

• Find nuclear heating 
rates consistent with 
measured luminosity 
of AT1017gfo


• Resolve late-time 
alpha decays 
individually to 
predict late-time 
bolometric 
luminosity
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Can we find the last galactic NSM? 

• Estimated present-day 
merger rate: 10 - 100 per 
Myr
The most recent mergers 
took place 104 - 105 year 
ago

• There are r-process nuclei 
with             the age of the 
last galactic NSM

⌧1/2 ⇡

239Pu (2.4e4 y) 
231Pa (3.3e4 y) 
230Th (7.5e4 y) 
233U  (1.6e5 y)

126Sn (2.3e5 y) 
234U   (2.5e5 y) 
242Pu (3.7e5 y) 
237Np (2.1e6 y) 
182Hf (8.9e6 y) 

See also: Qian 98,99; Ripley+14
Wu, Bannerjee…JB+19



↵

↵

d✏

d⌧
= ��2✏

⌧
� ✏�1/2

⌧3

Can we find the last galactic NSM? 

Wu, Bannerjee…JB+19

Assumptions of the model: 
• Binary NS birth places trace stellar mass

• Binary NS systems acquire substantial kick velocities

• Rate: 10 Myr-1 or 100 Myr-1  


Individual sources
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Can we find the last galactic NSM? 

Wu, Bannerjee…JB+19

Assumptions of the model: 
• Binary NS birth places trace stellar mass

• Binary NS systems acquire substantial kick velocities

• Rate: 10 Myr-1 or 100 Myr-1  


Diffuse sources (182Hf)



Summary & Conclusions 

• Kilonova observations can help us understand 
merger-driven nucleosynthesis

• This can reveal the mechanics of mass 

ejection and the fate of the central remnant

• Can constrain sources of r-process material


• We need to develop more precise diagnostics of 
composition

• Both spectra and light curves encode useful 

information

• We can look forward to the next nearby 

merger…but we can also look back to the last 
one.



Thank you!

Questions?


