EM follow up of GWs: Updates, Open questions and Future observations

GW170817... 2yrs afterwards....

UNIVERSIT

Update on EM follow up in 03:

No convincing EM counterpart to a GW event has been publicly announced during LIGO/03

GW170817: 2yrs of non-thermal emission

Margutti & Chornock in prep

GW170817: 2yrs of non-thermal emission

Margutti & Chornock in prep

Margutti & Chornock in prep

Margutti et al. 2018

A POWER-LAW in the Sky

A POWER-LAW in the Sky

A power-law in the sky!

updated with new data from Alexander +2018 Margutti+2018

Hajela+ 2019

CONCORDANT PICTURE: An off-axis jetted relativistic outflow with structure

An off-axis jetted relativistic outflow with structure: Parameter Degeneracy

An off-axis jetted relativistic outflow with structure: Parameter Degeneracy

Hajela+2019

n<0.01 cm-3 Ek~ 10^49 erg

Physically,

they are likely to originate from a cocoon inflated by the jet as it propagates through the binary merger ejecta (E.g. Lazzati+, Gottlieb+, Bromberg+)

Nakar+2018

Nakar+2018

Energy Partitioning

Not unprecedented!

A structured ultra-relativistic outflow in a low density environment provides a natural explanation of what we are observing in GW170817

How to distinguish which model is correct?

Synch. Cooling Frequency

Temporal Decay

"Image" of the blast wave

Introduce STRUCTURE in the quasispherical ejecta

E(>GammaBeta)~(GammaBeta)^-alpha

Synchrotron Cooling Frequency Evolution

Jetted models

.Margutti in prep.

TEMPORAL DECAY Measured at t>(5-6)x t_peak

VLBI images of GW170817 Mooley+2018; Ghirlanda+2019;

Unresolved + Superluminal motion of centroid Rules out spherical explosions + axi-symmetric explosions E.g. Zrake+2018, Mooley+2018, Ghirlanda+2019

Superluminal motion of centroid not enough by itself to distinguish between successful vs. chocked jet

Zrake+2018

Centroid offset starts to decrease earlier in successful jets models, reaches larger offsets and images are smaller

Time when centroid reverses its motion

Image size when resolved

Zrake+2018

The emission is (still) non-thermal and with the very same spectrum It is decaying with time

Ejecta Tidal Tail models are disfavored Pure cocoon models disfavored

GW170817 consistent with having harbored a SGRB-like outflow at ~30 deg off-axis, with a ~5 deg relativistic core, Ek~ some 10^49, n~10^-2 cm-3. These properties are NOT UNPRECEDENTED See Wu+2018, Wu+2019 GW170817 in the context of SGRBs: why GW170817 (and alike) is a unique opportunity

Constraining the physical parameters of BNS outflows Nature of the remnant

> Discovery Frontiers BH-NS mergers Population of BNS Connection to Cosmology
ENERGETICS and SUB-PC ENVIRONMENTS of SGRBs

~10 days

Out of >100 SGRBs, 4 radio detections Impairs our ability to accurately constrain Ek, n, Ojet, (+microphysics)

Lower X-ray Luminosity —-> Lower Energy, density

Margutti+2013

Jet comes into view

Hajela+2019

Hajela+2019

Observations are sparse, so we can't solve for all the model parameters, and typically we do not know vsa, vm, vc (= we do not solve for e_e and e_B)
=> location of vsa, vm, is typically a reasonable assumption, vc is inferred for ~50% of the sample.

vm (vsa)< Optical< vc

Radio < **v**m

Fong+2015

Fong+2015

COLLIMATION of the FASTEST EJECTA

==> Jet Breaks

GRB 140903A 1000 100 10 Flux density (µ Jy) J 0.10.01 Swift XRT - 1 keV Chandra ACIS-S - 1 keV DCT LMI - r' (× 0.1) 10^{-3} Gemini GMOS - i' (× 2) VLA - 6.1 GHz VLA - 9.8 GHz (× 10) 10^{-4} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} Time since burst [s]

Best example:

Collimation in SGRBs ==> Jet Breaks

Very small statistics of few

Non-thermal **synchrotron** emission across the spectrum: the show is still on

Extremely **wellbehaved** SPL spectrum over 8 orders of magnitude in frequency

Particle acceleration by

trans-relativistic shock in action! Emitting material has

Г~3-10

WHAT WE DO NOT UNDERSTAND?

(1) Extended Emission
(2) Temporal Variability
(3) GRB130603B - X-ray excess

Extended Emission

Norris & Bonnel 2006

Extended Emission

Perley+2009

SGRB X-ray Variability

Margutti+12

SGRB X-ray Variability

Margutti+2011

X-ray variability in GW170817?

X-ray variability in GW170817?

Piro+2018

The nature of the remnant

Poissonian Probability = 3.3 σ (*not accounting for trials)

Reduced statistical significance of 2.2 σ when the number of trials is properly accounted for

Hajela+2019

Piro+2018

Emission from central engine?

$$\tau_{\rm X} \simeq \rho R \kappa_{\rm X}$$
$$\approx 36 \left(\frac{\kappa_{\rm X}}{100 \,\mathrm{cm}^2 \mathrm{g}^{-1}} \right) \left(\frac{M_{\rm ej}}{10^{-2} M_{\odot}} \right) \left(\frac{v_{\rm ej}}{0.2 \,\mathrm{c}} \right)^{-2} \left(\frac{t}{1 \,\mathrm{week}} \right)^{-2} (1)$$

Unlikely to be able to escape at early times t<100 days

BUT: photoionization of the ejecta (for Lx>10^44 erg/s)

Funnel geometry

This is Gold

Nakar & Piran 2011; Metzger & Berger 2012; Metzger & Bower 2014; Hotokezaka & Piran 2015

X-ray "excess" in GRB130603B

Fong+2014

GW170817 in the context of SGRBs: why GW170817 (and alike) is a unique opportunity

Constraining the physical parameters of BNS outflows Nature of the remnant

> Discovery Frontiers BH-NS mergers Population of BNS Connection to Cosmology Future obs of GW170817

Spectroscopic characterization: the Extremely Large Telescopes (ELTs) Conveners for Time Domain and MMA: D. Milisavljevic, R. Chornock Representative on the US-ELT Advisory Committee: Margutti

Heavy elements production in the Universe

Chemical Enrichment of the Universe: **Production and Enrichment history** of the heaviest chemical elements

Why the ELTs?

Mapping the spectroscopic **diversity** of the **most distant mergers** discovered by GW interferometers

Why the ELTs?

Mapping the spectroscopic diversity of the most distant mergers discovered by GW interferometers

Why **two** ELTs?

2-hemisphere system → all-sky coverage Longitudinal separation of GMT & TMT Complementary Instrumentation

Mapping the spectroscopic diversity of the most distant mergers discovered by GW interferometers

"Multi-Messenger Astronomy with Extremely Large Telescopes" Chornock et al., arXiv:1903.04629

LSST: ToOs to tile the field of GW sources

LSST: ToOs to tile the field of GW sources

Target of Opportunity Observations of Gravitational Wave Events with LSST

The TVS Multiwavelength Characterization/GW Counterparts subgroup,

The KN Velocity Structure (and the nature of the remnant)

Nakar & Piran 2011; Metzger & Berger 2012; Metzger & Bower 2014; Hotokezaka & Piran 2015

Energy Partitioning $E(\Gamma\beta) \sim (\Gamma\beta)^{-\alpha}$

Connection to nature of the remnant e.g., Radice+2018

The KN afterglow (radio):

Cosmology:

Guidorzi+17

Cosmology:

Hotokezaka+2019

Update on results from EM follow up in O3:

S190425z (NS-NS)

Hosseinzadeh+2019 Coughlin+2019

Update on results from EM follow up in O3:

Update on results from EM follow up in O3:

S190814bv (NS-BH)

(Gomez+2019)

Update on results from EM follow up in O3:

S190814bv 100% coverage!!

Gomez+2019

Ongoing Galaxy Targeted Radio follow-up (K. Alexander+, K. Mooley+)

This is not

...The End...

