YKIS2019@YITP Oct 10

binary star formation at low metallicities

Kazuyuki Omukai (Tohoku U) + a lot of collaborators

Contents

- First Star Formation
- First Binary Formation
- Metallicity Effect
- Toward MHD simulation: correct treatment of ionization degree

First Star Formation

First Star Forming Sites

ACDM cosmology Simulate starting from the density fluctuations up to the formation of first object

First Objects to form stars: small halos with virial temperature T_{vir} > 1000K (minihalos ~10⁶M_{sun}, z~20-30) 600h⁻¹kpc the gas in which cools by

H₂ line emission and become denser

→ Star formation

Yoshida, Abel, Hernquist & Sugiyama (2003)

Birth of the first protostar

Yoshida, KO, Hernquist 2008

Hydrostatic protostar
 (initial mass ~10⁻²M_{sun})
 forms at ~10²¹cm⁻³

Protostellar mass accretion rate

Much higher accretion rate in Pop III star formation

UV feedback sets the final stellar mass

Pop III IMF

MpopIII [Msun]

Hirano et al. (+KO) 2014, 2015

 \checkmark with wide mass range: a few 10s- 100s $\rm M_{sun}$

✓Even 1000M_{sun} first stars can be formed

But, 2D simulation: → no binary by construction

First Binary Formation

Some first stars were also binaries

fragmentation during the collapse

("turbulent fragmentation")

From 2009 onward, it becomes known that binaries/multiples are formed in the first star formation.

fragmentation of circumstellar disk after protostar formation ("disk fragmentation")

Clark et al. 2011

Greif et al. 2011

Earlier work on first binary formation

Machida, KO+ 2008

➢ barotropic EOS from one-zone model
➢ idealistic initial condition:
➢ BE sphere (10³ cm⁻³)
density x 1.01 (α₀=0.83)
➢ Rotation β₀
➢ Perturbation (bar A_φ + m=3)

All the cores with some rotation ($\beta_0 > 10^{-6} - 10^{-5}$ fragment.

More prone to fragmentation than present-day

Radiative feedback in 3D

Hosokawa + (KO) 2016

Public multi-D MHD code: PLUTO (e.g., Mignone et al. 07)

A modified version developed for studying present-day high-mass star formation (R.Kuiper+10 etc.) + self-gravity + FLD solvers

- UV radiation transfer + chemistry
- Stellar evolution (Yorke & Bodenheimer 08)
- Cosmological initial condition (Hirano+14)

polar coordinate + central sink (radius of 30AU and spatially fixed)

Follow the long-term ($\sim 10^5$ yrs) evolution with ionizing (EUV) and dissociating (FUV) feedback in 3D

fragmentation and migration...

Hosokawa + (KO) 2016

Contour: Toomre Q parameter solid: Q=0.1, dotted: Q=1.0

The central star grows very massive before the UV feedback shut off the accretion.

But, radiation comes only from the central source. \rightarrow massive binary formation remains unexplored.

Multi-source simulation in AMR

Sugimura +(KO). in prep.

AMR + (M)HD + self-gravity + sink particle method (Matsumoto 07 etc.)

 + adaptive ray-tracing (ART) method for multiple soruces (e.g., Abel & Wandelt 02; Rosen et al. 2017) of EUV (H ionizing) & FUV (H2 dissociating) rad.

+ chemistry network & cooling/heating processes w/ the primordial composition (zero metallicity)

+ Cosmological initial cond. (Hirano et al. 15) Halos C & D of Hosokawa+ (2016)

3D movie

halo C, r_{sink}=64au

Time: -151617.0

sink particle evolution minihalo C, r_{sink}=64au

sink particle evolution^{halo D, r_{sink}=64au}

Evolutionary phases

(a) initial frag.

(b) merger induced by a-few-body effect

(c) accreting binary

(d) internal photoevaporation

(e) external photoevaporation

 $100 \cdot$ (a) (b) !(d) (e) (c) sp0 $M [M_{\odot}]$ 50sp1 sp2 () 10 $[\mathrm{I}^{10}_{\mathrm{M}}]$ $\ge 10^{-4}$ 10^{-5} 10^{4} \bigtriangledown^{103} 60M_{sun} + 30M_{su}

Massive binaries are common among first stars

Metallicity Effects

Metallicity effects on fragmentation during the collapse

lower-Z core fragments to binary even with slower rotation rate

Why more fragmentation at low-Z?

✓ Lower Z cores have longer density interval to spin-up.
 → slowly rotating cores can fragment

✓ Fragmentation tends to occur at higher density.
 → tend to form closer binaries ?

disk fragmentation ? after protostar formation

Kratter+10

Steady state disk structure and stability

Pop II Protostellar disk is most unstable and would fragment
 → binary formation preferred ?

Why are extreme Pop II disks unstable?

$$Q \sim \frac{c_{\rm s,disk}^3 / G}{c_{\rm s,core}^3 / G} \sim \mathop{\varsigma}\limits^{\text{a}}_{\dot{\rm e}} \frac{T_{\rm disk}}{T_{\rm core}} \stackrel{\dot{\rm o}}{\overset{\dot{\rm o}}{\overset{\dot{}}}}}}}}}}}}}}}}{\overset{\dot{\,}{{\rm o}}}{\overset{\dot{\rm o}}{\overset{\dot{\rm o}}{\overset{\dot{}}}}}}}}}}}}}}$$

✓ disk is unstable if $T_{disk} < T_{core}$ ✓ Due to dust cooling operating at high density, disk can be colder than envelope at low Z.

Recent observation of low-Z binaries

Also, an UMP close binary (([Fe/H]=-4.07, a=0.2au, 0.76+0.14M_{sun} stars) is found (Schlaufman + 2018)

These findings may support our claim of high binary fraction for Pop II stars.

Toward MHD calculation:

accurate ionization degree modelling needed

Magnetic fields will change the picture ?

In Galactic ISM, B-fileds are almost in energy equi-partition:

 $E_{B} \sim E_{kin} \sim E_{grav}$

Roles:

- •Support against the collapse
- •Jet/Outflow launching
- •Angular momentum transport by magnetic braking, magneto-rotational instability
- •Suppressing fragmentation of disk
- \rightarrow determines frequency of binary formation

Even in low-metallicity ISM, significant B-fields may be present seed field ($\sim 10^{-19}$ G) amplified by e.g., small-scale dynamo

(e.g., Machida & Doi '13)

Magnetic field dissipation

Ionization degree in star forming clouds is low \rightarrow magnetic dissipation can occur e.g., Wardle 2007

balance of Lorentz and drag forces for charged particles j

$$Z_{j}eE' + Z_{j}e\frac{v_{j}}{c} \times B - m_{j}\gamma_{j}\rho v_{j} = 0$$
Hall parameter

$$\rightarrow J = \sum_{j} n_{j}eZ_{j}v_{j} = \sigma_{O}E'_{\parallel} + \sigma_{H}\hat{B} \times E'_{\perp} + \sigma_{P}E'_{\perp}$$

$$\beta_{j} = \frac{|Z_{j}|eB}{m_{j}c}\frac{1}{\gamma_{j}\rho}$$
with Obmic Hall and
$$e^{c}\sum_{j} e^{C}\sum_{j} e^{C}\sum_{j} n_{j}Z_{j}$$

with Ohmic, Hall, and
Pedersen conductivities
$$\sigma_O = \frac{ec}{B} \sum_j n_j |Z_j| \beta_j \quad \sigma_H = \frac{ec}{B} \sum_j \frac{n_j Z_j}{1 + \beta_j^2} \quad \sigma_P = \frac{ec}{B} \sum_j \frac{n_j |Z_j| \beta_j}{1 + \beta_j^2}$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{B}) - \nabla \times [\eta_{\rm O} \nabla \times \boldsymbol{B} + \eta_{\rm H} (\nabla \times \boldsymbol{B}) \times \hat{\boldsymbol{B}} + \eta_{\rm A} (\nabla \times \boldsymbol{B})_{\perp}]$$

Dhmic, Hall and ambipolar diffusivities

$$\eta_O = \frac{c^2}{4\pi\sigma_O} \qquad \eta_H = \frac{c^2}{4\pi\sigma_\perp} \frac{\sigma_H}{\sigma_\perp} \qquad \eta_A = \frac{c^2}{4\pi\sigma_\perp} \frac{\sigma_P}{\sigma_\perp} - \eta_O$$

$$\sigma_\perp = \sqrt{\sigma_H^2 + \sigma_P^2}$$

Ionization degree controls magnetic dissipation

accurate treatment of ionization degree in primordial gas

Nakauchi, KO, Susa 2019

204 reactions (all reversed) among 23 species:

major positive ions: $H^+ \rightarrow Li^+ \rightarrow H_3^+ \rightarrow H^+$

Li ionization by thermal photons enhances ionization degree at >10¹⁴cm⁻³

$$\mathrm{Li}^+ + e \rightleftharpoons \mathrm{Li} + \gamma$$

cases with other metallicities

Nakauchi, KO + in prep.

due to ionization of alkali metals (Li, K, Na).

SUMMARY

- Massive binaries seem to have been common among first stars
- Binaries are more common among extreme Pop II (10⁻⁵-10⁻³Z_{sun}) stars

Caveat:

- higher resolution, longer time evolution needed to be followed
- How about close binaries?

Toward future MHD simulations:

 Chemical model for correct ionization degree constructed